/* slagtf.f -- translated by f2c (version 20061008). You must link the resulting object file with libf2c: on Microsoft Windows system, link with libf2c.lib; on Linux or Unix systems, link with .../path/to/libf2c.a -lm or, if you install libf2c.a in a standard place, with -lf2c -lm -- in that order, at the end of the command line, as in cc *.o -lf2c -lm Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., http://www.netlib.org/f2c/libf2c.zip */ #include "clapack.h" /* Subroutine */ int slagtf_(integer *n, real *a, real *lambda, real *b, real *c__, real *tol, real *d__, integer *in, integer *info) { /* System generated locals */ integer i__1; real r__1, r__2; /* Local variables */ integer k; real tl, eps, piv1, piv2, temp, mult, scale1, scale2; extern doublereal slamch_(char *); extern /* Subroutine */ int xerbla_(char *, integer *); /* -- LAPACK routine (version 3.2) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLAGTF factorizes the matrix (T - lambda*I), where T is an n by n */ /* tridiagonal matrix and lambda is a scalar, as */ /* T - lambda*I = PLU, */ /* where P is a permutation matrix, L is a unit lower tridiagonal matrix */ /* with at most one non-zero sub-diagonal elements per column and U is */ /* an upper triangular matrix with at most two non-zero super-diagonal */ /* elements per column. */ /* The factorization is obtained by Gaussian elimination with partial */ /* pivoting and implicit row scaling. */ /* The parameter LAMBDA is included in the routine so that SLAGTF may */ /* be used, in conjunction with SLAGTS, to obtain eigenvectors of T by */ /* inverse iteration. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The order of the matrix T. */ /* A (input/output) REAL array, dimension (N) */ /* On entry, A must contain the diagonal elements of T. */ /* On exit, A is overwritten by the n diagonal elements of the */ /* upper triangular matrix U of the factorization of T. */ /* LAMBDA (input) REAL */ /* On entry, the scalar lambda. */ /* B (input/output) REAL array, dimension (N-1) */ /* On entry, B must contain the (n-1) super-diagonal elements of */ /* T. */ /* On exit, B is overwritten by the (n-1) super-diagonal */ /* elements of the matrix U of the factorization of T. */ /* C (input/output) REAL array, dimension (N-1) */ /* On entry, C must contain the (n-1) sub-diagonal elements of */ /* T. */ /* On exit, C is overwritten by the (n-1) sub-diagonal elements */ /* of the matrix L of the factorization of T. */ /* TOL (input) REAL */ /* On entry, a relative tolerance used to indicate whether or */ /* not the matrix (T - lambda*I) is nearly singular. TOL should */ /* normally be chose as approximately the largest relative error */ /* in the elements of T. For example, if the elements of T are */ /* correct to about 4 significant figures, then TOL should be */ /* set to about 5*10**(-4). If TOL is supplied as less than eps, */ /* where eps is the relative machine precision, then the value */ /* eps is used in place of TOL. */ /* D (output) REAL array, dimension (N-2) */ /* On exit, D is overwritten by the (n-2) second super-diagonal */ /* elements of the matrix U of the factorization of T. */ /* IN (output) INTEGER array, dimension (N) */ /* On exit, IN contains details of the permutation matrix P. If */ /* an interchange occurred at the kth step of the elimination, */ /* then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) */ /* returns the smallest positive integer j such that */ /* abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, */ /* where norm( A(j) ) denotes the sum of the absolute values of */ /* the jth row of the matrix A. If no such j exists then IN(n) */ /* is returned as zero. If IN(n) is returned as positive, then a */ /* diagonal element of U is small, indicating that */ /* (T - lambda*I) is singular or nearly singular, */ /* INFO (output) INTEGER */ /* = 0 : successful exit */ /* .lt. 0: if INFO = -k, the kth argument had an illegal value */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ --in; --d__; --c__; --b; --a; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; i__1 = -(*info); xerbla_("SLAGTF", &i__1); return 0; } if (*n == 0) { return 0; } a[1] -= *lambda; in[*n] = 0; if (*n == 1) { if (a[1] == 0.f) { in[1] = 1; } return 0; } eps = slamch_("Epsilon"); tl = dmax(*tol,eps); scale1 = dabs(a[1]) + dabs(b[1]); i__1 = *n - 1; for (k = 1; k <= i__1; ++k) { a[k + 1] -= *lambda; scale2 = (r__1 = c__[k], dabs(r__1)) + (r__2 = a[k + 1], dabs(r__2)); if (k < *n - 1) { scale2 += (r__1 = b[k + 1], dabs(r__1)); } if (a[k] == 0.f) { piv1 = 0.f; } else { piv1 = (r__1 = a[k], dabs(r__1)) / scale1; } if (c__[k] == 0.f) { in[k] = 0; piv2 = 0.f; scale1 = scale2; if (k < *n - 1) { d__[k] = 0.f; } } else { piv2 = (r__1 = c__[k], dabs(r__1)) / scale2; if (piv2 <= piv1) { in[k] = 0; scale1 = scale2; c__[k] /= a[k]; a[k + 1] -= c__[k] * b[k]; if (k < *n - 1) { d__[k] = 0.f; } } else { in[k] = 1; mult = a[k] / c__[k]; a[k] = c__[k]; temp = a[k + 1]; a[k + 1] = b[k] - mult * temp; if (k < *n - 1) { d__[k] = b[k + 1]; b[k + 1] = -mult * d__[k]; } b[k] = temp; c__[k] = mult; } } if (dmax(piv1,piv2) <= tl && in[*n] == 0) { in[*n] = k; } /* L10: */ } if ((r__1 = a[*n], dabs(r__1)) <= scale1 * tl && in[*n] == 0) { in[*n] = *n; } return 0; /* End of SLAGTF */ } /* slagtf_ */