from __future__ import print_function import numpy as np import cv2 from cv2 import dnn import timeit def prepare_image(img): img = cv2.resize(img, (224, 224)) #convert interleaved image (RGBRGB) to planar(RRGGBB) blob = np.moveaxis(img, 2, 0) blob = np.reshape(blob.astype(np.float32), (-1, 3, 224, 224)) return blob def timeit_forward(net): print("OpenCL:", cv2.ocl.useOpenCL()) print("Runtime:", timeit.timeit(lambda: net.forward(), number=10)) def get_class_list(): with open('synset_words.txt', 'rt') as f: return [ x[x.find(" ") + 1 :] for x in f ] blob = prepare_image(cv2.imread('space_shuttle.jpg')) print("Input:", blob.shape, blob.dtype) cv2.ocl.setUseOpenCL(True) #Disable OCL if you want net = dnn.readNetFromCaffe('bvlc_googlenet.prototxt', 'bvlc_googlenet.caffemodel') net.setBlob(".data", blob) net.forward() #timeit_forward(net) #Uncomment to check performance prob = net.getBlob("prob") print("Output:", prob.shape, prob.dtype) classes = get_class_list() print("Best match", classes[prob.argmax()])