/* dsytrs.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Table of constant values */ static doublereal c_b7 = -1.; static integer c__1 = 1; static doublereal c_b19 = 1.; /* Subroutine */ int dsytrs_(char *uplo, integer *n, integer *nrhs, doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer * ldb, integer *info) { /* System generated locals */ integer a_dim1, a_offset, b_dim1, b_offset, i__1; doublereal d__1; /* Local variables */ integer j, k; doublereal ak, bk; integer kp; doublereal akm1, bkm1; extern /* Subroutine */ int dger_(integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, integer *); doublereal akm1k; extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, integer *); extern logical lsame_(char *, char *); doublereal denom; extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dswap_(integer *, doublereal *, integer *, doublereal *, integer *); logical upper; extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DSYTRS solves a system of linear equations A*X = B with a real */ /* symmetric matrix A using the factorization A = U*D*U**T or */ /* A = L*D*L**T computed by DSYTRF. */ /* Arguments */ /* ========= */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the details of the factorization are stored */ /* as an upper or lower triangular matrix. */ /* = 'U': Upper triangular, form is A = U*D*U**T; */ /* = 'L': Lower triangular, form is A = L*D*L**T. */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. */ /* NRHS (input) INTEGER */ /* The number of right hand sides, i.e., the number of columns */ /* of the matrix B. NRHS >= 0. */ /* A (input) DOUBLE PRECISION array, dimension (LDA,N) */ /* The block diagonal matrix D and the multipliers used to */ /* obtain the factor U or L as computed by DSYTRF. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(1,N). */ /* IPIV (input) INTEGER array, dimension (N) */ /* Details of the interchanges and the block structure of D */ /* as determined by DSYTRF. */ /* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ /* On entry, the right hand side matrix B. */ /* On exit, the solution matrix X. */ /* LDB (input) INTEGER */ /* The leading dimension of the array B. LDB >= max(1,N). */ /* INFO (output) INTEGER */ /* = 0: successful exit */ /* < 0: if INFO = -i, the i-th argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --ipiv; b_dim1 = *ldb; b_offset = 1 + b_dim1; b -= b_offset; /* Function Body */ *info = 0; upper = lsame_(uplo, "U"); if (! upper && ! lsame_(uplo, "L")) { *info = -1; } else if (*n < 0) { *info = -2; } else if (*nrhs < 0) { *info = -3; } else if (*lda < max(1,*n)) { *info = -5; } else if (*ldb < max(1,*n)) { *info = -8; } if (*info != 0) { i__1 = -(*info); xerbla_("DSYTRS", &i__1); return 0; } /* Quick return if possible */ if (*n == 0 || *nrhs == 0) { return 0; } if (upper) { /* Solve A*X = B, where A = U*D*U'. */ /* First solve U*D*X = B, overwriting B with X. */ /* K is the main loop index, decreasing from N to 1 in steps of */ /* 1 or 2, depending on the size of the diagonal blocks. */ k = *n; L10: /* If K < 1, exit from loop. */ if (k < 1) { goto L30; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block */ /* Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(U(K)), where U(K) is the transformation */ /* stored in column K of A. */ i__1 = k - 1; dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k + b_dim1], ldb, &b[b_dim1 + 1], ldb); /* Multiply by the inverse of the diagonal block. */ d__1 = 1. / a[k + k * a_dim1]; dscal_(nrhs, &d__1, &b[k + b_dim1], ldb); --k; } else { /* 2 x 2 diagonal block */ /* Interchange rows K-1 and -IPIV(K). */ kp = -ipiv[k]; if (kp != k - 1) { dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(U(K)), where U(K) is the transformation */ /* stored in columns K-1 and K of A. */ i__1 = k - 2; dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k + b_dim1], ldb, &b[b_dim1 + 1], ldb); i__1 = k - 2; dger_(&i__1, nrhs, &c_b7, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k - 1 + b_dim1], ldb, &b[b_dim1 + 1], ldb); /* Multiply by the inverse of the diagonal block. */ akm1k = a[k - 1 + k * a_dim1]; akm1 = a[k - 1 + (k - 1) * a_dim1] / akm1k; ak = a[k + k * a_dim1] / akm1k; denom = akm1 * ak - 1.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bkm1 = b[k - 1 + j * b_dim1] / akm1k; bk = b[k + j * b_dim1] / akm1k; b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom; b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom; /* L20: */ } k += -2; } goto L10; L30: /* Next solve U'*X = B, overwriting B with X. */ /* K is the main loop index, increasing from 1 to N in steps of */ /* 1 or 2, depending on the size of the diagonal blocks. */ k = 1; L40: /* If K > N, exit from loop. */ if (k > *n) { goto L50; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block */ /* Multiply by inv(U'(K)), where U(K) is the transformation */ /* stored in column K of A. */ i__1 = k - 1; dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k * a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb); /* Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } ++k; } else { /* 2 x 2 diagonal block */ /* Multiply by inv(U'(K+1)), where U(K+1) is the transformation */ /* stored in columns K and K+1 of A. */ i__1 = k - 1; dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k * a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb); i__1 = k - 1; dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[(k + 1) * a_dim1 + 1], &c__1, &c_b19, &b[k + 1 + b_dim1], ldb); /* Interchange rows K and -IPIV(K). */ kp = -ipiv[k]; if (kp != k) { dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } k += 2; } goto L40; L50: ; } else { /* Solve A*X = B, where A = L*D*L'. */ /* First solve L*D*X = B, overwriting B with X. */ /* K is the main loop index, increasing from 1 to N in steps of */ /* 1 or 2, depending on the size of the diagonal blocks. */ k = 1; L60: /* If K > N, exit from loop. */ if (k > *n) { goto L80; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block */ /* Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(L(K)), where L(K) is the transformation */ /* stored in column K of A. */ if (k < *n) { i__1 = *n - k; dger_(&i__1, nrhs, &c_b7, &a[k + 1 + k * a_dim1], &c__1, &b[k + b_dim1], ldb, &b[k + 1 + b_dim1], ldb); } /* Multiply by the inverse of the diagonal block. */ d__1 = 1. / a[k + k * a_dim1]; dscal_(nrhs, &d__1, &b[k + b_dim1], ldb); ++k; } else { /* 2 x 2 diagonal block */ /* Interchange rows K+1 and -IPIV(K). */ kp = -ipiv[k]; if (kp != k + 1) { dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb); } /* Multiply by inv(L(K)), where L(K) is the transformation */ /* stored in columns K and K+1 of A. */ if (k < *n - 1) { i__1 = *n - k - 1; dger_(&i__1, nrhs, &c_b7, &a[k + 2 + k * a_dim1], &c__1, &b[k + b_dim1], ldb, &b[k + 2 + b_dim1], ldb); i__1 = *n - k - 1; dger_(&i__1, nrhs, &c_b7, &a[k + 2 + (k + 1) * a_dim1], &c__1, &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb); } /* Multiply by the inverse of the diagonal block. */ akm1k = a[k + 1 + k * a_dim1]; akm1 = a[k + k * a_dim1] / akm1k; ak = a[k + 1 + (k + 1) * a_dim1] / akm1k; denom = akm1 * ak - 1.; i__1 = *nrhs; for (j = 1; j <= i__1; ++j) { bkm1 = b[k + j * b_dim1] / akm1k; bk = b[k + 1 + j * b_dim1] / akm1k; b[k + j * b_dim1] = (ak * bkm1 - bk) / denom; b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom; /* L70: */ } k += 2; } goto L60; L80: /* Next solve L'*X = B, overwriting B with X. */ /* K is the main loop index, decreasing from N to 1 in steps of */ /* 1 or 2, depending on the size of the diagonal blocks. */ k = *n; L90: /* If K < 1, exit from loop. */ if (k < 1) { goto L100; } if (ipiv[k] > 0) { /* 1 x 1 diagonal block */ /* Multiply by inv(L'(K)), where L(K) is the transformation */ /* stored in column K of A. */ if (k < *n) { i__1 = *n - k; dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k + b_dim1], ldb); } /* Interchange rows K and IPIV(K). */ kp = ipiv[k]; if (kp != k) { dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } --k; } else { /* 2 x 2 diagonal block */ /* Multiply by inv(L'(K-1)), where L(K-1) is the transformation */ /* stored in columns K-1 and K of A. */ if (k < *n) { i__1 = *n - k; dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k + b_dim1], ldb); i__1 = *n - k; dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1], ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &c_b19, &b[ k - 1 + b_dim1], ldb); } /* Interchange rows K and -IPIV(K). */ kp = -ipiv[k]; if (kp != k) { dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb); } k += -2; } goto L90; L100: ; } return 0; /* End of DSYTRS */ } /* dsytrs_ */