/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ // Trating application for Soft Cascades. #include #include #include #include int main(int argc, char** argv) { using namespace sft; const string keys = "{help h usage ? | | print this message }" "{config c | | path to configuration xml }" ; cv::CommandLineParser parser(argc, argv, keys); parser.about("Soft cascade training application."); if (parser.has("help")) { parser.printMessage(); return 0; } if (!parser.check()) { parser.printErrors(); return 1; } string configPath = parser.get("config"); if (configPath.empty()) { std::cout << "Configuration file is missing or empty. Could not start training." << std::endl << std::flush; return 0; } std::cout << "Read configuration from file " << configPath << std::endl; cv::FileStorage fs(configPath, cv::FileStorage::READ); if(!fs.isOpened()) { std::cout << "Configuration file " << configPath << " can't be opened." << std::endl << std::flush; return 1; } // 1. load config sft::Config cfg; fs["config"] >> cfg; std::cout << std::endl << "Training will be executed for configuration:" << std::endl << cfg << std::endl; // 2. check and open output file cv::FileStorage fso(cfg.outXmlPath, cv::FileStorage::WRITE); if(!fso.isOpened()) { std::cout << "Training stopped. Output classifier Xml file " << cfg.outXmlPath << " can't be opened." << std::endl << std::flush; return 1; } fso << cfg.cascadeName << "{" << "stageType" << "BOOST" << "featureType" << "ICF" << "octavesNum" << (int)cfg.octaves.size() << "width" << cfg.modelWinSize.width << "height" << cfg.modelWinSize.height << "shrinkage" << cfg.shrinkage << "octaves" << "["; // 3. Train all octaves for (ivector::const_iterator it = cfg.octaves.begin(); it != cfg.octaves.end(); ++it) { // a. create rangom feature pool int nfeatures = cfg.poolSize; cv::Size model = cfg.model(it); std::cout << "Model " << model << std::endl; sft::ICFFeaturePool pool(model, nfeatures); nfeatures = pool.size(); int npositives = cfg.positives; int nnegatives = cfg.negatives; int shrinkage = cfg.shrinkage; cv::Rect boundingBox = cfg.bbox(it); std::cout << "Object bounding box" << boundingBox << std::endl; cv::Octave boost(boundingBox, npositives, nnegatives, *it, shrinkage); std::string path = cfg.trainPath; sft::ScaledDataset dataset(path, *it); if (boost.train(&dataset, &pool, cfg.weaks, cfg.treeDepth)) { CvFileStorage* fout = cvOpenFileStorage(cfg.resPath(it).c_str(), 0, CV_STORAGE_WRITE); boost.write(fout, cfg.cascadeName); cvReleaseFileStorage( &fout); cv::Mat thresholds; boost.setRejectThresholds(thresholds); boost.write(fso, &pool, thresholds); cv::FileStorage tfs(("thresholds." + cfg.resPath(it)).c_str(), cv::FileStorage::WRITE); tfs << "thresholds" << thresholds; std::cout << "Octave " << *it << " was successfully trained..." << std::endl; } } fso << "]" << "}"; fso.release(); std::cout << "Training complete..." << std::endl; return 0; }