/* slarfp.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int slarfp_(integer *n, real *alpha, real *x, integer *incx, real *tau) { /* System generated locals */ integer i__1; real r__1; /* Builtin functions */ double r_sign(real *, real *); /* Local variables */ integer j, knt; real beta; extern doublereal snrm2_(integer *, real *, integer *); extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); real xnorm; extern doublereal slapy2_(real *, real *), slamch_(char *); real safmin, rsafmn; /* -- LAPACK auxiliary routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLARFP generates a real elementary reflector H of order n, such */ /* that */ /* H * ( alpha ) = ( beta ), H' * H = I. */ /* ( x ) ( 0 ) */ /* where alpha and beta are scalars, beta is non-negative, and x is */ /* an (n-1)-element real vector. H is represented in the form */ /* H = I - tau * ( 1 ) * ( 1 v' ) , */ /* ( v ) */ /* where tau is a real scalar and v is a real (n-1)-element */ /* vector. */ /* If the elements of x are all zero, then tau = 0 and H is taken to be */ /* the unit matrix. */ /* Otherwise 1 <= tau <= 2. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the elementary reflector. */ /* ALPHA (input/output) REAL */ /* On entry, the value alpha. */ /* On exit, it is overwritten with the value beta. */ /* X (input/output) REAL array, dimension */ /* (1+(N-2)*abs(INCX)) */ /* On entry, the vector x. */ /* On exit, it is overwritten with the vector v. */ /* INCX (input) INTEGER */ /* The increment between elements of X. INCX > 0. */ /* TAU (output) REAL */ /* The value tau. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --x; /* Function Body */ if (*n <= 0) { *tau = 0.f; return 0; } i__1 = *n - 1; xnorm = snrm2_(&i__1, &x[1], incx); if (xnorm == 0.f) { /* H = [+/-1, 0; I], sign chosen so ALPHA >= 0. */ if (*alpha >= 0.f) { /* When TAU.eq.ZERO, the vector is special-cased to be */ /* all zeros in the application routines. We do not need */ /* to clear it. */ *tau = 0.f; } else { /* However, the application routines rely on explicit */ /* zero checks when TAU.ne.ZERO, and we must clear X. */ *tau = 2.f; i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { x[(j - 1) * *incx + 1] = 0.f; } *alpha = -(*alpha); } } else { /* general case */ r__1 = slapy2_(alpha, &xnorm); beta = r_sign(&r__1, alpha); safmin = slamch_("S") / slamch_("E"); knt = 0; if (dabs(beta) < safmin) { /* XNORM, BETA may be inaccurate; scale X and recompute them */ rsafmn = 1.f / safmin; L10: ++knt; i__1 = *n - 1; sscal_(&i__1, &rsafmn, &x[1], incx); beta *= rsafmn; *alpha *= rsafmn; if (dabs(beta) < safmin) { goto L10; } /* New BETA is at most 1, at least SAFMIN */ i__1 = *n - 1; xnorm = snrm2_(&i__1, &x[1], incx); r__1 = slapy2_(alpha, &xnorm); beta = r_sign(&r__1, alpha); } *alpha += beta; if (beta < 0.f) { beta = -beta; *tau = -(*alpha) / beta; } else { *alpha = xnorm * (xnorm / *alpha); *tau = *alpha / beta; *alpha = -(*alpha); } i__1 = *n - 1; r__1 = 1.f / *alpha; sscal_(&i__1, &r__1, &x[1], incx); /* If BETA is subnormal, it may lose relative accuracy */ i__1 = knt; for (j = 1; j <= i__1; ++j) { beta *= safmin; /* L20: */ } *alpha = beta; } return 0; /* End of SLARFP */ } /* slarfp_ */