/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Jin Ma, jin@multicorewareinc.com // Xiaopeng Fu, fuxiaopeng2222@163.com // Erping Pang, pang_er_ping@163.com // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_OPENCL using namespace cv; using namespace cv::ocl; using namespace cvtest; using namespace testing; ///////K-NEAREST NEIGHBOR////////////////////////// static void genTrainData(cv::RNG& rng, Mat& trainData, int trainDataRow, int trainDataCol, Mat& trainLabel = Mat().setTo(Scalar::all(0)), int nClasses = 0) { cv::Size size(trainDataCol, trainDataRow); trainData = randomMat(rng, size, CV_32FC1, 1.0, 1000.0, false); if(nClasses != 0) { cv::Size size1(trainDataRow, 1); trainLabel = randomMat(rng, size1, CV_8UC1, 0, nClasses - 1, false); trainLabel.convertTo(trainLabel, CV_32FC1); } } PARAM_TEST_CASE(KNN, int, Size, int, bool) { int k; int trainDataCol; int testDataRow; int nClass; bool regression; virtual void SetUp() { k = GET_PARAM(0); nClass = GET_PARAM(2); trainDataCol = GET_PARAM(1).width; testDataRow = GET_PARAM(1).height; regression = GET_PARAM(3); } }; OCL_TEST_P(KNN, Accuracy) { Mat trainData, trainLabels; const int trainDataRow = 500; genTrainData(rng, trainData, trainDataRow, trainDataCol, trainLabels, nClass); Mat testData, testLabels; genTrainData(rng, testData, testDataRow, trainDataCol); KNearestNeighbour knn_ocl; CvKNearest knn_cpu; Mat best_label_cpu; oclMat best_label_ocl; /*ocl k-Nearest_Neighbor start*/ oclMat trainData_ocl; trainData_ocl.upload(trainData); Mat simpleIdx; knn_ocl.train(trainData, trainLabels, simpleIdx, regression); oclMat testdata; testdata.upload(testData); knn_ocl.find_nearest(testdata, k, best_label_ocl); /*ocl k-Nearest_Neighbor end*/ /*cpu k-Nearest_Neighbor start*/ knn_cpu.train(trainData, trainLabels, simpleIdx, regression); knn_cpu.find_nearest(testData, k, &best_label_cpu); /*cpu k-Nearest_Neighbor end*/ if(regression) { EXPECT_MAT_SIMILAR(Mat(best_label_ocl), best_label_cpu, 1e-5); } else { EXPECT_MAT_NEAR(Mat(best_label_ocl), best_label_cpu, 0.0); } } INSTANTIATE_TEST_CASE_P(OCL_ML, KNN, Combine(Values(6, 5), Values(Size(200, 400), Size(300, 600)), Values(4, 3), Values(false, true))); #ifdef HAVE_CLAMDBLAS // TODO does not work non-blas version of SVM ////////////////////////////////SVM///////////////////////////////////////////////// PARAM_TEST_CASE(SVM_OCL, int, int, int) { cv::Size size; int kernel_type; int svm_type; Mat src, labels, samples, labels_predict; int K; virtual void SetUp() { kernel_type = GET_PARAM(0); svm_type = GET_PARAM(1); K = GET_PARAM(2); cv::Size size = cv::Size(MWIDTH, MHEIGHT); src.create(size, CV_32FC1); labels.create(1, size.height, CV_32SC1); int row_idx = 0; const int max_number = size.height / K - 1; CV_Assert(K <= size.height); for(int i = 0; i < K; i++ ) { Mat center_row_header = src.row(row_idx); center_row_header.setTo(0); int nchannel = center_row_header.channels(); for(int j = 0; j < nchannel; j++) { center_row_header.at(0, i * nchannel + j) = 500.0; } labels.at(0, row_idx) = i; for(int j = 0; (j < max_number) || (i == K - 1 && j < max_number + size.height % K); j ++) { Mat cur_row_header = src.row(row_idx + 1 + j); center_row_header.copyTo(cur_row_header); Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false); cur_row_header += tmpmat; labels.at(0, row_idx + 1 + j) = i; } row_idx += 1 + max_number; } labels.convertTo(labels, CV_32FC1); cv::Size test_size = cv::Size(MWIDTH, 100); samples.create(test_size, CV_32FC1); labels_predict.create(1, test_size.height, CV_32SC1); const int max_number_test = test_size.height / K - 1; row_idx = 0; for(int i = 0; i < K; i++ ) { Mat center_row_header = samples.row(row_idx); center_row_header.setTo(0); int nchannel = center_row_header.channels(); for(int j = 0; j < nchannel; j++) { center_row_header.at(0, i * nchannel + j) = 500.0; } labels_predict.at(0, row_idx) = i; for(int j = 0; (j < max_number_test) || (i == K - 1 && j < max_number_test + test_size.height % K); j ++) { Mat cur_row_header = samples.row(row_idx + 1 + j); center_row_header.copyTo(cur_row_header); Mat tmpmat = randomMat(cur_row_header.size(), cur_row_header.type(), 1, 100, false); cur_row_header += tmpmat; labels_predict.at(0, row_idx + 1 + j) = i; } row_idx += 1 + max_number_test; } labels_predict.convertTo(labels_predict, CV_32FC1); } }; OCL_TEST_P(SVM_OCL, Accuracy) { CvSVMParams params; params.degree = 0.4; params.gamma = 1; params.coef0 = 1; params.C = 1; params.nu = 0.5; params.p = 1; params.svm_type = svm_type; params.kernel_type = kernel_type; params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 1000, 0.001); CvSVM SVM; SVM.train(src, labels, Mat(), Mat(), params); cv::ocl::CvSVM_OCL SVM_OCL; SVM_OCL.train(src, labels, Mat(), Mat(), params); int c = SVM.get_support_vector_count(); int c1 = SVM_OCL.get_support_vector_count(); Mat sv(c, MHEIGHT, CV_32FC1); Mat sv_ocl(c1, MHEIGHT, CV_32FC1); for(int i = 0; i < c; i++) { const float* v = SVM.get_support_vector(i); for(int j = 0; j < MHEIGHT; j++) { sv.at(i, j) = v[j]; } } for(int i = 0; i < c1; i++) { const float* v_ocl = SVM_OCL.get_support_vector(i); for(int j = 0; j < MHEIGHT; j++) { sv_ocl.at(i, j) = v_ocl[j]; } } cv::BFMatcher matcher(cv::NORM_L2); std::vector matches; matcher.match(sv, sv_ocl, matches); int count = 0; for(std::vector::iterator itr = matches.begin(); itr != matches.end(); itr++) { if((*itr).distance < 0.1) { count ++; } } if(c != 0) { float matchedRatio = (float)count / c; EXPECT_GT(matchedRatio, 0.95); } if(c != 0) { CvMat *result = cvCreateMat(1, samples.rows, CV_32FC1); CvMat test_samples = samples; CvMat *result_ocl = cvCreateMat(1, samples.rows, CV_32FC1); SVM.predict(&test_samples, result); SVM_OCL.predict(&test_samples, result_ocl); int true_resp = 0, true_resp_ocl = 0; for (int i = 0; i < samples.rows; i++) { if (result->data.fl[i] == labels_predict.at(0, i)) { true_resp++; } } float matchedRatio = (float)true_resp / samples.rows; for (int i = 0; i < samples.rows; i++) { if (result_ocl->data.fl[i] == labels_predict.at(0, i)) { true_resp_ocl++; } } float matchedRatio_ocl = (float)true_resp_ocl / samples.rows; if(matchedRatio != 0 && true_resp_ocl < true_resp) { EXPECT_NEAR(matchedRatio_ocl, matchedRatio, 0.03); } } } // TODO FIXIT: CvSVM::EPS_SVR case is crashed inside CPU implementation // Anonymous enums are not supported well so cast them to 'int' INSTANTIATE_TEST_CASE_P(OCL_ML, SVM_OCL, testing::Combine( Values((int)CvSVM::LINEAR, (int)CvSVM::POLY, (int)CvSVM::RBF, (int)CvSVM::SIGMOID), Values((int)CvSVM::C_SVC, (int)CvSVM::NU_SVC, (int)CvSVM::ONE_CLASS, (int)CvSVM::NU_SVR), Values(2, 3, 4) )); #endif // HAVE_CLAMDBLAS #endif // HAVE_OPENCL