/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::gpu; /*stub for deprecated constructor*/ cv::gpu::CannyBuf::CannyBuf(const GpuMat&, const GpuMat&) { } #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) void cv::gpu::meanShiftFiltering(const GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); } void cv::gpu::meanShiftProc(const GpuMat&, GpuMat&, GpuMat&, int, int, TermCriteria, Stream&) { throw_nogpu(); } void cv::gpu::drawColorDisp(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); } void cv::gpu::reprojectImageTo3D(const GpuMat&, GpuMat&, const Mat&, int, Stream&) { throw_nogpu(); } void cv::gpu::copyMakeBorder(const GpuMat&, GpuMat&, int, int, int, int, int, const Scalar&, Stream&) { throw_nogpu(); } void cv::gpu::buildWarpPlaneMaps(Size, Rect, const Mat&, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::buildWarpCylindricalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::buildWarpSphericalMaps(Size, Rect, const Mat&, const Mat&, float, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::rotate(const GpuMat&, GpuMat&, Size, double, double, double, int, Stream&) { throw_nogpu(); } void cv::gpu::integral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::integralBuffered(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); } void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&, Stream&) { throw_nogpu(); } void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); } void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } void cv::gpu::histEven(const GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*, Stream&) { throw_nogpu(); } void cv::gpu::histEven(const GpuMat&, GpuMat*, GpuMat&, int*, int*, int*, Stream&) { throw_nogpu(); } void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::histRange(const GpuMat&, GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, Stream&) { throw_nogpu(); } void cv::gpu::histRange(const GpuMat&, GpuMat*, const GpuMat*, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::calcHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::calcHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::equalizeHist(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); } void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int) { throw_nogpu(); } void cv::gpu::cornerHarris(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, double, int, Stream&) { throw_nogpu(); } void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); } void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); } void cv::gpu::cornerMinEigenVal(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, int, int, Stream&) { throw_nogpu(); } void cv::gpu::mulSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, bool, Stream&) { throw_nogpu(); } void cv::gpu::mulAndScaleSpectrums(const GpuMat&, const GpuMat&, GpuMat&, int, float, bool, Stream&) { throw_nogpu(); } void cv::gpu::dft(const GpuMat&, GpuMat&, Size, int, Stream&) { throw_nogpu(); } void cv::gpu::ConvolveBuf::create(Size, Size) { throw_nogpu(); } void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); } void cv::gpu::convolve(const GpuMat&, const GpuMat&, GpuMat&, bool, ConvolveBuf&, Stream&) { throw_nogpu(); } void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int, bool) { throw_nogpu(); } void cv::gpu::Canny(const GpuMat&, CannyBuf&, GpuMat&, double, double, int, bool) { throw_nogpu(); } void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, double, double, bool) { throw_nogpu(); } void cv::gpu::Canny(const GpuMat&, const GpuMat&, CannyBuf&, GpuMat&, double, double, bool) { throw_nogpu(); } void cv::gpu::CannyBuf::create(const Size&, int) { throw_nogpu(); } void cv::gpu::CannyBuf::release() { throw_nogpu(); } cv::Ptr cv::gpu::createCLAHE(double, cv::Size) { throw_nogpu(); return cv::Ptr(); } #else /* !defined (HAVE_CUDA) */ //////////////////////////////////////////////////////////////////////// // meanShiftFiltering_GPU namespace cv { namespace gpu { namespace device { namespace imgproc { void meanShiftFiltering_gpu(const PtrStepSzb& src, PtrStepSzb dst, int sp, int sr, int maxIter, float eps, cudaStream_t stream); } }}} void cv::gpu::meanShiftFiltering(const GpuMat& src, GpuMat& dst, int sp, int sr, TermCriteria criteria, Stream& stream) { using namespace ::cv::gpu::device::imgproc; if( src.empty() ) CV_Error( CV_StsBadArg, "The input image is empty" ); if( src.depth() != CV_8U || src.channels() != 4 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); dst.create( src.size(), CV_8UC4 ); if( !(criteria.type & TermCriteria::MAX_ITER) ) criteria.maxCount = 5; int maxIter = std::min(std::max(criteria.maxCount, 1), 100); float eps; if( !(criteria.type & TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(criteria.epsilon, 0.0); meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // meanShiftProc_GPU namespace cv { namespace gpu { namespace device { namespace imgproc { void meanShiftProc_gpu(const PtrStepSzb& src, PtrStepSzb dstr, PtrStepSzb dstsp, int sp, int sr, int maxIter, float eps, cudaStream_t stream); } }}} void cv::gpu::meanShiftProc(const GpuMat& src, GpuMat& dstr, GpuMat& dstsp, int sp, int sr, TermCriteria criteria, Stream& stream) { using namespace ::cv::gpu::device::imgproc; if( src.empty() ) CV_Error( CV_StsBadArg, "The input image is empty" ); if( src.depth() != CV_8U || src.channels() != 4 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); dstr.create( src.size(), CV_8UC4 ); dstsp.create( src.size(), CV_16SC2 ); if( !(criteria.type & TermCriteria::MAX_ITER) ) criteria.maxCount = 5; int maxIter = std::min(std::max(criteria.maxCount, 1), 100); float eps; if( !(criteria.type & TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(criteria.epsilon, 0.0); meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // drawColorDisp namespace cv { namespace gpu { namespace device { namespace imgproc { void drawColorDisp_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream); void drawColorDisp_gpu(const PtrStepSz& src, const PtrStepSzb& dst, int ndisp, const cudaStream_t& stream); } }}} namespace { template void drawColorDisp_caller(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream) { using namespace ::cv::gpu::device::imgproc; dst.create(src.size(), CV_8UC4); drawColorDisp_gpu((PtrStepSz)src, dst, ndisp, stream); } typedef void (*drawColorDisp_caller_t)(const GpuMat& src, GpuMat& dst, int ndisp, const cudaStream_t& stream); const drawColorDisp_caller_t drawColorDisp_callers[] = {drawColorDisp_caller, 0, 0, drawColorDisp_caller, 0, 0, 0, 0}; } void cv::gpu::drawColorDisp(const GpuMat& src, GpuMat& dst, int ndisp, Stream& stream) { CV_Assert(src.type() == CV_8U || src.type() == CV_16S); drawColorDisp_callers[src.type()](src, dst, ndisp, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // reprojectImageTo3D namespace cv { namespace gpu { namespace device { namespace imgproc { template void reprojectImageTo3D_gpu(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream); } }}} void cv::gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyz, const Mat& Q, int dst_cn, Stream& stream) { using namespace cv::gpu::device::imgproc; typedef void (*func_t)(const PtrStepSzb disp, PtrStepSzb xyz, const float* q, cudaStream_t stream); static const func_t funcs[2][4] = { {reprojectImageTo3D_gpu, 0, 0, reprojectImageTo3D_gpu}, {reprojectImageTo3D_gpu, 0, 0, reprojectImageTo3D_gpu} }; CV_Assert(disp.type() == CV_8U || disp.type() == CV_16S); CV_Assert(Q.type() == CV_32F && Q.rows == 4 && Q.cols == 4 && Q.isContinuous()); CV_Assert(dst_cn == 3 || dst_cn == 4); xyz.create(disp.size(), CV_MAKE_TYPE(CV_32F, dst_cn)); funcs[dst_cn == 4][disp.type()](disp, xyz, Q.ptr(), StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // copyMakeBorder namespace cv { namespace gpu { namespace device { namespace imgproc { template void copyMakeBorder_gpu(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderMode, const T* borderValue, cudaStream_t stream); } }}} namespace { template void copyMakeBorder_caller(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream) { using namespace ::cv::gpu::device::imgproc; Scalar_ val(saturate_cast(value[0]), saturate_cast(value[1]), saturate_cast(value[2]), saturate_cast(value[3])); copyMakeBorder_gpu(src, dst, top, left, borderType, val.val, stream); } } #if defined __GNUC__ && __GNUC__ > 2 && __GNUC_MINOR__ > 4 typedef Npp32s __attribute__((__may_alias__)) Npp32s_a; #else typedef Npp32s Npp32s_a; #endif void cv::gpu::copyMakeBorder(const GpuMat& src, GpuMat& dst, int top, int bottom, int left, int right, int borderType, const Scalar& value, Stream& s) { CV_Assert(src.depth() <= CV_32F && src.channels() <= 4); CV_Assert(borderType == BORDER_REFLECT101 || borderType == BORDER_REPLICATE || borderType == BORDER_CONSTANT || borderType == BORDER_REFLECT || borderType == BORDER_WRAP); dst.create(src.rows + top + bottom, src.cols + left + right, src.type()); cudaStream_t stream = StreamAccessor::getStream(s); if (borderType == BORDER_CONSTANT && (src.type() == CV_8UC1 || src.type() == CV_8UC4 || src.type() == CV_32SC1 || src.type() == CV_32FC1)) { NppiSize srcsz; srcsz.width = src.cols; srcsz.height = src.rows; NppiSize dstsz; dstsz.width = dst.cols; dstsz.height = dst.rows; NppStreamHandler h(stream); switch (src.type()) { case CV_8UC1: { Npp8u nVal = saturate_cast(value[0]); nppSafeCall( nppiCopyConstBorder_8u_C1R(src.ptr(), static_cast(src.step), srcsz, dst.ptr(), static_cast(dst.step), dstsz, top, left, nVal) ); break; } case CV_8UC4: { Npp8u nVal[] = {saturate_cast(value[0]), saturate_cast(value[1]), saturate_cast(value[2]), saturate_cast(value[3])}; nppSafeCall( nppiCopyConstBorder_8u_C4R(src.ptr(), static_cast(src.step), srcsz, dst.ptr(), static_cast(dst.step), dstsz, top, left, nVal) ); break; } case CV_32SC1: { Npp32s nVal = saturate_cast(value[0]); nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr(), static_cast(src.step), srcsz, dst.ptr(), static_cast(dst.step), dstsz, top, left, nVal) ); break; } case CV_32FC1: { Npp32f val = saturate_cast(value[0]); Npp32s nVal = *(reinterpret_cast(&val)); nppSafeCall( nppiCopyConstBorder_32s_C1R(src.ptr(), static_cast(src.step), srcsz, dst.ptr(), static_cast(dst.step), dstsz, top, left, nVal) ); break; } } if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } else { typedef void (*caller_t)(const PtrStepSzb& src, const PtrStepSzb& dst, int top, int left, int borderType, const Scalar& value, cudaStream_t stream); static const caller_t callers[6][4] = { { copyMakeBorder_caller , copyMakeBorder_caller , copyMakeBorder_caller , copyMakeBorder_caller}, {0/*copyMakeBorder_caller*/, 0/*copyMakeBorder_caller*/ , 0/*copyMakeBorder_caller*/, 0/*copyMakeBorder_caller*/}, { copyMakeBorder_caller , 0/*copyMakeBorder_caller*/, copyMakeBorder_caller , copyMakeBorder_caller}, { copyMakeBorder_caller , 0/*copyMakeBorder_caller*/ , copyMakeBorder_caller , copyMakeBorder_caller}, {0/*copyMakeBorder_caller*/, 0/*copyMakeBorder_caller*/ , 0/*copyMakeBorder_caller*/, 0/*copyMakeBorder_caller*/}, { copyMakeBorder_caller , 0/*copyMakeBorder_caller*/ , copyMakeBorder_caller , copyMakeBorder_caller} }; caller_t func = callers[src.depth()][src.channels() - 1]; CV_Assert(func != 0); int gpuBorderType; CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); func(src, dst, top, left, gpuBorderType, value, stream); } } ////////////////////////////////////////////////////////////////////////////// // buildWarpPlaneMaps namespace cv { namespace gpu { namespace device { namespace imgproc { void buildWarpPlaneMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, const float k_rinv[9], const float r_kinv[9], const float t[3], float scale, cudaStream_t stream); } }}} void cv::gpu::buildWarpPlaneMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, const Mat &T, float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream) { (void)src_size; using namespace ::cv::gpu::device::imgproc; CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F); CV_Assert((T.size() == Size(3,1) || T.size() == Size(1,3)) && T.type() == CV_32F && T.isContinuous()); Mat K_Rinv = K * R.t(); Mat R_Kinv = R * K.inv(); CV_Assert(K_Rinv.isContinuous()); CV_Assert(R_Kinv.isContinuous()); map_x.create(dst_roi.size(), CV_32F); map_y.create(dst_roi.size(), CV_32F); device::imgproc::buildWarpPlaneMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr(), R_Kinv.ptr(), T.ptr(), scale, StreamAccessor::getStream(stream)); } ////////////////////////////////////////////////////////////////////////////// // buildWarpCylyndricalMaps namespace cv { namespace gpu { namespace device { namespace imgproc { void buildWarpCylindricalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, const float k_rinv[9], const float r_kinv[9], float scale, cudaStream_t stream); } }}} void cv::gpu::buildWarpCylindricalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream) { (void)src_size; using namespace ::cv::gpu::device::imgproc; CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F); Mat K_Rinv = K * R.t(); Mat R_Kinv = R * K.inv(); CV_Assert(K_Rinv.isContinuous()); CV_Assert(R_Kinv.isContinuous()); map_x.create(dst_roi.size(), CV_32F); map_y.create(dst_roi.size(), CV_32F); device::imgproc::buildWarpCylindricalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr(), R_Kinv.ptr(), scale, StreamAccessor::getStream(stream)); } ////////////////////////////////////////////////////////////////////////////// // buildWarpSphericalMaps namespace cv { namespace gpu { namespace device { namespace imgproc { void buildWarpSphericalMaps(int tl_u, int tl_v, PtrStepSzf map_x, PtrStepSzf map_y, const float k_rinv[9], const float r_kinv[9], float scale, cudaStream_t stream); } }}} void cv::gpu::buildWarpSphericalMaps(Size src_size, Rect dst_roi, const Mat &K, const Mat& R, float scale, GpuMat& map_x, GpuMat& map_y, Stream& stream) { (void)src_size; using namespace ::cv::gpu::device::imgproc; CV_Assert(K.size() == Size(3,3) && K.type() == CV_32F); CV_Assert(R.size() == Size(3,3) && R.type() == CV_32F); Mat K_Rinv = K * R.t(); Mat R_Kinv = R * K.inv(); CV_Assert(K_Rinv.isContinuous()); CV_Assert(R_Kinv.isContinuous()); map_x.create(dst_roi.size(), CV_32F); map_y.create(dst_roi.size(), CV_32F); device::imgproc::buildWarpSphericalMaps(dst_roi.tl().x, dst_roi.tl().y, map_x, map_y, K_Rinv.ptr(), R_Kinv.ptr(), scale, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // rotate namespace { template struct NppTypeTraits; template<> struct NppTypeTraits { typedef Npp8u npp_t; }; template<> struct NppTypeTraits { typedef Npp8s npp_t; }; template<> struct NppTypeTraits { typedef Npp16u npp_t; }; template<> struct NppTypeTraits { typedef Npp16s npp_t; }; template<> struct NppTypeTraits { typedef Npp32s npp_t; }; template<> struct NppTypeTraits { typedef Npp32f npp_t; }; template<> struct NppTypeTraits { typedef Npp64f npp_t; }; template struct NppRotateFunc { typedef typename NppTypeTraits::npp_t npp_t; typedef NppStatus (*func_t)(const npp_t* pSrc, NppiSize oSrcSize, int nSrcStep, NppiRect oSrcROI, npp_t* pDst, int nDstStep, NppiRect oDstROI, double nAngle, double nShiftX, double nShiftY, int eInterpolation); }; template ::func_t func> struct NppRotate { typedef typename NppRotateFunc::npp_t npp_t; static void call(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream) { (void)dsize; static const int npp_inter[] = {NPPI_INTER_NN, NPPI_INTER_LINEAR, NPPI_INTER_CUBIC}; NppStreamHandler h(stream); NppiSize srcsz; srcsz.height = src.rows; srcsz.width = src.cols; NppiRect srcroi; srcroi.x = srcroi.y = 0; srcroi.height = src.rows; srcroi.width = src.cols; NppiRect dstroi; dstroi.x = dstroi.y = 0; dstroi.height = dst.rows; dstroi.width = dst.cols; nppSafeCall( func(src.ptr(), srcsz, static_cast(src.step), srcroi, dst.ptr(), static_cast(dst.step), dstroi, angle, xShift, yShift, npp_inter[interpolation]) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; } void cv::gpu::rotate(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, Stream& stream) { typedef void (*func_t)(const GpuMat& src, GpuMat& dst, Size dsize, double angle, double xShift, double yShift, int interpolation, cudaStream_t stream); static const func_t funcs[6][4] = { {NppRotate::call, 0, NppRotate::call, NppRotate::call}, {0,0,0,0}, {NppRotate::call, 0, NppRotate::call, NppRotate::call}, {0,0,0,0}, {0,0,0,0}, {NppRotate::call, 0, NppRotate::call, NppRotate::call} }; CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32F); CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4); CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC); dst.create(dsize, src.type()); dst.setTo(Scalar::all(0)); funcs[src.depth()][src.channels() - 1](src, dst, dsize, angle, xShift, yShift, interpolation, StreamAccessor::getStream(stream)); } //////////////////////////////////////////////////////////////////////// // integral void cv::gpu::integral(const GpuMat& src, GpuMat& sum, Stream& s) { GpuMat buffer; integralBuffered(src, sum, buffer, s); } namespace cv { namespace gpu { namespace device { namespace imgproc { void shfl_integral_gpu(const PtrStepSzb& img, PtrStepSz integral, cudaStream_t stream); } }}} void cv::gpu::integralBuffered(const GpuMat& src, GpuMat& sum, GpuMat& buffer, Stream& s) { CV_Assert(src.type() == CV_8UC1); cudaStream_t stream = StreamAccessor::getStream(s); cv::Size whole; cv::Point offset; src.locateROI(whole, offset); if (deviceSupports(WARP_SHUFFLE_FUNCTIONS) && src.cols <= 2048 && offset.x % 16 == 0 && ((src.cols + 63) / 64) * 64 <= (static_cast(src.step) - offset.x)) { ensureSizeIsEnough(((src.rows + 7) / 8) * 8, ((src.cols + 63) / 64) * 64, CV_32SC1, buffer); cv::gpu::device::imgproc::shfl_integral_gpu(src, buffer, stream); sum.create(src.rows + 1, src.cols + 1, CV_32SC1); if (s) s.enqueueMemSet(sum, Scalar::all(0)); else sum.setTo(Scalar::all(0)); GpuMat inner = sum(Rect(1, 1, src.cols, src.rows)); GpuMat res = buffer(Rect(0, 0, src.cols, src.rows)); if (s) s.enqueueCopy(res, inner); else res.copyTo(inner); } else { sum.create(src.rows + 1, src.cols + 1, CV_32SC1); NcvSize32u roiSize; roiSize.width = src.cols; roiSize.height = src.rows; cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); Ncv32u bufSize; ncvSafeCall( nppiStIntegralGetSize_8u32u(roiSize, &bufSize, prop) ); ensureSizeIsEnough(1, bufSize, CV_8UC1, buffer); NppStStreamHandler h(stream); ncvSafeCall( nppiStIntegral_8u32u_C1R(const_cast(src.ptr()), static_cast(src.step), sum.ptr(), static_cast(sum.step), roiSize, buffer.ptr(), bufSize, prop) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } } ////////////////////////////////////////////////////////////////////////////// // sqrIntegral void cv::gpu::sqrIntegral(const GpuMat& src, GpuMat& sqsum, Stream& s) { CV_Assert(src.type() == CV_8U); NcvSize32u roiSize; roiSize.width = src.cols; roiSize.height = src.rows; cudaDeviceProp prop; cudaSafeCall( cudaGetDeviceProperties(&prop, cv::gpu::getDevice()) ); Ncv32u bufSize; ncvSafeCall(nppiStSqrIntegralGetSize_8u64u(roiSize, &bufSize, prop)); GpuMat buf(1, bufSize, CV_8U); cudaStream_t stream = StreamAccessor::getStream(s); NppStStreamHandler h(stream); sqsum.create(src.rows + 1, src.cols + 1, CV_64F); ncvSafeCall(nppiStSqrIntegral_8u64u_C1R(const_cast(src.ptr(0)), static_cast(src.step), sqsum.ptr(0), static_cast(sqsum.step), roiSize, buf.ptr(0), bufSize, prop)); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } ////////////////////////////////////////////////////////////////////////////// // columnSum namespace cv { namespace gpu { namespace device { namespace imgproc { void columnSum_32F(const PtrStepSzb src, const PtrStepSzb dst); } }}} void cv::gpu::columnSum(const GpuMat& src, GpuMat& dst) { using namespace ::cv::gpu::device::imgproc; CV_Assert(src.type() == CV_32F); dst.create(src.size(), CV_32F); device::imgproc::columnSum_32F(src, dst); } void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect, Stream& s) { CV_Assert(src.type() == CV_32SC1 && sqr.type() == CV_64FC1); dst.create(src.size(), CV_32FC1); NppiSize sz; sz.width = src.cols; sz.height = src.rows; NppiRect nppRect; nppRect.height = rect.height; nppRect.width = rect.width; nppRect.x = rect.x; nppRect.y = rect.y; cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); nppSafeCall( nppiRectStdDev_32s32f_C1R(src.ptr(), static_cast(src.step), sqr.ptr(), static_cast(sqr.step), dst.ptr(), static_cast(dst.step), sz, nppRect) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } //////////////////////////////////////////////////////////////////////// // Histogram namespace { typedef NppStatus (*get_buf_size_c1_t)(NppiSize oSizeROI, int nLevels, int* hpBufferSize); typedef NppStatus (*get_buf_size_c4_t)(NppiSize oSizeROI, int nLevels[], int* hpBufferSize); template struct NppHistogramEvenFuncC1 { typedef typename NppTypeTraits::npp_t src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist, int nLevels, Npp32s nLowerLevel, Npp32s nUpperLevel, Npp8u * pBuffer); }; template struct NppHistogramEvenFuncC4 { typedef typename NppTypeTraits::npp_t src_t; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s * pHist[4], int nLevels[4], Npp32s nLowerLevel[4], Npp32s nUpperLevel[4], Npp8u * pBuffer); }; template::func_ptr func, get_buf_size_c1_t get_buf_size> struct NppHistogramEvenC1 { typedef typename NppHistogramEvenFuncC1::src_t src_t; static void hist(const GpuMat& src, GpuMat& hist, GpuMat& buffer, int histSize, int lowerLevel, int upperLevel, cudaStream_t stream) { int levels = histSize + 1; hist.create(1, histSize, CV_32S); NppiSize sz; sz.width = src.cols; sz.height = src.rows; int buf_size; get_buf_size(sz, levels, &buf_size); ensureSizeIsEnough(1, buf_size, CV_8U, buffer); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, hist.ptr(), levels, lowerLevel, upperLevel, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func, get_buf_size_c4_t get_buf_size> struct NppHistogramEvenC4 { typedef typename NppHistogramEvenFuncC4::src_t src_t; static void hist(const GpuMat& src, GpuMat hist[4], GpuMat& buffer, int histSize[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream) { int levels[] = {histSize[0] + 1, histSize[1] + 1, histSize[2] + 1, histSize[3] + 1}; hist[0].create(1, histSize[0], CV_32S); hist[1].create(1, histSize[1], CV_32S); hist[2].create(1, histSize[2], CV_32S); hist[3].create(1, histSize[3], CV_32S); NppiSize sz; sz.width = src.cols; sz.height = src.rows; Npp32s* pHist[] = {hist[0].ptr(), hist[1].ptr(), hist[2].ptr(), hist[3].ptr()}; int buf_size; get_buf_size(sz, levels, &buf_size); ensureSizeIsEnough(1, buf_size, CV_8U, buffer); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, pHist, levels, lowerLevel, upperLevel, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template struct NppHistogramRangeFuncC1 { typedef typename NppTypeTraits::npp_t src_t; typedef Npp32s level_t; enum {LEVEL_TYPE_CODE=CV_32SC1}; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, const Npp32s* pLevels, int nLevels, Npp8u* pBuffer); }; template<> struct NppHistogramRangeFuncC1 { typedef Npp32f src_t; typedef Npp32f level_t; enum {LEVEL_TYPE_CODE=CV_32FC1}; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist, const Npp32f* pLevels, int nLevels, Npp8u* pBuffer); }; template struct NppHistogramRangeFuncC4 { typedef typename NppTypeTraits::npp_t src_t; typedef Npp32s level_t; enum {LEVEL_TYPE_CODE=CV_32SC1}; typedef NppStatus (*func_ptr)(const src_t* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], const Npp32s* pLevels[4], int nLevels[4], Npp8u* pBuffer); }; template<> struct NppHistogramRangeFuncC4 { typedef Npp32f src_t; typedef Npp32f level_t; enum {LEVEL_TYPE_CODE=CV_32FC1}; typedef NppStatus (*func_ptr)(const Npp32f* pSrc, int nSrcStep, NppiSize oSizeROI, Npp32s* pHist[4], const Npp32f* pLevels[4], int nLevels[4], Npp8u* pBuffer); }; template::func_ptr func, get_buf_size_c1_t get_buf_size> struct NppHistogramRangeC1 { typedef typename NppHistogramRangeFuncC1::src_t src_t; typedef typename NppHistogramRangeFuncC1::level_t level_t; enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1::LEVEL_TYPE_CODE}; static void hist(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buffer, cudaStream_t stream) { CV_Assert(levels.type() == LEVEL_TYPE_CODE && levels.rows == 1); hist.create(1, levels.cols - 1, CV_32S); NppiSize sz; sz.width = src.cols; sz.height = src.rows; int buf_size; get_buf_size(sz, levels.cols, &buf_size); ensureSizeIsEnough(1, buf_size, CV_8U, buffer); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, hist.ptr(), levels.ptr(), levels.cols, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; template::func_ptr func, get_buf_size_c4_t get_buf_size> struct NppHistogramRangeC4 { typedef typename NppHistogramRangeFuncC4::src_t src_t; typedef typename NppHistogramRangeFuncC1::level_t level_t; enum {LEVEL_TYPE_CODE=NppHistogramRangeFuncC1::LEVEL_TYPE_CODE}; static void hist(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buffer, cudaStream_t stream) { CV_Assert(levels[0].type() == LEVEL_TYPE_CODE && levels[0].rows == 1); CV_Assert(levels[1].type() == LEVEL_TYPE_CODE && levels[1].rows == 1); CV_Assert(levels[2].type() == LEVEL_TYPE_CODE && levels[2].rows == 1); CV_Assert(levels[3].type() == LEVEL_TYPE_CODE && levels[3].rows == 1); hist[0].create(1, levels[0].cols - 1, CV_32S); hist[1].create(1, levels[1].cols - 1, CV_32S); hist[2].create(1, levels[2].cols - 1, CV_32S); hist[3].create(1, levels[3].cols - 1, CV_32S); Npp32s* pHist[] = {hist[0].ptr(), hist[1].ptr(), hist[2].ptr(), hist[3].ptr()}; int nLevels[] = {levels[0].cols, levels[1].cols, levels[2].cols, levels[3].cols}; const level_t* pLevels[] = {levels[0].ptr(), levels[1].ptr(), levels[2].ptr(), levels[3].ptr()}; NppiSize sz; sz.width = src.cols; sz.height = src.rows; int buf_size; get_buf_size(sz, nLevels, &buf_size); ensureSizeIsEnough(1, buf_size, CV_8U, buffer); NppStreamHandler h(stream); nppSafeCall( func(src.ptr(), static_cast(src.step), sz, pHist, pLevels, nLevels, buffer.ptr()) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; } void cv::gpu::evenLevels(GpuMat& levels, int nLevels, int lowerLevel, int upperLevel) { Mat host_levels(1, nLevels, CV_32SC1); nppSafeCall( nppiEvenLevelsHost_32s(host_levels.ptr(), nLevels, lowerLevel, upperLevel) ); levels.upload(host_levels); } void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, int histSize, int lowerLevel, int upperLevel, Stream& stream) { GpuMat buf; histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } void cv::gpu::histEven(const GpuMat& src, GpuMat& hist, GpuMat& buf, int histSize, int lowerLevel, int upperLevel, Stream& stream) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 ); typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, GpuMat& buf, int levels, int lowerLevel, int upperLevel, cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramEvenC1::hist, 0, NppHistogramEvenC1::hist, NppHistogramEvenC1::hist }; hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); } void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream) { GpuMat buf; histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } void cv::gpu::histEven(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream) { CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 ); typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], GpuMat& buf, int levels[4], int lowerLevel[4], int upperLevel[4], cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramEvenC4::hist, 0, NppHistogramEvenC4::hist, NppHistogramEvenC4::hist }; hist_callers[src.depth()](src, hist, buf, histSize, lowerLevel, upperLevel, StreamAccessor::getStream(stream)); } void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, Stream& stream) { GpuMat buf; histRange(src, hist, levels, buf, stream); } void cv::gpu::histRange(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, Stream& stream) { CV_Assert(src.type() == CV_8UC1 || src.type() == CV_16UC1 || src.type() == CV_16SC1 || src.type() == CV_32FC1); typedef void (*hist_t)(const GpuMat& src, GpuMat& hist, const GpuMat& levels, GpuMat& buf, cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramRangeC1::hist, 0, NppHistogramRangeC1::hist, NppHistogramRangeC1::hist, 0, NppHistogramRangeC1::hist }; hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream)); } void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], Stream& stream) { GpuMat buf; histRange(src, hist, levels, buf, stream); } void cv::gpu::histRange(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, Stream& stream) { CV_Assert(src.type() == CV_8UC4 || src.type() == CV_16UC4 || src.type() == CV_16SC4 || src.type() == CV_32FC4); typedef void (*hist_t)(const GpuMat& src, GpuMat hist[4], const GpuMat levels[4], GpuMat& buf, cudaStream_t stream); static const hist_t hist_callers[] = { NppHistogramRangeC4::hist, 0, NppHistogramRangeC4::hist, NppHistogramRangeC4::hist, 0, NppHistogramRangeC4::hist }; hist_callers[src.depth()](src, hist, levels, buf, StreamAccessor::getStream(stream)); } namespace hist { void histogram256(PtrStepSzb src, int* hist, cudaStream_t stream); void equalizeHist(PtrStepSzb src, PtrStepSzb dst, const int* lut, cudaStream_t stream); } void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream) { CV_Assert(src.type() == CV_8UC1); hist.create(1, 256, CV_32SC1); hist.setTo(Scalar::all(0)); hist::histogram256(src, hist.ptr(), StreamAccessor::getStream(stream)); } void cv::gpu::calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream) { (void) buf; calcHist(src, hist, stream); } void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream) { GpuMat hist; GpuMat buf; equalizeHist(src, dst, hist, buf, stream); } void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream) { GpuMat buf; equalizeHist(src, dst, hist, buf, stream); } void cv::gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& s) { CV_Assert(src.type() == CV_8UC1); dst.create(src.size(), src.type()); int intBufSize; nppSafeCall( nppsIntegralGetBufferSize_32s(256, &intBufSize) ); ensureSizeIsEnough(1, intBufSize + 256 * sizeof(int), CV_8UC1, buf); GpuMat intBuf(1, intBufSize, CV_8UC1, buf.ptr()); GpuMat lut(1, 256, CV_32S, buf.ptr() + intBufSize); calcHist(src, hist, s); cudaStream_t stream = StreamAccessor::getStream(s); NppStreamHandler h(stream); nppSafeCall( nppsIntegral_32s(hist.ptr(), lut.ptr(), 256, intBuf.ptr()) ); hist::equalizeHist(src, dst, lut.ptr(), stream); } //////////////////////////////////////////////////////////////////////// // cornerHarris & minEgenVal namespace cv { namespace gpu { namespace device { namespace imgproc { void cornerHarris_gpu(int block_size, float k, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream); void cornerMinEigenVal_gpu(int block_size, PtrStepSzf Dx, PtrStepSzf Dy, PtrStepSzf dst, int border_type, cudaStream_t stream); } }}} namespace { void extractCovData(const GpuMat& src, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream) { double scale = static_cast(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize; if (ksize < 0) scale *= 2.; if (src.depth() == CV_8U) scale *= 255.; scale = 1./scale; Dx.create(src.size(), CV_32F); Dy.create(src.size(), CV_32F); if (ksize > 0) { Sobel(src, Dx, CV_32F, 1, 0, buf, ksize, scale, borderType, -1, stream); Sobel(src, Dy, CV_32F, 0, 1, buf, ksize, scale, borderType, -1, stream); } else { Scharr(src, Dx, CV_32F, 1, 0, buf, scale, borderType, -1, stream); Scharr(src, Dy, CV_32F, 0, 1, buf, scale, borderType, -1, stream); } } } void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType) { GpuMat Dx, Dy; cornerHarris(src, dst, Dx, Dy, blockSize, ksize, k, borderType); } void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, double k, int borderType) { GpuMat buf; cornerHarris(src, dst, Dx, Dy, buf, blockSize, ksize, k, borderType); } void cv::gpu::cornerHarris(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, double k, int borderType, Stream& stream) { using namespace cv::gpu::device::imgproc; CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); int gpuBorderType; CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream); dst.create(src.size(), CV_32F); cornerHarris_gpu(blockSize, static_cast(k), Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream)); } void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, int borderType) { GpuMat Dx, Dy; cornerMinEigenVal(src, dst, Dx, Dy, blockSize, ksize, borderType); } void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, int blockSize, int ksize, int borderType) { GpuMat buf; cornerMinEigenVal(src, dst, Dx, Dy, buf, blockSize, ksize, borderType); } void cv::gpu::cornerMinEigenVal(const GpuMat& src, GpuMat& dst, GpuMat& Dx, GpuMat& Dy, GpuMat& buf, int blockSize, int ksize, int borderType, Stream& stream) { using namespace ::cv::gpu::device::imgproc; CV_Assert(borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT); int gpuBorderType; CV_Assert(tryConvertToGpuBorderType(borderType, gpuBorderType)); extractCovData(src, Dx, Dy, buf, blockSize, ksize, borderType, stream); dst.create(src.size(), CV_32F); cornerMinEigenVal_gpu(blockSize, Dx, Dy, dst, gpuBorderType, StreamAccessor::getStream(stream)); } ////////////////////////////////////////////////////////////////////////////// // mulSpectrums namespace cv { namespace gpu { namespace device { namespace imgproc { void mulSpectrums(const PtrStep a, const PtrStep b, PtrStepSz c, cudaStream_t stream); void mulSpectrums_CONJ(const PtrStep a, const PtrStep b, PtrStepSz c, cudaStream_t stream); } }}} void cv::gpu::mulSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, bool conjB, Stream& stream) { (void)flags; using namespace ::cv::gpu::device::imgproc; typedef void (*Caller)(const PtrStep, const PtrStep, PtrStepSz, cudaStream_t stream); static Caller callers[] = { device::imgproc::mulSpectrums, device::imgproc::mulSpectrums_CONJ }; CV_Assert(a.type() == b.type() && a.type() == CV_32FC2); CV_Assert(a.size() == b.size()); c.create(a.size(), CV_32FC2); Caller caller = callers[(int)conjB]; caller(a, b, c, StreamAccessor::getStream(stream)); } ////////////////////////////////////////////////////////////////////////////// // mulAndScaleSpectrums namespace cv { namespace gpu { namespace device { namespace imgproc { void mulAndScaleSpectrums(const PtrStep a, const PtrStep b, float scale, PtrStepSz c, cudaStream_t stream); void mulAndScaleSpectrums_CONJ(const PtrStep a, const PtrStep b, float scale, PtrStepSz c, cudaStream_t stream); } }}} void cv::gpu::mulAndScaleSpectrums(const GpuMat& a, const GpuMat& b, GpuMat& c, int flags, float scale, bool conjB, Stream& stream) { (void)flags; using namespace ::cv::gpu::device::imgproc; typedef void (*Caller)(const PtrStep, const PtrStep, float scale, PtrStepSz, cudaStream_t stream); static Caller callers[] = { device::imgproc::mulAndScaleSpectrums, device::imgproc::mulAndScaleSpectrums_CONJ }; CV_Assert(a.type() == b.type() && a.type() == CV_32FC2); CV_Assert(a.size() == b.size()); c.create(a.size(), CV_32FC2); Caller caller = callers[(int)conjB]; caller(a, b, scale, c, StreamAccessor::getStream(stream)); } ////////////////////////////////////////////////////////////////////////////// // dft void cv::gpu::dft(const GpuMat& src, GpuMat& dst, Size dft_size, int flags, Stream& stream) { #ifndef HAVE_CUFFT OPENCV_GPU_UNUSED(src); OPENCV_GPU_UNUSED(dst); OPENCV_GPU_UNUSED(dft_size); OPENCV_GPU_UNUSED(flags); OPENCV_GPU_UNUSED(stream); throw_nogpu(); #else CV_Assert(src.type() == CV_32F || src.type() == CV_32FC2); // We don't support unpacked output (in the case of real input) CV_Assert(!(flags & DFT_COMPLEX_OUTPUT)); bool is_1d_input = (dft_size.height == 1) || (dft_size.width == 1); int is_row_dft = flags & DFT_ROWS; int is_scaled_dft = flags & DFT_SCALE; int is_inverse = flags & DFT_INVERSE; bool is_complex_input = src.channels() == 2; bool is_complex_output = !(flags & DFT_REAL_OUTPUT); // We don't support real-to-real transform CV_Assert(is_complex_input || is_complex_output); GpuMat src_data; // Make sure here we work with the continuous input, // as CUFFT can't handle gaps src_data = src; createContinuous(src.rows, src.cols, src.type(), src_data); if (src_data.data != src.data) src.copyTo(src_data); Size dft_size_opt = dft_size; if (is_1d_input && !is_row_dft) { // If the source matrix is single column handle it as single row dft_size_opt.width = std::max(dft_size.width, dft_size.height); dft_size_opt.height = std::min(dft_size.width, dft_size.height); } cufftType dft_type = CUFFT_R2C; if (is_complex_input) dft_type = is_complex_output ? CUFFT_C2C : CUFFT_C2R; CV_Assert(dft_size_opt.width > 1); cufftHandle plan; if (is_1d_input || is_row_dft) cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height); else cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type); cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) ); if (is_complex_input) { if (is_complex_output) { createContinuous(dft_size, CV_32FC2, dst); cufftSafeCall(cufftExecC2C( plan, src_data.ptr(), dst.ptr(), is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD)); } else { createContinuous(dft_size, CV_32F, dst); cufftSafeCall(cufftExecC2R( plan, src_data.ptr(), dst.ptr())); } } else { // We could swap dft_size for efficiency. Here we must reflect it if (dft_size == dft_size_opt) createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, dst); else createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, dst); cufftSafeCall(cufftExecR2C( plan, src_data.ptr(), dst.ptr())); } cufftSafeCall(cufftDestroy(plan)); if (is_scaled_dft) multiply(dst, Scalar::all(1. / dft_size.area()), dst, 1, -1, stream); #endif } ////////////////////////////////////////////////////////////////////////////// // convolve void cv::gpu::ConvolveBuf::create(Size image_size, Size templ_size) { result_size = Size(image_size.width - templ_size.width + 1, image_size.height - templ_size.height + 1); block_size = user_block_size; if (user_block_size.width == 0 || user_block_size.height == 0) block_size = estimateBlockSize(result_size, templ_size); dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.))); dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.))); // CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192), // see CUDA Toolkit 4.1 CUFFT Library Programming Guide if (dft_size.width > 8192) dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1); if (dft_size.height > 8192) dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1); // To avoid wasting time doing small DFTs dft_size.width = std::max(dft_size.width, 512); dft_size.height = std::max(dft_size.height, 512); createContinuous(dft_size, CV_32F, image_block); createContinuous(dft_size, CV_32F, templ_block); createContinuous(dft_size, CV_32F, result_data); spect_len = dft_size.height * (dft_size.width / 2 + 1); createContinuous(1, spect_len, CV_32FC2, image_spect); createContinuous(1, spect_len, CV_32FC2, templ_spect); createContinuous(1, spect_len, CV_32FC2, result_spect); // Use maximum result matrix block size for the estimated DFT block size block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width); block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height); } Size cv::gpu::ConvolveBuf::estimateBlockSize(Size result_size, Size /*templ_size*/) { int width = (result_size.width + 2) / 3; int height = (result_size.height + 2) / 3; width = std::min(width, result_size.width); height = std::min(height, result_size.height); return Size(width, height); } void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr) { ConvolveBuf buf; convolve(image, templ, result, ccorr, buf); } void cv::gpu::convolve(const GpuMat& image, const GpuMat& templ, GpuMat& result, bool ccorr, ConvolveBuf& buf, Stream& stream) { using namespace ::cv::gpu::device::imgproc; #ifndef HAVE_CUFFT throw_nogpu(); #else StaticAssert::check(); StaticAssert::check(); CV_Assert(image.type() == CV_32F); CV_Assert(templ.type() == CV_32F); buf.create(image.size(), templ.size()); result.create(buf.result_size, CV_32F); Size& block_size = buf.block_size; Size& dft_size = buf.dft_size; GpuMat& image_block = buf.image_block; GpuMat& templ_block = buf.templ_block; GpuMat& result_data = buf.result_data; GpuMat& image_spect = buf.image_spect; GpuMat& templ_spect = buf.templ_spect; GpuMat& result_spect = buf.result_spect; cufftHandle planR2C, planC2R; cufftSafeCall(cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R)); cufftSafeCall(cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C)); cufftSafeCall( cufftSetStream(planR2C, StreamAccessor::getStream(stream)) ); cufftSafeCall( cufftSetStream(planC2R, StreamAccessor::getStream(stream)) ); GpuMat templ_roi(templ.size(), CV_32F, templ.data, templ.step); copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0, templ_block.cols - templ_roi.cols, 0, Scalar(), stream); cufftSafeCall(cufftExecR2C(planR2C, templ_block.ptr(), templ_spect.ptr())); // Process all blocks of the result matrix for (int y = 0; y < result.rows; y += block_size.height) { for (int x = 0; x < result.cols; x += block_size.width) { Size image_roi_size(std::min(x + dft_size.width, image.cols) - x, std::min(y + dft_size.height, image.rows) - y); GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr(y) + x), image.step); copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows, 0, image_block.cols - image_roi.cols, 0, Scalar(), stream); cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr(), image_spect.ptr())); mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0, 1.f / dft_size.area(), ccorr, stream); cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr(), result_data.ptr())); Size result_roi_size(std::min(x + block_size.width, result.cols) - x, std::min(y + block_size.height, result.rows) - y); GpuMat result_roi(result_roi_size, result.type(), (void*)(result.ptr(y) + x), result.step); GpuMat result_block(result_roi_size, result_data.type(), result_data.ptr(), result_data.step); if (stream) stream.enqueueCopy(result_block, result_roi); else result_block.copyTo(result_roi); } } cufftSafeCall(cufftDestroy(planR2C)); cufftSafeCall(cufftDestroy(planC2R)); #endif } ////////////////////////////////////////////////////////////////////////////// // Canny void cv::gpu::CannyBuf::create(const Size& image_size, int apperture_size) { if (apperture_size > 0) { ensureSizeIsEnough(image_size, CV_32SC1, dx); ensureSizeIsEnough(image_size, CV_32SC1, dy); if (apperture_size != 3) { filterDX = createDerivFilter_GPU(CV_8UC1, CV_32S, 1, 0, apperture_size, BORDER_REPLICATE); filterDY = createDerivFilter_GPU(CV_8UC1, CV_32S, 0, 1, apperture_size, BORDER_REPLICATE); } } ensureSizeIsEnough(image_size, CV_32FC1, mag); ensureSizeIsEnough(image_size, CV_32SC1, map); ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st1); ensureSizeIsEnough(1, image_size.area(), CV_16UC2, st2); } void cv::gpu::CannyBuf::release() { dx.release(); dy.release(); mag.release(); map.release(); st1.release(); st2.release(); } namespace canny { void calcMagnitude(PtrStepSzb srcWhole, int xoff, int yoff, PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad); void calcMagnitude(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, bool L2Grad); void calcMap(PtrStepSzi dx, PtrStepSzi dy, PtrStepSzf mag, PtrStepSzi map, float low_thresh, float high_thresh); void edgesHysteresisLocal(PtrStepSzi map, ushort2* st1); void edgesHysteresisGlobal(PtrStepSzi map, ushort2* st1, ushort2* st2); void getEdges(PtrStepSzi map, PtrStepSzb dst); } namespace { void CannyCaller(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, float low_thresh, float high_thresh) { using namespace canny; buf.map.setTo(Scalar::all(0)); calcMap(dx, dy, buf.mag, buf.map, low_thresh, high_thresh); edgesHysteresisLocal(buf.map, buf.st1.ptr()); edgesHysteresisGlobal(buf.map, buf.st1.ptr(), buf.st2.ptr()); getEdges(buf.map, dst); } } void cv::gpu::Canny(const GpuMat& src, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient) { CannyBuf buf; Canny(src, buf, dst, low_thresh, high_thresh, apperture_size, L2gradient); } void cv::gpu::Canny(const GpuMat& src, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, int apperture_size, bool L2gradient) { using namespace canny; CV_Assert(src.type() == CV_8UC1); if (!deviceSupports(SHARED_ATOMICS)) CV_Error(CV_StsNotImplemented, "The device doesn't support shared atomics"); if( low_thresh > high_thresh ) std::swap( low_thresh, high_thresh); dst.create(src.size(), CV_8U); buf.create(src.size(), apperture_size); if (apperture_size == 3) { Size wholeSize; Point ofs; src.locateROI(wholeSize, ofs); GpuMat srcWhole(wholeSize, src.type(), src.datastart, src.step); calcMagnitude(srcWhole, ofs.x, ofs.y, buf.dx, buf.dy, buf.mag, L2gradient); } else { buf.filterDX->apply(src, buf.dx, Rect(0, 0, src.cols, src.rows)); buf.filterDY->apply(src, buf.dy, Rect(0, 0, src.cols, src.rows)); calcMagnitude(buf.dx, buf.dy, buf.mag, L2gradient); } CannyCaller(buf.dx, buf.dy, buf, dst, static_cast(low_thresh), static_cast(high_thresh)); } void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient) { CannyBuf buf; Canny(dx, dy, buf, dst, low_thresh, high_thresh, L2gradient); } void cv::gpu::Canny(const GpuMat& dx, const GpuMat& dy, CannyBuf& buf, GpuMat& dst, double low_thresh, double high_thresh, bool L2gradient) { using namespace canny; CV_Assert(TargetArchs::builtWith(SHARED_ATOMICS) && DeviceInfo().supports(SHARED_ATOMICS)); CV_Assert(dx.type() == CV_32SC1 && dy.type() == CV_32SC1 && dx.size() == dy.size()); if( low_thresh > high_thresh ) std::swap( low_thresh, high_thresh); dst.create(dx.size(), CV_8U); buf.create(dx.size(), -1); calcMagnitude(dx, dy, buf.mag, L2gradient); CannyCaller(dx, dy, buf, dst, static_cast(low_thresh), static_cast(high_thresh)); } //////////////////////////////////////////////////////////////////////// // CLAHE namespace clahe { void calcLut(PtrStepSzb src, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, int clipLimit, float lutScale, cudaStream_t stream); void transform(PtrStepSzb src, PtrStepSzb dst, PtrStepb lut, int tilesX, int tilesY, int2 tileSize, cudaStream_t stream); } namespace { class CLAHE_Impl : public cv::gpu::CLAHE { public: CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8); cv::AlgorithmInfo* info() const; void apply(cv::InputArray src, cv::OutputArray dst); void apply(InputArray src, OutputArray dst, Stream& stream); void setClipLimit(double clipLimit); double getClipLimit() const; void setTilesGridSize(cv::Size tileGridSize); cv::Size getTilesGridSize() const; void collectGarbage(); private: double clipLimit_; int tilesX_; int tilesY_; GpuMat srcExt_; GpuMat lut_; }; CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) : clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY) { } CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_GPU", obj.info()->addParam(obj, "clipLimit", obj.clipLimit_); obj.info()->addParam(obj, "tilesX", obj.tilesX_); obj.info()->addParam(obj, "tilesY", obj.tilesY_)) void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst) { apply(_src, _dst, Stream::Null()); } void CLAHE_Impl::apply(InputArray _src, OutputArray _dst, Stream& s) { GpuMat src = _src.getGpuMat(); CV_Assert( src.type() == CV_8UC1 ); _dst.create( src.size(), src.type() ); GpuMat dst = _dst.getGpuMat(); const int histSize = 256; ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_); cudaStream_t stream = StreamAccessor::getStream(s); cv::Size tileSize; GpuMat srcForLut; if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0) { tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_); srcForLut = src; } else { cv::gpu::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101, cv::Scalar(), s); tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_); srcForLut = srcExt_; } const int tileSizeTotal = tileSize.area(); const float lutScale = static_cast(histSize - 1) / tileSizeTotal; int clipLimit = 0; if (clipLimit_ > 0.0) { clipLimit = static_cast(clipLimit_ * tileSizeTotal / histSize); clipLimit = std::max(clipLimit, 1); } clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), clipLimit, lutScale, stream); clahe::transform(src, dst, lut_, tilesX_, tilesY_, make_int2(tileSize.width, tileSize.height), stream); } void CLAHE_Impl::setClipLimit(double clipLimit) { clipLimit_ = clipLimit; } double CLAHE_Impl::getClipLimit() const { return clipLimit_; } void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize) { tilesX_ = tileGridSize.width; tilesY_ = tileGridSize.height; } cv::Size CLAHE_Impl::getTilesGridSize() const { return cv::Size(tilesX_, tilesY_); } void CLAHE_Impl::collectGarbage() { srcExt_.release(); lut_.release(); } } cv::Ptr cv::gpu::createCLAHE(double clipLimit, cv::Size tileGridSize) { return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height); } #endif /* !defined (HAVE_CUDA) */