
The OpenCV Tutorials
Release 2.4.0

April 28, 2012

CONTENTS

1 Introduction to OpenCV 3
1.1 Installation in Linux . 6
1.2 Using OpenCV with gcc and CMake . 7
1.3 Using OpenCV with Eclipse (plugin CDT) . 9
1.4 Installation in Windows . 15
1.5 How to build applications with OpenCV inside the Microsoft Visual Studio 26
1.6 Using Android binary package with Eclipse . 35
1.7 Using C++ OpenCV code with Android binary package . 48
1.8 Installation in iOS . 60
1.9 Load and Display an Image . 61
1.10 Load, Modify, and Save an Image . 64
1.11 How to write a tutorial for OpenCV? . 66

2 core module. The Core Functionality 77
2.1 Mat - The Basic Image Container . 79
2.2 How to scan images, lookup tables and time measurement with OpenCV 85
2.3 Mask operations on matrices . 90
2.4 Adding (blending) two images using OpenCV . 92
2.5 Changing the contrast and brightness of an image! . 94
2.6 Basic Drawing . 98
2.7 Random generator and text with OpenCV . 103
2.8 Discrete Fourier Transform . 107
2.9 File Input and Output using XML and YAML files . 111
2.10 Interoperability with OpenCV 1 . 118

3 imgproc module. Image Processing 123
3.1 Smoothing Images . 128
3.2 Eroding and Dilating . 133
3.3 More Morphology Transformations . 139
3.4 Image Pyramids . 145
3.5 Basic Thresholding Operations . 151
3.6 Making your own linear filters! . 159
3.7 Adding borders to your images . 163
3.8 Sobel Derivatives . 167
3.9 Laplace Operator . 173
3.10 Canny Edge Detector . 177
3.11 Hough Line Transform . 182
3.12 Hough Circle Transform . 188
3.13 Remapping . 192

i

3.14 Affine Transformations . 198
3.15 Histogram Equalization . 204
3.16 Histogram Calculation . 210
3.17 Histogram Comparison . 217
3.18 Back Projection . 222
3.19 Template Matching . 228
3.20 Finding contours in your image . 236
3.21 Convex Hull . 237
3.22 Creating Bounding boxes and circles for contours . 239
3.23 Creating Bounding rotated boxes and ellipses for contours . 242
3.24 Image Moments . 244
3.25 Point Polygon Test . 246

4 highgui module. High Level GUI and Media 249
4.1 Adding a Trackbar to our applications! . 250
4.2 Video Input with OpenCV and similarity measurement . 253
4.3 Creating a video with OpenCV . 261

5 calib3d module. Camera calibration and 3D reconstruction 267
5.1 Camera calibration with square chessboard . 268
5.2 Camera calibration With OpenCV . 268

6 feature2d module. 2D Features framework 279
6.1 Feature Description . 281
6.2 Harris corner detector . 283
6.3 Feature Matching with FLANN . 287
6.4 Features2D + Homography to find a known object . 290
6.5 Shi-Tomasi corner detector . 293
6.6 Creating yor own corner detector . 295
6.7 Detecting corners location in subpixeles . 299
6.8 Feature Detection . 302
6.9 Feature Matching with FLANN . 304
6.10 Features2D + Homography to find a known object . 307
6.11 Detection of planar objects . 310

7 video module. Video analysis 313

8 objdetect module. Object Detection 315
8.1 Cascade Classifier . 316

9 ml module. Machine Learning 321
9.1 Introduction to Support Vector Machines . 322
9.2 Support Vector Machines for Non-Linearly Separable Data . 327

10 gpu module. GPU-Accelerated Computer Vision 335
10.1 Similarity check (PNSR and SSIM) on the GPU . 336

11 General tutorials 345

ii

The OpenCV Tutorials, Release 2.4.0

The following links describe a set of basic OpenCV tutorials. All the source code mentioned here is provide as part
of the OpenCV regular releases, so check before you start copy & pasting the code. The list of tutorials below is
automatically generated from reST files located in our SVN repository.

As always, we would be happy to hear your comments and receive your contributions on any tutorial.

• Introduction to OpenCV

You will learn how to setup OpenCV on your computer!

• core module. The Core Functionality

Here you will learn the about the basic building blocks of the library. A
must read and know for understanding how to manipulate the images on a
pixel level.

• imgproc module. Image Processing

In this section you will learn about the image processing (manipulation)
functions inside OpenCV.

• highgui module. High Level GUI and Media

This section contains valuable tutorials about how to read/save your im-
age/video files and how to use the built-in graphical user interface of the
library.

• calib3d module. Camera calibration and 3D reconstruction

Although we got most of our images in a 2D format they do come from a 3D
world. Here you will learn how to find out from the 2D images information
about the 3D world.

• feature2d module. 2D Features framework

CONTENTS 1

The OpenCV Tutorials, Release 2.4.0

Learn about how to use the feature points detectors, descriptors and match-
ing framework found inside OpenCV.

• video module. Video analysis

Look here in order to find use on your video stream algoritms like: motion
extraction, feature tracking and foreground extractions.

• objdetect module. Object Detection

Ever wondered how your digital camera detects peoples and faces? Look
here to find out!

• ml module. Machine Learning

Use the powerfull machine learning classes for statistical classification, re-
gression and clustering of data.

• gpu module. GPU-Accelerated Computer Vision

Squeeze out every little computation power from your system by using the
power of your video card to run the OpenCV algorithms.

• General tutorials

These tutorials are the bottom of the iceberg as they link together multiple
of the modules presented above in order to solve complex problems.

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO OPENCV

Here you can read tutorials about how to set up your computer to work with the OpenCV library. Additionaly you can
find a few very basic sample source code that will let introduce you to the world of the OpenCV.

• Linux

Title: Installation in Linux
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to setup OpenCV in your computer!

Title: Using OpenCV with gcc and CMake
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to compile your first project using gcc and CMake

Title: Using OpenCV with Eclipse (plugin CDT)
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to compile your first project using the Eclipse environ-
ment

• Windows

Title: Installation in Windows
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn how to setup OpenCV in your Windows Operating System!

3

The OpenCV Tutorials, Release 2.4.0

Title: How to build applications with OpenCV inside the Microsoft Visual
Studio
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn what steps you need to perform in order to use the OpenCV
library inside a new Microsoft Visual Studio project.

• Android

Title: Using Android binary package with Eclipse
Compatibility: > OpenCV 2.3.1
Author: Andrey Kamaev
You will learn how to setup OpenCV for Android platform!

Title: Using C++ OpenCV code with Android binary package
Compatibility: > OpenCV 2.3.1
Author: Leonid Beynenson
You will learn how to work with C++ OpenCV code for Android platform

• iOS
Title: Installation in iOS
Compatibility: > OpenCV 2.3.1
Author: Artem Myagkov
We will learn how to setup OpenCV for using it in iOS!

Title: Load and Display an Image
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to display an image using OpenCV

Title: Load, Modify, and Save an Image
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to save an Image in OpenCV...plus a small conversion to
grayscale

• Want to contribute, and see your own work between the OpenCV tutorials?

4 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

Title: How to write a tutorial for OpenCV?
Compatibility: > OpenCV 1.0
Author: Bernát Gábor
If you already have a good grasp on using OpenCV and have made some projects that would
be perfect presenting an OpenCV feature not yet part of these tutorials, here it is what you
need to know.

5

The OpenCV Tutorials, Release 2.4.0

1.1 Installation in Linux

These steps have been tested for Ubuntu 10.04 but should work with other distros.

Required packages

• GCC 4.4.x or later. This can be installed with

sudo apt-get install build-essential

• CMake 2.6 or higher

• Subversion (SVN) client

• GTK+2.x or higher, including headers (libgtk2.0-dev)

• pkgconfig

• Python 2.6 or later and Numpy 1.5 or later with developer packages (python-dev, python-numpy)

• ffmpeg or libav development packages: libavcodec-dev, libavformat-dev, libswscale-dev

• [optional] libdc1394 2.x

• [optional] libjpeg-dev, libpng-dev, libtiff-dev, libjasper-dev.

All the libraries above can be installed via Terminal or by using Synaptic Manager

Getting OpenCV source code

You can use the latest stable OpenCV version available in sourceforge or you can grab the latest snapshot from the
SVN repository.

Getting the latest stable OpenCV version

• Go to http://sourceforge.net/projects/opencvlibrary

• Download the source tarball and unpack it

Getting the cutting-edge OpenCV from SourceForge SVN repository

Launch SVN client and checkout either

1. the current OpenCV snapshot from here: http://code.opencv.org/svn/opencv/trunk

2. or the latest tested OpenCV snapshot from here: http://code.opencv.org/svn/opencv/tags/latest_tested_snapshot

In Ubuntu it can be done using the following command, e.g.:

cd ~/<my_working _directory>
svn co http://code.opencv.org/svn/opencv/trunk

6 Chapter 1. Introduction to OpenCV

http://code.opencv.org/svn/opencv/
http://sourceforge.net/projects/opencvlibrary
http://code.opencv.org/svn/opencv/trunk
http://code.opencv.org/svn/opencv/tags/latest_tested_snapshot

The OpenCV Tutorials, Release 2.4.0

Building OpenCV from source using CMake, using the command line

1. Create a temporary directory, which we denote as <cmake_binary_dir>, where you want to put the generated
Makefiles, project files as well the object filees and output binaries

2. Enter the <cmake_binary_dir> and type

cmake [<some optional parameters>] <path to the OpenCV source directory>

For example

cd ~/opencv
mkdir release
cd release
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..

3. Enter the created temporary directory (<cmake_binary_dir>) and proceed with:

make
sudo make install

Note: If the size of the created library is a critical issue (like in case of an Android build) you can use the
install/strip command to get the smallest size as possible. The stripped version appears to be twice as small.
However, we do not recommend using this unless those extra megabytes do really matter.

1.2 Using OpenCV with gcc and CMake

Note: We assume that you have successfully installed OpenCV in your workstation.

• The easiest way of using OpenCV in your code is to use CMake. A few advantages (taken from the Wiki):

1. No need to change anything when porting between Linux and Windows

2. Can easily be combined with other tools by CMake(i.e. Qt, ITK and VTK)

• If you are not familiar with CMake, checkout the tutorial on its website.

Steps

Create a program using OpenCV

Let’s use a simple program such as DisplayImage.cpp shown below.

#include <cv.h>
#include <highgui.h>

using namespace cv;

int main(int argc, char** argv)
{

Mat image;
image = imread(argv[1], 1);

if(argc != 2 || !image.data)

1.2. Using OpenCV with gcc and CMake 7

http://www.cmake.org/
http://www.cmake.org/cmake/help/cmake_tutorial.html

The OpenCV Tutorials, Release 2.4.0

{
printf("No image data \n");
return -1;

}

namedWindow("Display Image", CV_WINDOW_AUTOSIZE);
imshow("Display Image", image);

waitKey(0);

return 0;
}

Create a CMake file

Now you have to create your CMakeLists.txt file. It should look like this:

project(DisplayImage)
find_package(OpenCV REQUIRED)
add_executable(DisplayImage DisplayImage)
target_link_libraries(DisplayImage ${OpenCV_LIBS})

Generate the executable

This part is easy, just proceed as with any other project using CMake:

cd <DisplayImage_directory>
cmake .
make

Result

By now you should have an executable (called DisplayImage in this case). You just have to run it giving an image
location as an argument, i.e.:

./DisplayImage lena.jpg

You should get a nice window as the one shown below:

8 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

1.3 Using OpenCV with Eclipse (plugin CDT)

Note: Two ways, one by forming a project directly, and another by CMake

Prerequisites

1. Having installed Eclipse in your workstation (only the CDT plugin for C/C++ is needed). You can follow the
following steps:

• Go to the Eclipse site

• Download Eclipse IDE for C/C++ Developers . Choose the link according to your workstation.

2. Having installed OpenCV. If not yet, go here.

Making a project

1. Start Eclipse. Just run the executable that comes in the folder.

2. Go to File -> New -> C/C++ Project

3. Choose a name for your project (i.e. DisplayImage). An Empty Project should be okay for this example.

1.3. Using OpenCV with Eclipse (plugin CDT) 9

http://www.eclipse.org/
http://www.eclipse.org/downloads/packages/eclipse-ide-cc-developers/heliossr2

The OpenCV Tutorials, Release 2.4.0

4. Leave everything else by default. Press Finish.

5. Your project (in this case DisplayImage) should appear in the Project Navigator (usually at the left side of your
window).

6. Now, let’s add a source file using OpenCV:

• Right click on DisplayImage (in the Navigator). New -> Folder .

10 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

• Name your folder src and then hit Finish

• Right click on your newly created src folder. Choose New source file:

• Call it DisplayImage.cpp. Hit Finish

7. So, now you have a project with a empty .cpp file. Let’s fill it with some sample code (in other words, copy and
paste the snippet below):

#include <cv.h>
#include <highgui.h>

using namespace cv;

int main(int argc, char** argv)
{

Mat image;
image = imread(argv[1], 1);

if(argc != 2 || !image.data)
{

printf("No image data \n");
return -1;

}

namedWindow("Display Image", CV_WINDOW_AUTOSIZE);
imshow("Display Image", image);

waitKey(0);

return 0;
}

1.3. Using OpenCV with Eclipse (plugin CDT) 11

The OpenCV Tutorials, Release 2.4.0

8. We are only missing one final step: To tell OpenCV where the OpenCV headers and libraries are. For this, do
the following:

• Go to Project–>Properties

• In C/C++ Build, click on Settings. At the right, choose the Tool Settings Tab. Here we will enter the
headers and libraries info:

(a) In GCC C++ Compiler, go to Includes. In Include paths(-l) you should include the path of the
folder where opencv was installed. In our example, this is /usr/local/include/opencv.

Note: If you do not know where your opencv files are, open the Terminal and type:

pkg-config --cflags opencv

For instance, that command gave me this output:

-I/usr/local/include/opencv -I/usr/local/include

(b) Now go to GCC C++ Linker,there you have to fill two spaces:

First in Library search path (-L) you have to write the path to where the opencv libraries reside, in
my case the path is:

/usr/local/lib

Then in Libraries(-l) add the OpenCV libraries that you may need. Usually just the 3 first on the list
below are enough (for simple applications) . In my case, I am putting all of them since I plan to use
the whole bunch:

opencv_core opencv_imgproc opencv_highgui opencv_ml opencv_video opencv_features2d
opencv_calib3d opencv_objdetect opencv_contrib opencv_legacy opencv_flann

12 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

If you don’t know where your libraries are (or you are just psychotic and want to make sure the path
is fine), type in Terminal:

pkg-config --libs opencv

My output (in case you want to check) was: .. code-block:: bash

-L/usr/local/lib -lopencv_core -lopencv_imgproc -lopencv_highgui -lopencv_ml -
lopencv_video -lopencv_features2d -lopencv_calib3d -lopencv_objdetect -lopencv_contrib
-lopencv_legacy -lopencv_flann

Now you are done. Click OK

• Your project should be ready to be built. For this, go to Project->Build all

In the Console you should get something like

If you check in your folder, there should be an executable there.

Running the executable

So, now we have an executable ready to run. If we were to use the Terminal, we would probably do something like:

1.3. Using OpenCV with Eclipse (plugin CDT) 13

The OpenCV Tutorials, Release 2.4.0

cd <DisplayImage_directory>
cd src
./DisplayImage ../images/HappyLittleFish.png

Assuming that the image to use as the argument would be located in <DisplayIm-
age_directory>/images/HappyLittleFish.png. We can still do this, but let’s do it from Eclipse:

1. Go to Run->Run Configurations

2. Under C/C++ Application you will see the name of your executable + Debug (if not, click over C/C++ Applica-
tion a couple of times). Select the name (in this case DisplayImage Debug).

3. Now, in the right side of the window, choose the Arguments Tab. Write the path of the image file we want to
open (path relative to the workspace/DisplayImage folder). Let’s use HappyLittleFish.png:

4. Click on the Apply button and then in Run. An OpenCV window should pop up with the fish image (or whatever
you used).

5. Congratulations! You are ready to have fun with OpenCV using Eclipse.

V2: Using CMake+OpenCV with Eclipse (plugin CDT)

(See the getting started <http://opencv.willowgarage.com/wiki/Getting_started> section of the OpenCV Wiki)

Say you have or create a new file, helloworld.cpp in a directory called foo:

#include <cv.h>
#include <highgui.h>
int main (int argc, char **argv)
{

cvNamedWindow("My Window", 1);
IplImage *img = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 1);
CvFont font;
double hScale = 1.0;
double vScale = 1.0;
int lineWidth = 1;
cvInitFont(&font, CV_FONT_HERSHEY_SIMPLEX | CV_FONT_ITALIC,

14 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

hScale, vScale, 0, lineWidth);
cvPutText(img, "Hello World!", cvPoint(200, 400), &font,

cvScalar(255, 255, 0));
cvShowImage("My Window", img);
cvWaitKey();
return 0;

}

1. Create a build directory, say, under foo: mkdir /build. Then cd build.

2. Put a CmakeLists.txt file in build:

PROJECT(helloworld_proj)
FIND_PACKAGE(OpenCV REQUIRED)
ADD_EXECUTABLE(helloworld helloworld.cxx)
TARGET_LINK_LIBRARIES(helloworld ${OpenCV_LIBS})

1. Run: cmake-gui .. and make sure you fill in where opencv was built.

2. Then click configure and then generate. If it’s OK, quit cmake-gui

3. Run make -j4 (the ‘‘-j4‘‘ is optional, it just tells the compiler to build in 4 threads). Make sure it builds.

4. Start eclipse . Put the workspace in some directory but not in foo or foo\\build

5. Right click in the Project Explorer section. Select Import And then open the C/C++ filter. Choose Existing
Code as a Makefile Project‘‘

6. Name your project, say helloworld. Browse to the Existing Code location foo\\build (where you ran your
cmake-gui from). Select Linux GCC in the “Toolchain for Indexer Settings” and press Finish.

7. Right click in the Project Explorer section. Select Properties. Under C/C++ Build, set the build direc-
tory: from something like ${workspace_loc:/helloworld} to ${workspace_loc:/helloworld}/build
since that’s where you are building to.

1. You can also optionally modify the Build command: from make to something like make VERBOSE=1 -j4
which tells the compiler to produce detailed symbol files for debugging and also to compile in 4 parallel threads.

1. Done!

1.4 Installation in Windows

The description here was tested by the author using the Windows 7 SP1 operating system (OS). Nevertheless, it should
also work on any other Windows OS too. If you encounter errors after following the steps described here feel free to
contact us via our user group and we will try to fix your problem.

Note: To use the OpenCV library you have two options: Installation by using the pre-built libraries or Installation
by making your own libraries from the source files. While the first one is easier to complete, it only works if you
are coding inside the latest Microsoft Visual Studio integrated development environments (IDE) and doesn’t takes
advantage of the most novel technologies we integrate into our library.

Installation by using the pre-built libraries

1. Open up a web browser and go to: http://sourceforge.net/projects/opencvlibrary/files/opencv-win/

2. Open the folder for the latest version (currently this is 2.4).

1.4. Installation in Windows 15

http://tech.groups.yahoo.com/group/OpenCV/
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/

The OpenCV Tutorials, Release 2.4.0

3. Choose a build you want to use and download it. The naming conventions used will show what kind of support
they offer. For example:

• vs2010 means the Visual Studio

• win32 means that it is for 32 bit applications in the OS

• gpu means that it includes the support for using your GPU in order to further increase the performance of
the library).

If you downloaded the source files present here see Installation by making your own libraries from the source
files.

4. Make sure you have admin rights. Start the setup and follow the wizard. Agree to the ” License Agreement ” .

5. While adding the OpenCV library to the system path is a good decision for a better control of this we will do it
manually. Therefore, make sure you do not set this option.

6. Most of the time it is a good idea to install the source files as this will allow for you to debug into the OpenCV
library, if it is necessary. Therefore, just follow the default settings of the wizard and finish the installation.

7. You can check the installation at the chosen path as you can see below.

8. To finalize the installation go to the Set the OpenCV enviroment variable and add it to the systems path section.

Installation by making your own libraries from the source files

You may find the content of this tutorial also inside the following videos: Part 1 and Part 2, hosted on YouTube.

If you are building your own libraries you can take either the source files from our latest:

• stable and tested build - http://code.opencv.org/svn/opencv/branches/2.4 (the number at the end will
change with every new realease, so change it to that)

• development build - http://code.opencv.org/svn/opencv/trunk/

While the later one may contain a couple of new and experimental algorithms, performance increases and interface
improvements, be aware, that it may also contain many-many bugs. Using the first one is recommended in most of the
cases. That is unless you are extending the OpenCV library itself or really need to most up to date version of it.

Building the OpenCV library from scratch requires a couple of tools installed beforehand:

16 Chapter 1. Introduction to OpenCV

https://www.youtube.com/watch?v=NnovZ1cTlMs
https://www.youtube.com/watch?v=qGNWMcfWwPU
http://code.opencv.org/svn/opencv/branches/2.4
http://code.opencv.org/svn/opencv/trunk/

The OpenCV Tutorials, Release 2.4.0

• An Integrated Developer Enviroment (IDE) preferably, or just a CC++ compiler that will actually make the
binary files. Here I will use the Microsoft Visual Studio. Nevertheless, you can use any other IDE that has a
valid C\C++ compiler.

• Then CMake is a neat tool that will make the project files (for your choosen IDE) from the OpenCV source files.
It will also allow an easy configuration of the OpenCV build files, in order to make binary files that fits exactly
to your needs.

• A Subversion Control System (SVN) to acquire the OpenCV source files. A good tool for this is TortoiseSVN.
Alternatively, you can just download an archived version of the source files from the Sourceforge OpenCV page.

OpenCV may come in multiple flavors. There is a “core” section that will work on its own. Nevertheless, they are a
couple of tools, libraries made by other organizations (so called 3rd parties) that offer services of which the OpenCV
may take advantage. These will improve in many ways its capabilities. In order to use any of them, you need to
download and install them on your system.

• The Python libraries are required to build the Python interface of OpenCV. For now use the version 2.7.x. This
is also a must have if you want to build the OpenCV documentation.

• Numpy is a scientific computing package for Python. Required for the Python interface.

• Intel © Threading Building Blocks (TBB) is used inside OpenCV for parallel code snippets. Using this will
make sure that the OpenCV library will take advantage of all the cores you have in your systems CPU.

• Intel © Integrated Performance Primitives (IPP) may be used to improve the performance of color conversion,
Haar training and DFT functions of the OpenCV library. Watch out as this isn’t a free service.

• OpenCV offers a somewhat fancier and more useful graphical user interface, than the default one by using the
Qt framework. For a quick overview of what this has to offer look into the documentations highgui module,
under the Qt New Functions section. Version 4.6 or later of the framework is required.

• Eigen is a C++ template library for linear algebra.

• The latest CUDA Toolkit will allow you to use the power lying inside your GPU. This will drastically improve
performance for some of the algorithms, like the HOG descriptor. Getting to work more and more of our
algorithms on the GPUs is a constant effort of the OpenCV team.

• OpenEXR source files are required for the library to work with this high dynamic range (HDR) image file
format.

• The OpenNI Framework contains a set of open source APIs that provide support for natural interaction with
devices via methods such as voice command recognition, hand gestures and body motion tracking.

• Miktex is the best TEX implementation on the Windows OS. It is required to build the OpenCV documentation.

• Sphinx is a python documentation generator and is the tool that will actually create the OpenCV documentation.
This on its own requires a couple of tools installed, I will cover this in depth at the How to Install Sphinx section.

Now I will describe the steps to follow for a full build (using all the above frameworks, tools and libraries). If you do
not need the support for some of these you can just freely skip those parts.

Building the library

1. Make sure you have a working IDE with a valid compiler. In case of the Microsoft Visual Studio just install it
and make sure it starts up.

2. Install CMake. Simply follow the wizard, no need to add it to the path. The default install options are great. No
need to change them.

3. Install TortoiseSVN. Choose the 32 or 64 bit version according to the type of OS you work in. Again follow the
wizard, default options are good. Restart of your system is required.

1.4. Installation in Windows 17

https://www.microsoft.com/visualstudio/en-us
http://www.cmake.org/cmake/resources/software.html
http://tortoisesvn.net/downloads.html
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/
http://www.python.org/getit/
http://numpy.scipy.org/
http://threadingbuildingblocks.org/file.php?fid=77
http://software.intel.com/en-us/articles/intel-ipp/
http://qt.nokia.com/downloads
http://eigen.tuxfamily.org/index.php?title=Main_Page#Download
http://developer.nvidia.com/cuda-downloads
http://www.openexr.com/downloads.html
http://www.openni.org/
http://miktex.org/2.9/setup
https://secure.wikimedia.org/wikipedia/en/wiki/TeX
http://sphinx.pocoo.org/
http://www.cmake.org/cmake/resources/software.html
http://tortoisesvn.net/downloads.html

The OpenCV Tutorials, Release 2.4.0

4. Choose a directory in your file system where you will download the OpenCV libraries. I recommend creating
a new one that has short path and no special charachters in it, for example D:/OpenCV. During this tutorial I’ll
suppose you’ve done so. If you use a different directory just change this front part of the path in my future
examples. Then, Right Click→ SVN Checkout... in the directory.

A window will appear where you can select from what repository you want to download source files (1) and to
which directory (2):

Add here either ones of the versions described above. Then push the OK button and be patient as the repository
currently is over 330MB to download. It will take some time until it is finished depending on your Internet
connection.

When you are done you should have a opencv and an opencv_extra directory as seen at (3).

5. In this section I will cover installing the 3rd party libraries.

(a) Download the Python libraries and install it with the default options. You will need a couple other python
extensions. Luckily installing all these may be automated by a nice tool called Setuptools. Download and
install again.

(b) Installing Sphinx is easy once you have installed Setuptools. This contains a little application that will
automatically connect to the python databases and download the latest version of many python scripts.
Start up a command window (enter cmd into the windows start menu and press enter) and use the CD
command to navigate to your Python folders Script sub-folder. Here just pass to the easy_install.exe as

18 Chapter 1. Introduction to OpenCV

http://www.python.org/getit/
http://pypi.python.org/pypi/setuptools#downloads

The OpenCV Tutorials, Release 2.4.0

argument the name of the program you want to install. Add the sphinx argument.

Note: The CD navigation command works only inside a drive. For example if you are somewhere in
the C: drive you cannot use it this to go to another drive (like for example D:). To do so you first need
to change drives letters. For this simply enter the command D:. Then you can use the CD to navigate to
specific folder inside the drive. Bonus tip: you can clear the screen by using the CLS command.

This will also install its prerequisites Jinja2 and Pygments.

(c) The easiest way to install Numpy is to just download its binaries from the sourceforga page. Make sure
your download and install exactly the binary for your python version (so for version 2.7).

(d) Download the Miktex and install it. Again just follow the wizard. At the fourth step make sure you select
for the “Install missing packages on-the-fly” the Yes option, as you can see on the image below. Again this
will take quite some time so be patient.

(e) For the Intel © Threading Building Blocks (TBB) download the source files and extract it inside a directory
on your system. For example let there be D:/OpenCV/dep. For installing the Intel © Integrated Perfor-

1.4. Installation in Windows 19

http://jinja.pocoo.org/docs/
http://pygments.org/
http://numpy.scipy.org/
http://sourceforge.net/projects/numpy/files/NumPy/
http://miktex.org/2.9/setup
http://threadingbuildingblocks.org/file.php?fid=77
http://software.intel.com/en-us/articles/intel-ipp/
http://software.intel.com/en-us/articles/intel-ipp/

The OpenCV Tutorials, Release 2.4.0

mance Primitives (IPP) the story is the same. For exctracting the archives I recommend using the 7-Zip
application.

(f) In case of the Eigen library it is again a case of download and extract to the D:/OpenCV/dep directory.

(g) Same as above with OpenEXR.

(h) For the OpenNI Framework you need to install both the development build and the PrimeSensor Module.

(i) For the CUDA you need again two modules: the latest CUDA Toolkit and the CUDA Tools SDK. Download
and install both of them with a complete option by using the 32 or 64 bit setups according to your OS.

(j) In case of the Qt framework you need to build yourself the binary files (unless you use the Microsoft Visual
Studio 2008 with 32 bit compiler). To do this go to the Qt Downloads page. Download the source files
(not the installers!!!):

Extract it into a nice and short named directory like D:/OpenCV/dep/qt/ . Then you need to build it. Start
up a Visual Studio Command Prompt (2010) by using the start menu search (or navigate through the start
menu All Programs → Microsoft Visual Studio 2010 → Visual Studio Tools → Visual Studio Command
Prompt (2010)).

20 Chapter 1. Introduction to OpenCV

http://software.intel.com/en-us/articles/intel-ipp/
http://software.intel.com/en-us/articles/intel-ipp/
http://www.7-zip.org/
http://eigen.tuxfamily.org/index.php?title=Main_Page#Download
http://www.openexr.com/downloads.html
http://www.openni.org/
http://www.openni.org/downloadfiles/opennimodules/openni-binaries/21-stable
http://www.openni.org/downloadfiles/opennimodules/openni-compliant-hardware-binaries/32-stable
http://developer.nvidia.com/cuda-downloads
http://qt.nokia.com/downloads
http://qt.nokia.com/downloads

The OpenCV Tutorials, Release 2.4.0

Now navigate to the extracted folder and enter inside it by using this console window. You should have a
folder containing files like Install, Make and so on. Use the dir command to list files inside your current
directory. Once arrived at this directory enter the following command:

configure.exe -release -no-webkit -no-phonon -no-phonon-backend -no-script -no-scripttools
-no-qt3support -no-multimedia -no-ltcg

Completing this will take around 10-20 minutes. Then enter the next command that will take a lot longer
(can easily take even more than a full hour):

nmake

After this set the Qt enviroment variables using the following command on Windows 7:

setx -m QTDIR D:/OpenCV/dep/qt/qt-everywhere-opensource-src-4.7.3

Also, add the built binary files path to the system path by using the Path Editor. In our case this is
D:/OpenCV/dep/qt/qt-everywhere-opensource-src-4.7.3/bin.

Note: If you plan on doing Qt application development you can also install at this point the Qt Visual
Studio Add-in. After this you can make and build Qt applications without using the Qt Creator. Everything
is nicely integrated into Visual Studio.

6. Now start the CMake (cmake-gui). You may again enter it in the start menu search or get it from the All Programs→ CMake 2.8→ CMake (cmake-gui). First, select the directory for the source files of the OpenCV library (1).
Then, specify a directory where you will build the binary files for OpenCV (2).

Press the Configure button to specify the compiler (and IDE) you want to use. Note that in case you can choose
between different compilers for making either 64 bit or 32 bit libraries. Select the one you use in your application
development.

1.4. Installation in Windows 21

http://www.redfernplace.com/software-projects/patheditor/

The OpenCV Tutorials, Release 2.4.0

CMake will start out and based on your system variables will try to automatically locate as many packages as
possible. You can modify the packages to use for the build in the WITH→ WITH_X menu points (where X is
the package abbreviation). Here are a list of current packages you can turn on or off:

Select all the packages you want to use and press again the Configure button. For an easier overview of the
build options make sure the Grouped option under the binary directory selection is turned on. For some of the
packages CMake may not find all of the required files or directories. In case of these CMake will throw an error
in its output window (located at the bottom of the GUI) and set its field values, to not found constants. For
example:

22 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

For these you need to manually set the queried directories or files path. After this press again the Configure
button to see if the value entered by you was accepted or not. Do this until all entries are good and you cannot
see errors in the field/value or the output part of the GUI. Now I want to emphasize an option that you will
definitely love: ENABLE → ENABLE_SOLUTION_FOLDERS. OpenCV will create many-many projects and
turning this option will make sure that they are categorized inside directories in the Solution Explorer. It is a
must have feature, if you ask me.

Furthermore, you need to select what part of OpenCV you want to build.

• BUILD_DOCS -> It creates two projects for building the documentation of OpenCV (there will be a
separate project for building the HTML and the PDF files). Note that these aren’t built together with the
solution. You need to make an explicit build project command on these to do so.

• BUILD_EXAMPLES -> OpenCV comes with many example applications from which you may learn most
of the libraries capabilities. This will also come handy to easily try out if OpenCV is fully functional on
your computer.

• BUILD_JAVA_SUPPORT -> At the moment this has no real meaning on the Windows platform. Ignore it.

• BUILD_NEW_PYTHON_SUPPORT -> Self-explanatory. Create the binaries to use OpenCV from the
Python language.

• BUILD_PACKAGE -> Prior to version 2.3 with this you could build a project that will build an OpenCV
installer. With this you can easily install your OpenCV flavor on other systems. For the latest source files
of OpenCV it generates a new project that simply creates zip archive with OpenCV sources.

• BUILD_SHARED_LIBS -> With this you can control to build DLL files (when turned on) or static library
files (*.lib) otherwise.

• BUILD_TESTS -> Each module of OpenCV has a test project assigned to it. Building these test projects is
also a good way to try out, that the modules work just as expected on your system too.

Press again the Configure button and ensure no errors are reported. If this is the case you can tell CMake to
create the project files by pushing the Generate button. Go to the build directory and open the created OpenCV
solution. Depending on just how much of the above options you have selected the solution may contain quite a
lot of projects so be tolerant on the IDE at the startup. Now you need to build both the Release and the Debug
binaries. Use the drop-down menu on your IDE to change to another of these after building for one of them.

1.4. Installation in Windows 23

The OpenCV Tutorials, Release 2.4.0

In the end you can observe the built binary files inside the bin directory:

For the documentation you need to explicitly issue the build commands on the doc project for the PDF files
and on the doc_html for the HTML ones. Each of these will call Sphinx to do all the hard work. You can find
the generated documentation inside the Build/Doc/_html for the HTML pages and within the Build/Doc the
PDF manuals.

To collect the header and the binary files, that you will use during your own projects, into a separate directory
(simillary to how the pre-built binaries ship) you need to explicitely build the Install project.

This will create an install directory inside the Build one collecting all the built binaries into a single place. Use
this only after you built both the Release and Debug versions.

Note: To create an installer you need to install NSIS. Then just build the Package project to build the installer
into the Build/_CPack_Packages/win32/NSIS folder. You can then use this to distribute OpenCV with your
build settings on other systems.

24 Chapter 1. Introduction to OpenCV

http://nsis.sourceforge.net/Download

The OpenCV Tutorials, Release 2.4.0

To test your build just go into the Build/bin/Debug or Build/bin/Release directory and start a couple of
applications like the contours.exe. If they run, you are done. Otherwise, something definitely went awfully
wrong. In this case you should contact us via our user group. If everything is okay the contours.exe output
should resemble the following image (if built with Qt support):

Note: If you use the GPU module (CUDA libraries) make sure you also upgrade to the latest drivers of your
GPU. Error messages containing invalid entries in (or cannot find) the nvcuda.dll are caused mostly by old video
card drivers. For testing the GPU (if built) run the performance_gpu.exe sample application.

Set the OpenCV enviroment variable and add it to the systems path

First we set an enviroment variable to make easier our work. This will hold the install directory of our OpenCV library
that we use in our projects. Start up a command window and enter:

setx -m OPENCV_DIR D:\OpenCV\Build\Install

Here the directory is where you have your OpenCV binaries (installed or built). Inside this you should have folders
like bin and include. The -m should be added if you wish to make the settings computer wise, instead of user wise.

If you built static libraries then you are done. Otherwise, you need to add the bin folders path to the systems path.This
is cause you will use the OpenCV library in form of “Dynamic-link libraries” (also known as DLL). Inside these are
stored all the algorithms and information the OpenCV library contains. The operating system will load them only on
demand, during runtime. However, to do this he needs to know where they are. The systems PATH contains a list of
folders where DLLs can be found. Add the OpenCV library path to this and the OS will know where to look if he ever
needs the OpenCV binaries. Otherwise, you will need to copy the used DLLs right beside the applications executable
file (exe) for the OS to find it, which is highly unpleasent if you work on many projects. To do this start up again the
Path Editor and add the following new entry (right click in the application to bring up the menu):

%OPENCV_DIR%\bin

1.4. Installation in Windows 25

http://tech.groups.yahoo.com/group/OpenCV/
http://www.redfernplace.com/software-projects/patheditor/

The OpenCV Tutorials, Release 2.4.0

Save it to the registry and you are done. If you ever change the location of your install directories or want to try out
your applicaton with a different build all you will need to do is to update the OPENCV_DIR variable via the setx
command inside a command window.

Now you can continue reading the tutorials with the How to build applications with OpenCV inside the Microsoft
Visual Studio section. There you will find out how to use the OpenCV library in your own projects with the help of
the Microsoft Visual Studio IDE.

1.5 How to build applications with OpenCV inside the Microsoft Vi-
sual Studio

Everything I describe here will apply to the C\C++ interface of OpenCV. I start out from the assumption that you have
read and completed with success the Installation in Windows tutorial. Therefore, before you go any further make sure
you have an OpenCV directory that contains the OpenCV header files plus binaries and you have set the environment
variables as described here.

The OpenCV libraries, distributed by us, on the Microsoft Windows operating system are in a Dynamic Linked
Libraries (DLL). These have the advantage that all the content of the library are loaded only at runtime, on demand,
and that countless programs may use the same library file. This means that if you have ten applications using the
OpenCV library, no need to have around a version for each one of them. Of course you need to have the dll of the
OpenCV on all systems where you want to run your application.

Another approach is to use static libraries that have lib extensions. You may build these by using our source files as
described in the Installation in Windows tutorial. When you use this the library will be built-in inside your exe file. So
there is no chance that the user deletes them, for some reason. As a drawback your application will be larger one and
as, it will take more time to load it during its startup.

To build an application with OpenCV you need to do two things:

• Tell to the compiler how the OpenCV library looks. You do this by showing it the header files.

26 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

• Tell to the linker from where to get the functions or data structures of OpenCV, when they are needed.

If you use the lib system you must set the path where the library files are and specify in which one of them to
look. During the build the linker will look into these libraries and add the definitions and implementation of all
used functions and data structures to the executable file.

If you use the DLL system you must again specify all this, however now for a different reason. This is a
Microsoft OS specific stuff. It seems that the linker needs to know that where in the DLL to search for the data
structure or function at the runtime. This information is stored inside lib files. Nevertheless, they aren’t static
libraries. They are so called import libraries. This is why when you make some DLLs in Windows you will also
end up with some lib extension libraries. The good part is that at runtime only the DLL is required.

To pass on all this information to the Visual Studio IDE you can either do it globally (so all your future projects will
get these information) or locally (so only for you current project). The advantage of the global one is that you only
need to do it once; however, it may be undesirable to clump all your projects all the time with all these information. In
case of the global one how you do it depends on the Microsoft Visual Studio you use. There is a 2008 and previous
versions and a 2010 way of doing it. Inside the global section of this tutorial I’ll show what the main differences are.

The base item of a project in Visual Studio is a solution. A solution may contain multiple projects. Projects are the
building blocks of an application. Every project will realize something and you will have a main project in which you
can put together this project puzzle. In case of the many simple applications (like many of the tutorials will be) you
do not need to break down the application into modules. In these cases your main project will be the only existing
one. Now go create a new solution inside Visual studio by going through the File→ New→ Project menu selection.
Choose Win32 Console Application as type. Enter its name and select the path where to create it. Then in the upcoming
dialog make sure you create an empty project.

The local method

Every project is built separately from the others. Due to this every project has its own rule package. Inside this rule
packages are stored all the information the IDE needs to know to build your project. For any application there are
at least two build modes: a Release and a Debug one. The Debug has many features that exist so you can find and
resolve easier bugs inside your application. In contrast the Release is an optimized version, where the goal is to make
the application run as fast as possible or to be as small as possible. You may figure that these modes also require
different rules to use during build. Therefore, there exist different rule packages for each of your build modes. These
rule packages are called inside the IDE as project properties and you can view and modify them by using the Property
Manger. You can bring up this with View → Property Pages. Expand it and you can see the existing rule packages
(called Proporty Sheets).

1.5. How to build applications with OpenCV inside the Microsoft Visual Studio 27

The OpenCV Tutorials, Release 2.4.0

The really useful stuff of these is that you may create a rule package once and you can later just add it to your new
projects. Create it once and reuse it later. We want to create a new Property Sheet that will contain all the rules that
the compiler and linker needs to know. Of course we will need a separate one for the Debug and the Release Builds.
Start up with the Debug one as shown in the image below:

Use for example the OpenCV_Debug name. Then by selecting the sheet Right Click→ Properties. In the following I
will show to set the OpenCV rules locally, as I find unnecessary to pollute projects with custom rules that I do not use
it. Go the C++ groups General entry and under the “Additional Include Directories” add the path to your OpenCV
include. If you don’t have “C/C++” group, you should add any .c/.cpp file to the project.

$(OPENCV_DIR)\include

When adding third party libraries settings it is generally a good idea to use the power behind the environment variables.
The full location of the OpenCV library may change on each system. Moreover, you may even end up yourself with
moving the install directory for some reason. If you would give explicit paths inside your property sheet your project
will end up not working when you pass it further to someone else who has a different OpenCV install path. Moreover,
fixing this would require to manually modifying every explicit path. A more elegant solution is to use the environment
variables. Anything that you put inside a parenthesis started with a dollar sign will be replaced at runtime with the
current environment variables value. Here comes in play the environment variable setting we already made in our

28 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

previous tutorial.

Next go to the Linker→ General and under the “Additional Library Directories” add the libs directory:

$(OPENCV_DIR)\libs

Then you need to specify the libraries in which the linker should look into. To do this go to the Linker→ Input and
under the “Additional Dependencies” entry add the name of all modules which you want to use:

The names of the libraries are as follow:

opencv_(The Name of the module)(The version Number of the library you use)d.lib

A full list, for the currently latest trunk version would contain:

opencv_core231d.lib
opencv_imgproc231d.lib
opencv_highgui231d.lib
opencv_ml231d.lib
opencv_video231d.lib
opencv_features2d231d.lib
opencv_calib3d231d.lib
opencv_objdetect231d.lib
opencv_contrib231d.lib
opencv_legacy231d.lib
opencv_flann231d.lib

The letter d at the end just indicates that these are the libraries required for the debug. Now click ok to save and do the
same with a new property inside the Release rule section. Make sure to omit the d letters from the library names and
to save the property sheets with the save icon above them.

1.5. How to build applications with OpenCV inside the Microsoft Visual Studio 29

The OpenCV Tutorials, Release 2.4.0

You can find your property sheets inside your projects directory. At this point it is a wise decision to back them up
into some special directory, to always have them at hand in the future, whenever you create an OpenCV project. Note
that for Visual Studio 2010 the file extension is props, while for 2008 this is vsprops.

Next time when you make a new OpenCV project just use the “Add Existing Property Sheet...” menu entry inside the
Property Manager to easily add the OpenCV build rules.

The global method

In case you find to troublesome to add the property pages to each and every one of your projects you can also add this
rules to a “global property page”. However, this applies only to the additional include and library directories. The
name of the libraries to use you still need to specify manually by using for instance: a Property page.

In Visual Studio 2008 you can find this under the: Tools→ Options→ Projects and Solutions→ VC++ Directories.

In Visual Studio 2010 this has been moved to a global property sheet which is automatically added to every project
you create:

30 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

The process is the same as described in case of the local approach. Just add the include directories by using the
environment variable OPENCV_DIR.

Test it!

Now to try this out download our little test source code or get it from the sample code folder of the OpenCV sources.
Add this to your project and build it. Here’s its content:

1 // Video Image PSNR and SSIM
2 #include <iostream> // for standard I/O
3 #include <string> // for strings
4 #include <iomanip> // for controlling float print precision
5 #include <sstream> // string to number conversion
6

7 #include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
8 #include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
9 #include <opencv2/highgui/highgui.hpp> // OpenCV window I/O

10

11 using namespace std;
12 using namespace cv;
13

14 double getPSNR (const Mat& I1, const Mat& I2);
15 Scalar getMSSIM(const Mat& I1, const Mat& I2);
16

17 void help()
18 {
19 cout
20 << "\n--" << endl
21 << "This program shows how to read a video file with OpenCV. In addition, it tests the"
22 << " similarity of two input videos first with PSNR, and for the frames below a PSNR " << endl
23 << "trigger value, also with MSSIM."<< endl
24 << "Usage:" << endl
25 << "./video-source referenceVideo useCaseTestVideo PSNR_Trigger_Value Wait_Between_Frames " << endl
26 << "--" << endl
27 << endl;
28 }
29 int main(int argc, char *argv[], char *window_name)
30 {
31 help();
32 if (argc != 5)
33 {
34 cout << "Not enough parameters" << endl;
35 return -1;
36 }
37 stringstream conv;
38

39 const string sourceReference = argv[1],sourceCompareWith = argv[2];
40 int psnrTriggerValue, delay;
41 conv << argv[3] << argv[4]; // put in the strings
42 conv >> psnrTriggerValue >> delay;// take out the numbers

1.5. How to build applications with OpenCV inside the Microsoft Visual Studio 31

The OpenCV Tutorials, Release 2.4.0

43

44 char c;
45 int frameNum = -1; // Frame counter
46

47 VideoCapture captRefrnc(sourceReference),
48 captUndTst(sourceCompareWith);
49

50 if (!captRefrnc.isOpened())
51 {
52 cout << "Could not open reference " << sourceReference << endl;
53 return -1;
54 }
55

56 if(!captUndTst.isOpened())
57 {
58 cout << "Could not open case test " << sourceCompareWith << endl;
59 return -1;
60 }
61

62 Size refS = Size((int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH),
63 (int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)),
64 uTSi = Size((int) captUndTst.get(CV_CAP_PROP_FRAME_WIDTH),
65 (int) captUndTst.get(CV_CAP_PROP_FRAME_HEIGHT));
66

67 if (refS != uTSi)
68 {
69 cout << "Inputs have different size!!! Closing." << endl;
70 return -1;
71 }
72

73 const char* WIN_UT = "Under Test";
74 const char* WIN_RF = "Reference";
75

76 // Windows
77 namedWindow(WIN_RF, CV_WINDOW_AUTOSIZE);
78 namedWindow(WIN_UT, CV_WINDOW_AUTOSIZE);
79 cvMoveWindow(WIN_RF, 400 , 0); //750, 2 (bernat =0)
80 cvMoveWindow(WIN_UT, refS.width, 0); //1500, 2
81

82 cout << "Frame resolution: Width=" << refS.width << " Height=" << refS.height
83 << " of nr#: " << captRefrnc.get(CV_CAP_PROP_FRAME_COUNT) << endl;
84

85 cout << "PSNR trigger value " <<
86 setiosflags(ios::fixed) << setprecision(3) << psnrTriggerValue << endl;
87

88 Mat frameReference, frameUnderTest;
89 double psnrV;
90 Scalar mssimV;
91

92 while(true) //Show the image captured in the window and repeat
93 {
94 captRefrnc >> frameReference;
95 captUndTst >> frameUnderTest;
96

97 if(frameReference.empty() || frameUnderTest.empty())
98 {
99 cout << " < < < Game over! > > > ";

100 break;

32 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

101 }
102

103 ++frameNum;
104 cout <<"Frame:" << frameNum;
105

106 ///////////////////////////////// PSNR //
107 psnrV = getPSNR(frameReference,frameUnderTest); //get PSNR
108 cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB";
109

110 //////////////////////////////////// MSSIM ///
111 if (psnrV < psnrTriggerValue)
112 {
113 mssimV = getMSSIM(frameReference,frameUnderTest);
114

115 cout << " MSSIM: "
116 << "R" << setiosflags(ios::fixed) << setprecision(3) << mssimV.val[2] * 100
117 << "G" << setiosflags(ios::fixed) << setprecision(3) << mssimV.val[1] * 100
118 << "B" << setiosflags(ios::fixed) << setprecision(3) << mssimV.val[0] * 100;
119 }
120

121 cout << endl;
122

123 ////////////////////////////////// Show Image ///
124 imshow(WIN_RF, frameReference);
125 imshow(WIN_UT, frameUnderTest);
126

127 c = cvWaitKey(delay);
128 if (c == 27) break;
129 }
130

131 return 0;
132 }
133

134 double getPSNR(const Mat& I1, const Mat& I2)
135 {
136 Mat s1;
137 absdiff(I1, I2, s1); // |I1 - I2|
138 s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
139 s1 = s1.mul(s1); // |I1 - I2|^2
140

141 Scalar s = sum(s1); // sum elements per channel
142

143 double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
144

145 if(sse <= 1e-10) // for small values return zero
146 return 0;
147 else
148 {
149 double mse =sse /(double)(I1.channels() * I1.total());
150 double psnr = 10.0*log10((255*255)/mse);
151 return psnr;
152 }
153 }
154

155 Scalar getMSSIM(const Mat& i1, const Mat& i2)
156 {
157 const double C1 = 6.5025, C2 = 58.5225;
158 /***************************** INITS **********************************/

1.5. How to build applications with OpenCV inside the Microsoft Visual Studio 33

The OpenCV Tutorials, Release 2.4.0

159 int d = CV_32F;
160

161 Mat I1, I2;
162 i1.convertTo(I1, d); // cannot calculate on one byte large values
163 i2.convertTo(I2, d);
164

165 Mat I2_2 = I2.mul(I2); // I2^2
166 Mat I1_2 = I1.mul(I1); // I1^2
167 Mat I1_I2 = I1.mul(I2); // I1 * I2
168

169 /*************************** END INITS **********************************/
170

171 Mat mu1, mu2; // PRELIMINARY COMPUTING
172 GaussianBlur(I1, mu1, Size(11, 11), 1.5);
173 GaussianBlur(I2, mu2, Size(11, 11), 1.5);
174

175 Mat mu1_2 = mu1.mul(mu1);
176 Mat mu2_2 = mu2.mul(mu2);
177 Mat mu1_mu2 = mu1.mul(mu2);
178

179 Mat sigma1_2, sigma2_2, sigma12;
180

181 GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
182 sigma1_2 -= mu1_2;
183

184 GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
185 sigma2_2 -= mu2_2;
186

187 GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
188 sigma12 -= mu1_mu2;
189

190 ///////////////////////////////// FORMULA ////////////////////////////////
191 Mat t1, t2, t3;
192

193 t1 = 2 * mu1_mu2 + C1;
194 t2 = 2 * sigma12 + C2;
195 t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
196

197 t1 = mu1_2 + mu2_2 + C1;
198 t2 = sigma1_2 + sigma2_2 + C2;
199 t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
200

201 Mat ssim_map;
202 divide(t3, t1, ssim_map); // ssim_map = t3./t1;
203

204 Scalar mssim = mean(ssim_map); // mssim = average of ssim map
205 return mssim;
206 }

You can start a Visual Studio build from two places. Either inside from the IDE (keyboard combination: Control-F5)
or by navigating to your build directory and start the application with a double click. The catch is that these two aren’t
the same. When you start it from the IDE its current working directory is the projects directory, while otherwise it is
the folder where the application file currently is (so usually your build directory). Moreover, in case of starting from
the IDE the console window will not close once finished. It will wait for a keystroke of yours.

This is important to remember when you code inside the code open and save commands. You’re resources will be
saved (and queried for at opening!!!) relatively to your working directory. This is unless you give a full, explicit path
as parameter for the I/O functions. In the code above we open this OpenCV logo. Before starting up the application

34 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

make sure you place the image file in your current working directory. Modify the image file name inside the code to
try it out on other images too. Run it and voilá:

Command line arguments with Visual Studio

Throughout some of our future tutorials you’ll see that the programs main input method will be by giving a runtime
argument. To do this you can just start up a commmand windows (cmd + Enter in the start menu), navigate to your
executable file and start it with an argument. So for example in case of my upper project this would look like:

1 D:
2 CD OpenCV\MySolutionName\Release
3 MySolutionName.exe exampleImage.jpg

Here I first changed my drive (if your project isn’t on the OS local drive), navigated to my project and start it with an
example image argument. While under Linux system it is common to fiddle around with the console window on the
Microsoft Windows many people come to use it almost never. Besides, adding the same argument again and again
while you are testing your application is, somewhat, a cumbersome task. Luckily, in the Visual Studio there is a menu
to automate all this:

Specify here the name of the inputs and while you start your application from the Visual Studio enviroment you have
automatic argument passing. In the next introductionary tutorial you’ll see an in-depth explanation of the upper source
code: Load and Display an Image.

1.6 Using Android binary package with Eclipse

This tutorial was tested using Ubuntu 10.04 and Windows 7 SP1 operating systems. Nevertheless, it should also work
on any other OSes supported by Android SDK (including Mac OS X). If you encounter errors after following the steps
described here, feel free to contact us via android-opencv discussion group https://groups.google.com/group/android-
opencv/ and we will try to help you.

1.6. Using Android binary package with Eclipse 35

https://groups.google.com/group/android-opencv/
https://groups.google.com/group/android-opencv/

The OpenCV Tutorials, Release 2.4.0

Quick environment setup for Android development

If you are making a clean environment installation then you can try Tegra Android Development Pack (TADP) released
by NVIDIA:

http://developer.nvidia.com/tegra-android-development-pack

It will cover all of the environment set up automatically and you can go to the next step Get the OpenCV package for
Android development right after automatic setup.

If you are a beginner in Android development then we recommentd you to start with TADP.

Note: NVIDIA‘s Tegra Android Development Pack includes some special features for NVIDIA’s Tegra platform but
it is not just for Tegra devices

• You need at least 1.6 Gb free disk space for installation.

• TADP will download Android SDK platforms and Android NDK from Google’s server, so you need an Internet
connection for the installation.

• TADP can ask you to flash your development kit at the end of installation process. Just skip this step if you have
no Tegra Ventana Development Kit.

• (UNIX) TADP will ask you for a root in the middle of installation, so you need to be a member of sudo group.

Manual environment setup for Android Development

You need the following tools to be installed:

1. Sun JDK 6

Visit http://www.oracle.com/technetwork/java/javase/downloads/index.html and download installer for your
OS.

Here is a detailed JDK (Java Development Kit) installation guide for Ubuntu and Mac OS:
http://source.android.com/source/initializing.html#installing-the-jdk (only JDK sections are applicable for
OpenCV)

Note: OpenJDK is not usable for Android development because Android SDK supports only Sun JDK. If you
use Ubuntu, after installation of Sun JDK you should run the following command to set Sun java environment:

sudo update-java-alternatives --set java-6-sun

2. Android SDK

Get the latest Android SDK from http://developer.android.com/sdk/index.html

Here is Google’s install guide for SDK http://developer.android.com/sdk/installing.html

Note: If you choose SDK packed into Windows installer, then you should have 32-bit JRE installed. It is not
needed for Android development, but installer is x86 application and requires 32-bit Java runtime.

Note: If you are running x64 version of Ubuntu Linux, then you need ia32 shared libraries for use on amd64
and ia64 systems to be installed. You can install them with the following command:

36 Chapter 1. Introduction to OpenCV

http://developer.nvidia.com/tegra-android-development-pack
http://developer.nvidia.com/node/19071
http://developer.nvidia.com/tegra-ventana-development-kit
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://source.android.com/source/initializing.html#installing-the-jdk
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html

The OpenCV Tutorials, Release 2.4.0

sudo apt-get install ia32-libs

For Red Hat based systems the following command might be helpful:

sudo yum install libXtst.i386

3. Android SDK components

You need the following SDK components to be installed:

• Android SDK Tools, revision12 or newer

Older revisions should also work, but they are not recommended.

• SDK Platform Android 2.2, API 8, revision 2 (also known as android-8)

This is minimal platform supported by OpenCV Java API. And it is set as default for OpenCV distribution.
It is possible to use newer platform with OpenCV package, but it requires to edit OpenCV project settings.

See Adding SDK Components for help with installing/updating SDK components.

4. Eclipse IDE

Check the Android SDK System Requirements document for a list of Eclipse versions that are compatible with
the Android SDK. For OpenCV 2.4.0 we recommend Eclipse 3.6 (Helios) or later versions. They work well for
OpenCV under both Windows and Linux.

If you have no Eclipse installed, you can download it from this location:

http://www.eclipse.org/downloads/

5. ADT plugin for Eclipse

1.6. Using Android binary package with Eclipse 37

http://developer.android.com/sdk/adding-components.html
http://developer.android.com/sdk/requirements.html
http://www.eclipse.org/downloads/

The OpenCV Tutorials, Release 2.4.0

This instruction is copied from http://developer.android.com/sdk/eclipse-adt.html#downloading . Please, visit
that page if you have any troubles with ADT plugin installation.

Assuming that you have Eclipse IDE installed, as described above, follow these steps to download and install
the ADT plugin:

(a) Start Eclipse, then select Help→ Install New Software...

(b) Click Add (in the top-right corner).

(c) In the Add Repository dialog that appears, enter “ADT Plugin” for the Name and the following URL for
the Location:

https://dl-ssl.google.com/android/eclipse/

(d) Click OK

Note: If you have trouble acquiring the plugin, try using “http” in the Location URL, instead of “https”
(https is preferred for security reasons).

(e) In the Available Software dialog, select the checkbox next to Developer Tools and click Next.

(f) In the next window, you’ll see a list of the tools to be downloaded. Click Next.

(g) Read and accept the license agreements, then click Finish.

Note: If you get a security warning saying that the authenticity or validity of the software can’t be
established, click OK.

(h) When the installation completes, restart Eclipse.

Get the OpenCV package for Android development

1. Go to the http://sourceforge.net/projects/opencvlibrary/files/opencv-android/ and download the latest available
version. Currently it is OpenCV-2.4.0-android-bin.tar.bz2

2. Create new folder for Android+OpenCV development.

Note: Better to use a path without spaces in it. Otherwise you will probably have problems with
ndk-build.

3. Unpack the OpenCV package into that dir.

You can unpack it using any popular archiver (for example with 7-Zip):

38 Chapter 1. Introduction to OpenCV

http://developer.android.com/sdk/eclipse-adt.html#downloading
https://dl-ssl.google.com/android/eclipse/
http://sourceforge.net/projects/opencvlibrary/files/opencv-android/
http://sourceforge.net/projects/opencvlibrary/files/opencv-android/2.4.0/OpenCV-2.4.0-android-bin.tar.bz2/download
http://www.7-zip.org/

The OpenCV Tutorials, Release 2.4.0

On Unix you can also use the following command:

tar -jxvf ~/Downloads/OpenCV-2.4.0-android-bin.tar.bz2

For this tutorial I have unpacked OpenCV to the C:\Work\android-opencv\ directory.

Open OpenCV library and samples in Eclipse

1. Start the Eclipse and choose your workspace location.

I recommend to start familiarizing yourself with OpenCV for Android from a new clean workspace. So I have
chosen my OpenCV package directory for the new workspace:

2. Configure your ADT plugin

Important: ADT plugin settings are workspace-dependent. So you have to repeat this step each time when
you create a new workspace.

Once you have created a new workspace, you have to point the ADT plugin to the Android SDK directory. This
setting is stored in workspace metadata, as result this step is required each time when you are creating new

1.6. Using Android binary package with Eclipse 39

The OpenCV Tutorials, Release 2.4.0

workspace for Android development. See Configuring the ADT Plugin document for the original instructions
from Google.

• Select Window→ Preferences... to open the Preferences panel (Mac OS X: Eclipse→ Preferences):

• Select Android from the left panel.

You may see a dialog asking whether you want to send usage statistics to Google. If so, make your
choice and click Proceed. You cannot continue with this procedure until you click Proceed.

• For the SDK Location in the main panel, click Browse... and locate your Android SDK directory.

• Click Apply button at the bottom right corner of main panel:

40 Chapter 1. Introduction to OpenCV

http://developer.android.com/sdk/eclipse-adt.html#configuring

The OpenCV Tutorials, Release 2.4.0

• Click OK to close preferences dialog.

3. Import OpenCV and samples into workspace.

OpenCV library is packed as a ready-for-use Android Library Project. You can simply reference it in your
projects.

Each sample included into OpenCV-2.4.0-android-bin.tar.bz2 is a regular Android project that already references
OpenCV library. Follow next steps to import OpenCV and samples into workspace:

• Right click on the Package Explorer window and choose Import... option from the context menu:

1.6. Using Android binary package with Eclipse 41

http://developer.android.com/guide/developing/projects/index.html#LibraryProjects

The OpenCV Tutorials, Release 2.4.0

• In the main panel select General→ Existing Projects into Workspace and press Next button:

• For the Select root directory in the main panel locate your OpenCV package folder. (If you have created
workspace in the package directory, then just click Browse... button and instantly close directory choosing
dialog with OK button!) Eclipse should automatically locate OpenCV library and samples:

42 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

• Click Finish button to complete the import operation.

After clicking Finish button Eclipse will load all selected projects into workspace. And... will indicate numerous
errors:

However all these errors are only false-alarms!

To help Eclipse to understand that there are no any errors choose OpenCV library in Package Explorer (left

1.6. Using Android binary package with Eclipse 43

The OpenCV Tutorials, Release 2.4.0

mouse click) and press F5 button on your keyboard. Then choose any sample (except first samples in Tutorial
Base and Tutorial Advanced) and also press F5.

After this manipulation Eclipse will rebuild your workspace and error icons will disappear one after another:

Once Eclipse completes build you will have the clean workspace without any build errors:

Note: If you are importing only OpenCV library without samples then instead of second refresh command (F5)
you might need to make Android Tools→ Fix Project Properties from project context menu.

44 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

Running OpenCV Samples

At this point you should be able to build and run all samples except two from Advanced tutorial (these samples require
Android NDK to build working applications, see the next tutorial Using C++ OpenCV code with Android binary
package to learn how to compile them).

Also I want to note that only Tutorial 1 Basic - 0. Android Camera and Tutorial 1 Basic - 1. Add
OpenCV samples are able to run on Emulator from Android SDK. Other samples are using OpenCV Native Camera
which does not work with emulator.

Note: Latest Android SDK tools, revision 12 can run ARM v7 OS images but Google does not provide such images
with SDK.

Well, running samples from Eclipse is very simple:

• Connect your device with adb tool from Android SDK or create Emulator with camera support.

– See Managing Virtual Devices document for help with Android Emulator.

– See Using Hardware Devices for help with real devices (not emulators).

• Select project you want to start in Package Explorer:guilabel: and just press Ctrl + F11 or select option Run→ Run from main menu, or click Run button on the toolbar.

Note: Android Emulator can take several minutes to start. So, please, be patient.

• On the first run Eclipse will ask you how to run your application:

1.6. Using Android binary package with Eclipse 45

http://developer.android.com/guide/developing/devices/index.html
http://developer.android.com/guide/developing/device.html

The OpenCV Tutorials, Release 2.4.0

• Select the Android Application option and click OK button. Eclipse will install and run the sample.

Here is Tutorial 1 Basic - 1. Add OpenCV sample detecting edges using Canny algorithm from
OpenCV:

46 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

How to use OpenCV library project in your application

If you already have an Android application, you can add a reference to OpenCV and import all its functionality.

1. First of all you need to have both projects (your app and OpenCV) in a single workspace. So, open workspace
with your application and import the OpenCV project into your workspace as stated above.

2. Add a reference to OpenCV project.

Do the right mouse click on your app in Package Explorer, go to Properties→ Android→ Library→ Add and
choose the OpenCV library project.

Whats next?

Read the Using C++ OpenCV code with Android binary package tutorial to learn how add native OpenCV code to
your Android project.

1.6. Using Android binary package with Eclipse 47

The OpenCV Tutorials, Release 2.4.0

1.7 Using C++ OpenCV code with Android binary package

The Android way is writing all your code in Java. But somethimes it is not enough and you need to go to a native
level and write part of your application in C/C++. This is important when you already have some computer vision
functionality which is written in C++ and uses OpenCV, and you want to use it in your Android application, but do
not want to rewrite the C++ code to Java. In this case the only way is to use JNI mechanism. It means, that you should
add a class with native methods wrapping your C++ functionality into the Java part of your Android application.

This tutorial describes a fast way how to create and build Android applications containing OpenCV code written in
C++. It shows how to build an application which uses OpenCV inside its JNI calls.

Please note that before starting this tutorial you should fulfill all the steps, described in the tutorial Using Android
binary package with Eclipse.

This tutorial was tested using Ubuntu 10.04 and Windows 7 SP1 operating systems. Nevertheless, it should also work
on Mac OS X. If you encounter errors after following the steps described here, feel free to contact us via android-
opencv discussion group https://groups.google.com/group/android-opencv/ and we will try to help you.

Prerequisites: Setup NDK

To compile C++ code for Android platform you need Android Native Development Kit (NDK).

You can get the latest version of NDK from the page http://developer.android.com/sdk/ndk/index.html .

To install Android NDK just extract the archive to some folder on your computer. (Here is installation instructions on
the NDK home page: http://developer.android.com/sdk/ndk/index.html#installing)

Note: Before start you can read official Android NDK documentation which is in the Android NDK archive, in the
folder docs/.

The main article about using Android NDK build system you can read in the file ANDROID-MK.html.

Also some additional useful information you can read in the files APPLICATION-MK.html, NDK-BUILD.html, and in
the files CPU-ARM-NEON.html, CPLUSPLUS-SUPPORT.html, PREBUILTS.html.

Theory: Android application structure

Usually code of an Android application has the following structure:

• root folder of the project/

– jni/

– libs/

– res/

– src/

– AndroidManifest.xml

– default.properties

– ... other files ...

where

• the src folder contains Java code of the application,

48 Chapter 1. Introduction to OpenCV

https://groups.google.com/group/android-opencv/
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/ndk/index.html#installing

The OpenCV Tutorials, Release 2.4.0

• the res folder contains resources of the application (images, xml files describing UI layout , etc),

• the libs folder will contain native libraries after successful build,

• and the jni folder contains C/C++ application source code and NDK’s build scripts Android.mk and
Application.mk.

These scripts control the C++ build process (they are written in Makefile language).

Also the root folder should contain the following files

• AndroidManifest.xml file presents essential information about application to the Android system (name of
the Application, name of main application’s package, components of the application, required permissions, etc)

It can be created using Eclipse wizard or android tool from Android SDK

• default.properties is a text file containing information about target Android platform and other build details.

This file is generated by Eclipse or can be created with android tool from Android SDK

Note: Both files (AndroidManifest.xml and default.properties) are required to compile the C++ part of the
application (NDK build system uses information from these files). If any of these files does not exist, compile the Java
part of the project before the C++ part.

Theory: How to build Android application having C++ native part (from command
line)

Here is the standard way to compile C++ part of an Android application:

1. Open console and go to the root folder of Android application

cd <root folder of the project>/

Note: Alternatively you can go to the folder jni of Android project but samples from OpenCV binary package
are configured for building from project root level (because of relative path to the OpenCV library).

2. Run the following command

<path_where_NDK_is_placed>/ndk-build

Note: If you are working in cygwin shell and encounter an error saying that NDK does not find some cygwin‘s
path then you might need to define the following environment variable:

export NDK_USE_CYGPATH=1

3. After executing this command the C++ part of the source code is compiled.

After that the Java part of the application can be (re)compiled (using either Eclipse or ant build tool).

Note: Some parameters can be set for the ndk-build:

Example 1: Verbose compilation

<path_where_NDK_is_placed>/ndk-build V=1

Example 2: Rebuild all

1.7. Using C++ OpenCV code with Android binary package 49

The OpenCV Tutorials, Release 2.4.0

<path_where_NDK_is_placed>/ndk-build -B

Theory: How to build Android application having C++ native part (from Eclipse)

There are several possible ways to integrate compilation of C++ code by Android NDK into Eclipse compilation
process. We recommend the approach taken from this site: http://mobilepearls.com/labs/ndk-builder-in-eclipse/

Important: This instructions should be applied for each Android project in Eclipse workspace. So if you have 3
projects having C++ part then you need to configure 3 builders.

Below is an adapted version of this guide:

1. Navigate to Package Explorer window and expand your project having JNI resources.

If you can not see libs folder under this project then you need to create it manually. (It will be required on step
7, but you need to create it before you open project properties.)

2. Right click on your project in Package Explorer window and select Properties.

3. In the Properties dialog select Builders menu and press the New... button:

4. In the resulting dialog select the Program type and press OK button:

50 Chapter 1. Introduction to OpenCV

http://mobilepearls.com/labs/ndk-builder-in-eclipse/

The OpenCV Tutorials, Release 2.4.0

5. In the Main tab fill the following fields:

• Name - any name for your builder. (“Tutorial 2.1 Builder” in my case.)

Note: This name has to be unique for each project in your workspace.

• Location - full path to ndk-build tool.

– UNIX

Just put full path to ndk-build into this filed. Also you can add some options to the Argu-
ments:guilabel: fied, for example -B option.

– Cygwin

* Instead of path to the ndk-build tool you need to put full path to cygwin‘s bash.exe
location. E.g: C:\cygwin\bin\bash.exe.

* Put full path to ndk-build into the Arguments field E.g.
C:\Android\android-ndk-r6\ndk-build.

* Go to the Environment tab and define an environment variable:

· PATH - full path to the cygwin tools. E.g. C:\cygwin\bin

1.7. Using C++ OpenCV code with Android binary package 51

The OpenCV Tutorials, Release 2.4.0

• Working Directory - put path to your project into this field. Instead of hardcoding full path you
can click Browse Workspace... button and select your project.

52 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

6. Go to the Refresh tab and select both Refresh resources upon completion and Recursively include sub-folders.

Next set the Specific resources option and click Specify resources... button:

1.7. Using C++ OpenCV code with Android binary package 53

The OpenCV Tutorials, Release 2.4.0

7. Select libs folder under your project and click Finish:

54 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

8. Go to the last tab Build options. Make sure that all checkboxes are set as shown on the next screen:

1.7. Using C++ OpenCV code with Android binary package 55

The OpenCV Tutorials, Release 2.4.0

9. Next, click the Specify resources... button.

10. Select jni folder of your project and click the Finish button:

56 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

11. Finally press OK in the builder configuration and project properties dialogs. If you have automatic build turned
on then console showing build log should appear:

1.7. Using C++ OpenCV code with Android binary package 57

The OpenCV Tutorials, Release 2.4.0

Theory: The structure of Android.mk and Application.mk scripts

The script Android.mk usually have the following structure:

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)
LOCAL_MODULE := <module_name>
LOCAL_SRC_FILES := <list of .c and .cpp project files>
<some variable name> := <some variable value>
...
<some variable name> := <some variable value>

include $(BUILD_SHARED_LIBRARY)

This is the minimal file Android.mk, which builds a C++ source code of an Android application. Note that the first
two lines and the last line are mandatory for any Android.mk.

Usually the file Application.mk is optional, but in case of project using OpenCV, when STL and exceptions are used
in C++, it also should be written. Example of the file Application.mk:

APP_STL := gnustl_static
APP_CPPFLAGS := -frtti -fexceptions
APP_ABI := armeabi-v7a

Practice: Build samples from OpenCV binary package

OpenCV binary package includes two samples having JNI resources:

• Tutorial 2 Advanced - 1. Add Native OpenCV

This sample illustrate how you can use OpenCV in C++ but without OpenCV Java API.

• Tutorial 2 Advanced - 2. Mix Java+Native OpenCV

This sample shows how you can mix OpenCV Java API and native C++ code.

To build these samples you need to:

1. Fulfill all the steps, described in the tutorial Using Android binary package with Eclipse.

2. Setup one builder for “Tutorial 2 Advanced - 1. Add Native OpenCV” project (as described in Theory: How to
build Android application having C++ native part (from Eclipse))

58 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

3. Setup second builder for “Tutorial 2 Advanced - 2. Mix Java+Native OpenCV” project (repeat the steps from
Theory: How to build Android application having C++ native part (from Eclipse))

4. Clean these projects (in the main Eclipse menu: Project→ Clean...)

5. Run Eclipse build command (if option Build Automatically is not set)

Practice: Create an Android application, which uses OpenCV

To build your own Android application, which uses OpenCV from native part, the following steps should be done:

1. The archive with OpenCV binary package should be downloaded and extracted to some folder (as example, into
the home folder)

2. We recommend to use an environment variable to specify the location of OpenCV package. Full or relative path
hardcoded in jni/Android.mk will also work.

So, the environment variable OPENCV_PACKAGE_DIR should be defined. The value of the variable should points
to the folder, where the OpenCV package has been extracted.

As an example, on UNIX you can add add the following line into the hidden file .bashrc placed in your home
folder:

export OPENCV_PACKAGE_DIR = <path to the extracted OpenCV package>

Then relogin (or better reboot your computer).

Attention: without rebooting (or logout) this change might not work.

If you are a Windows user, then navigate to:

• Windows 7 / Windows Vista

My Computer (Right Click on Icon)→ Properties (Link)→ Advanced System Settings (Link)→ Advanced
(Tab)→ Environment Variables (Button)→ System variables (Section)

• Windows XP

My Computer (Right Click on Icon) → Properties (Link) → Advanced (Tab) → Environment Variables
(Button)→ System variables (Section)

Create new variable OPENCV_PACKAGE_DIR and similarly to UNIX relogin or reboot.

If you are setting NDK builder as described above in Theory: How to build Android application having C++
native part (from Eclipse), then you can define this variable in builder settings. It can be done on third Environ-
ment tab of the builder configuration window (we have already added some variables to this tab on Windows but
skipped it for other platforms).

3. The file jni/Android.mk should be written for the current application using the common rules for the file.

For detailed information see the Android NDK documentation from the Android NDK archive, in the file
<path_where_NDK_is_placed>/docs/ANDROID-MK.html

4. The line

include $(OPENCV_PACKAGE_DIR)/share/OpenCV/OpenCV.mk

should be inserted into the jni/Android.mk file right after the line

include $(CLEAR_VARS)

1.7. Using C++ OpenCV code with Android binary package 59

The OpenCV Tutorials, Release 2.4.0

Note: If your application utilize both native (C++) OpenCV and its Java API you need to put the following line
before including OpenCV.mk to avoid conflict between C++ and Java builders:

OPENCV_CAMERA_MODULES:=off

5. The file Application.mk should exist and should contain lines

APP_STL := gnustl_static
APP_CPPFLAGS := -frtti -fexceptions

Also the line

APP_ABI := armeabi-v7a

is recommended for the applications targeting modern ARMs

6. To build the C++ code the Android NDK script ndk-build should be run in the root directory of application.
Then the C++ source code using OpenCV will be built by Android NDK build system. After that the Java part
of the application can be rebuild and the application can be installed on an Android device.

Note that this step requires calling the ndk-build script from the console. Instead of this step you can use inte-
gration of Android NDK into Eclipse as stated above in the section Theory: How to build Android application
having C++ native part (from Eclipse) .

Additional C++ support in Eclipse

Note that you can install additional C++ plugins in Eclipse:

1. Open Help / Install New Software. This shows the Install dialog.

2. In the Work with drop-down list choose Helios - http://download.eclipse.org/releases/helios (or Indigo -
http://download.eclipse.org/releases/indigo depending on your Eclipse version) and wait while the list of avail-
able software is loaded.

3. From the list of available software select Programming Languages→ C/C++ Development Tools.

4. Click Next, click Next again, accept the agreement, and click the Finish button.

5. When installation is finished, click Reload

1.8 Installation in iOS

Required packages

• GCC 4.x or later

• CMake 2.8 or higher

• Xcode 4.0 or higher

Getting the cutting-edge OpenCV from SourceForge SVN repository

Launch SVN client and checkout either

1. the current OpenCV snapshot from here: http://code.opencv.org/svn/opencv/trunk

60 Chapter 1. Introduction to OpenCV

http://code.opencv.org/svn/opencv/trunk

The OpenCV Tutorials, Release 2.4.0

2. or the latest tested OpenCV snapshot from here: http://code.opencv.org/svn/opencv/tags/latest_tested_snapshot

In MacOS it can be done using the following command in Terminal:

cd ~/<my_working _directory>
svn co http://code.opencv.org/svn/opencv/trunk

Building OpenCV from source using CMake, using the command line

1. Create a temporary directory, which we denote as <cmake_binary_dir>, where you want to put the generated
Makefiles, project files as well the object filees and output binaries

2. Enter the <cmake_binary_dir> and type

cmake [<some optional parameters>] <path to the OpenCV source directory>

For example

cd ~/opencv
cd ..
mkdir release
cd release
cmake -GXcode -DCMAKE_TOOLCHAIN_FILE=../opencv/ios/cmake/Toolchains/Toolchain-iPhoneOS_Xcode.cmake -DCMAKE_INSTALL_PREFIX=../OpenCV_iPhoneOS -DCMAKE_BUILD_TYPE=RELEASE ../opencv

3. Enter the created temporary directory (<cmake_binary_dir>) and proceed with:

xcodebuild -sdk iphoneos -configuration Release -target ALL_BUILD
xcodebuild -sdk iphoneos -configuration Release -target install install

1.9 Load and Display an Image

Goal

In this tutorial you will learn how to:

• Load an image (using imread)

• Create a named OpenCV window (using namedWindow)

• Display an image in an OpenCV window (using imshow)

Source Code

Download the source code from here.

1 #include <opencv2/core/core.hpp>
2 #include <opencv2/highgui/highgui.hpp>
3 #include <iostream>
4

5 using namespace cv;
6 using namespace std;
7

8 int main(int argc, char** argv)
9 {

10 if(argc != 2)
11 {

1.9. Load and Display an Image 61

http://code.opencv.org/svn/opencv/tags/latest_tested_snapshot
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.itseez.com/modules/highgui/doc/user_interface.html?highlight=namedwindow#namedwindow
http://opencv.itseez.com/modules/highgui/doc/user_interface.html?highlight=imshow#imshow
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/introduction/display_image/display_image.cpp

The OpenCV Tutorials, Release 2.4.0

12 cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
13 return -1;
14 }
15

16 Mat image;
17 image = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file
18

19 if(! image.data) // Check for invalid input
20 {
21 cout << "Could not open or find the image" << std::endl ;
22 return -1;
23 }
24

25 namedWindow("Display window", CV_WINDOW_AUTOSIZE);// Create a window for display.
26 imshow("Display window", image); // Show our image inside it.
27

28 waitKey(0); // Wait for a keystroke in the window
29 return 0;
30 }

Explanation

In OpenCV 2 we have multiple modules. Each one takes care of a different area or approach towards image processing.
You could already observe this in the structure of the user guide of these tutorials itself. Before you use any of them
you first need to include the header files where the content of each individual module is declared.

You’ll almost always end up using the:

• core section, as here are defined the basic building blocks of the library

• highgui module, as this contains the functions for input and output operations

// Video Image PSNR and SSIM
#include <iostream> // for standard I/O
#include <string> // for strings

We also include the iostream to facilitate console line output and input. To avoid data structure and function name
conflicts with other libraries, OpenCV has its own namespace: cv. To avoid the need appending prior each of these the
cv:: keyword you can import the namespace in the whole file by using the lines:

using namespace cv;
using namespace std;

This is true for the STL library too (used for console I/O). Now, let’s analyze the main function. We start up assuring
that we acquire a valid image name argument from the command line.

if(argc != 2)
{
cout <<" Usage: display_image ImageToLoadAndDisplay" << endl;
return -1;
}

Then create a Mat object that will store the data of the loaded image.

Mat image;

Now we call the imread function which loads the image name specified by the first argument (argv[1]). The second
argument specifies the format in what we want the image. This may be:

62 Chapter 1. Introduction to OpenCV

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread

The OpenCV Tutorials, Release 2.4.0

• CV_LOAD_IMAGE_UNCHANGED (<0) loads the image as is (including the alpha channel if present)

• CV_LOAD_IMAGE_GRAYSCALE (0) loads the image as an intensity one

• CV_LOAD_IMAGE_COLOR (>0) loads the image in the RGB format

image = imread(argv[1], CV_LOAD_IMAGE_COLOR); // Read the file

Note: OpenCV offers support for the image formats Windows bitmap (bmp), portable image formats (pbm, pgm,
ppm) and Sun raster (sr, ras). With help of plugins (you need to specify to use them if you build yourself the library,
nevertheless in the packages we ship present by default) you may also load image formats like JPEG (jpeg, jpg, jpe),
JPEG 2000 (jp2 - codenamed in the CMake as Jasper), TIFF files (tiff, tif) and portable network graphics (png).
Furthermore, OpenEXR is also a possibility.

After checking that the image data was loaded correctly, we want to display our image, so we create an OpenCV
window using the namedWindow function. These are automatically managed by OpenCV once you create them. For
this you need to specify its name and how it should handle the change of the image it contains from a size point of
view. It may be:

• CV_WINDOW_AUTOSIZE is the only supported one if you do not use the Qt backend. In this case the window
size will take up the size of the image it shows. No resize permitted!

• CV_WINDOW_NORMAL on Qt you may use this to allow window resize. The image will resize itself according
to the current window size. By using the | operator you also need to specify if you would like the image to keep
its aspect ratio (CV_WINDOW_KEEPRATIO) or not (CV_WINDOW_FREERATIO).

namedWindow("Display window", CV_WINDOW_AUTOSIZE);// Create a window for display.

Finally, to update the content of the OpenCV window with a new image use the imshow function. Specify the OpenCV
window name to update and the image to use during this operation:

imshow("Display window", image); // Show our image inside it.

Because we want our window to be displayed until the user presses a key (otherwise the program would end far too
quickly), we use the waitKey function whose only parameter is just how long should it wait for a user input (measured
in milliseconds). Zero means to wait forever.

waitKey(0); // Wait for a keystroke in the window

Result

• Compile your code and then run the executable giving an image path as argument. If you’re on Windows the
executable will of course contain an exe extension too. Of course assure the image file is near your program file.

./DisplayImage HappyFish.jpg

• You should get a nice window as the one shown below:

1.9. Load and Display an Image 63

http://opencv.itseez.com/modules/highgui/doc/user_interface.html?highlight=namedwindow#namedwindow
http://opencv.itseez.com/modules/highgui/doc/user_interface.html?highlight=imshow#imshow
http://opencv.itseez.com/modules/highgui/doc/user_interface.html?highlight=waitkey#waitkey

The OpenCV Tutorials, Release 2.4.0

1.10 Load, Modify, and Save an Image

Note: We assume that by now you know how to load an image using imread and to display it in a window (using
imshow). Read the Load and Display an Image tutorial otherwise.

Goals

In this tutorial you will learn how to:

• Load an image using imread

• Transform an image from RGB to Grayscale format by using cvtColor

• Save your transformed image in a file on disk (using imwrite)

Code

Here it is:

1 #include <cv.h>
2 #include <highgui.h>
3

4 using namespace cv;
5

6 int main(int argc, char** argv)
7 {
8 char* imageName = argv[1];
9

10 Mat image;
11 image = imread(imageName, 1);
12

13 if(argc != 2 || !image.data)
14 {
15 printf(" No image data \n ");
16 return -1;
17 }

64 Chapter 1. Introduction to OpenCV

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.itseez.com/modules/highgui/doc/user_interface.html?highlight=imshow#imshow
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cvtcolor#cvtcolor
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imwrite#imwrite

The OpenCV Tutorials, Release 2.4.0

18

19 Mat gray_image;
20 cvtColor(image, gray_image, CV_RGB2GRAY);
21

22 imwrite("../../images/Gray_Image.jpg", gray_image);
23

24 namedWindow(imageName, CV_WINDOW_AUTOSIZE);
25 namedWindow("Gray image", CV_WINDOW_AUTOSIZE);
26

27 imshow(imageName, image);
28 imshow("Gray image", gray_image);
29

30 waitKey(0);
31

32 return 0;
33 }

Explanation

1. We begin by:

• Creating a Mat object to store the image information

• Load an image using imread, located in the path given by imageName. Fort this example, assume you are
loading a RGB image.

2. Now we are going to convert our image from RGB to Grayscale format. OpenCV has a really nice function to
do this kind of transformations:

cvtColor(image, gray_image, CV_RGB2GRAY);

As you can see, cvtColor takes as arguments:

• a source image (image)

• a destination image (gray_image), in which we will save the converted image.

• an additional parameter that indicates what kind of transformation will be performed. In this case we use
CV_RGB2GRAY (self-explanatory).

3. So now we have our new gray_image and want to save it on disk (otherwise it will get lost after the program
ends). To save it, we will use a function analagous to imread: imwrite

imwrite("../../images/Gray_Image.jpg", gray_image);

Which will save our gray_image as Gray_Image.jpg in the folder images located two levels up of my current
location.

4. Finally, let’s check out the images. We create two windows and use them to show the original image as well as
the new one:

namedWindow(imageName, CV_WINDOW_AUTOSIZE);
namedWindow("Gray image", CV_WINDOW_AUTOSIZE);

imshow(imageName, image);
imshow("Gray image", gray_image);

5. Add add the waitKey(0) function call for the program to wait forever for an user key press.

1.10. Load, Modify, and Save an Image 65

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cvtcolor#cvtcolor
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imwrite#imwrite

The OpenCV Tutorials, Release 2.4.0

Result

When you run your program you should get something like this:

And if you check in your folder (in my case images), you should have a newly .jpg file named Gray_Image.jpg:

Congratulations, you are done with this tutorial!

1.11 How to write a tutorial for OpenCV?

Okay, so assume you have just finished a project of yours implementing something based on OpenCV and you want
to present/share it with the community. Luckily, OpenCV is an open source project. This means that in theory anyone
has access to the full source code and may extend it. While making a robust and practical library (like OpenCV) is
great, the success of a library also depends on how user friendly it is. To improve on this aspect, the OpenCV team has
already been listening to user feedback from its Yahoo user group and by making samples you can find in the source
directories sample folder. The addition of the tutorials (in both online and PDF format) is an extension of these efforts.

66 Chapter 1. Introduction to OpenCV

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.4.0

Goal

The tutorials are just as an important part of the library as the implementation of those crafty data structures and
algorithms you can find in OpenCV. Therefore, the source codes for the tutorials are part of the library. And yes, I
meant source codes. The reason for this formulation is that the tutorials are written by using the Sphinx documen-
tation generation system. This is based on the popular python documentation system called reStructuredText (reST).
ReStructuredText is a really neat language that by using a few simple conventions (indentation, directives) and emu-
lating old school e-mail writing techniques (text only) tries to offer a simple way to create and edit documents. Sphinx
extends this with some new features and creates the resulting document in both HTML (for web) and PDF (for offline
usage) format.

Usually, an OpenCV tutorial has the following parts:

1. A source code demonstration of an OpenCV feature:

(a) One or more CPP, Python, Java or other type of files depending for what OpenCV offers support and for
what language you make the tutorial.

(b) Occasionaly, input resource files required for running your tutorials application.

2. A table of content entry (so people may easily find the tutorial):

(a) Adding your stuff to the tutorials table of content (reST file).

(b) Add an image file near the TOC entry.

3. The content of the tutorial itself:

(a) The reST text of the tutorial

(b) Images following the idea that “A picture is worth a thousand words”.

(c) For more complex demonstrations you may create a video.

As you can see you will need at least some basic knowledge of the reST system in order to complete the task at hand
with success. However, don’t worry reST (and Sphinx) was made with simplicity in mind. It is easy to grasp its basics.
I found that the OpenAlea documentations introduction on this subject (or the Thomas Cokelaer one) should enough
for this. If for some directive or feature you need a more in-depth description look it up in the official reStructuredText
help files or at the Sphinx documentation.

In our world achieving some tasks is possible in multiple ways. However, some of the roads to take may have obvious
or hidden advantages over others. Then again, in some other cases it may come down to just simple user preference.
Here, I’ll present how I decided to write the tutorials, based on my personal experience. If for some of them you know
a better solution and you can back it up feel free to use that. I’ve nothing against it, as long as it gets the job done in
an elegant fashion.

Now the best would be if you could make the integration yourself. For this you need first to have the source code. I
recommend following the guides for your operating system on acquiring OpenCV sources. For Linux users look here
and for Windows here. You must also install python and sphinx with its dependencies in order to be able to build the
documentation.

Once you have downloaded the repository to your hard drive you can take a look in the OpenCV directory to
make sure you have both the samples and doc folder present. Anyone may download the trunk source files from
/svn/opencv/trunk/ . Nevertheless, not everyone has upload (commit/submit) rights. This is to protect the integrity
of the library. If you plan doing more than one tutorial, and would like to have an account with commit user rights
you should first register an account at http://code.opencv.org/ and then contact dr. Gary Bradski at -delete-bradski@-
delete-willowgarage.com. Otherwise, you can just send the resulting files to us via the Yahoo user group or to me at
-delete-bernat@-delete-primeranks.net and I’ll add it. If you have questions, suggestions or constructive critics I will
gladly listen to them. If you send it to the OpenCV group please tag its subject with a [Tutorial] entry.

1.11. How to write a tutorial for OpenCV? 67

http://sphinx.pocoo.org/
http://docutils.sourceforge.net/rst.html
http://openalea.gforge.inria.fr/doc/openalea/doc/_build/html/source/tutorial/rest_syntax.html
http://thomas-cokelaer.info/tutorials/sphinx/rest_syntax.html
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/
http://code.opencv.org/
mailto:-delete-bradski@-delete-willowgarage.com
mailto:-delete-bradski@-delete-willowgarage.com
http://tech.groups.yahoo.com/group/OpenCV/
mailto:-delete-bernat@-delete-primeranks.net

The OpenCV Tutorials, Release 2.4.0

Format the Source Code

Before I start this let it be clear: the main goal is to have a working sample code. However, for your tutorial to be of a
top notch quality you should follow a few guide lines I am going to present here.

In case you have an application by using the older interface (with IplImage, CVMat, cvLoadImage and such) consider
migrating it to the new C++ interface. The tutorials are intended to be an up to date help for our users. And as of
OpenCV 2 the OpenCV emphasis on using the less error prone and clearer C++ interface. Therefore, if possible
please convert your code to the C++ interface. For this it may help to read the Interoperability with OpenCV 1 tutorial.
However, once you have an OpenCV 2 working code, then you should make your source code snippet as easy to read
as possible. Here’re a couple of advices for this:

• Add a standard output with the description of what your program does. Keep it short and yet, descriptive. This
output is at the start of the program. In my example files this usually takes the form of a help function containing
the output. This way both the source file viewer and application runner can see what all is about in your sample.
Here’s an instance of this:

void help()
{
cout
<< "--" << endl
<< "This program shows how to write video files. You can extract the R or G or B color channel "
<< " of the input video. You can choose to use the source codec (Y) or select a custom one. (N)"<< endl
<< "Usage:" << endl
<< "./video-write inputvideoName [R | G | B] [Y | N]" << endl
<< "--" << endl
<< endl;
}
// ...
int main(int argc, char *argv[], char *window_name)
{
help();
// here comes the actual source code
}

Additionally, finalize the description with a short usage guide. This way the user will know how to call your
programs, what leads us to the next point.

• Prefer command line argument controlling instead of hard coded one. If your program has some variables that
may be changed use command line arguments for this. The tutorials, can be a simple try-out ground for the user.
If you offer command line controlling for the input image (for example), then you offer the possibility for the
user to try it out with his/her own images, without the need to mess in the source code. In the upper example
you can see that the input image, channel and codec selection may all be changed from the command line. Just
compile the program and run it with your own input arguments.

• Be as verbose as possible. There is no shame in filling the source code with comments. This way the more
advanced user may figure out what’s happening right from the sample code. This advice goes for the output
console too. Specify to the user what’s happening. Never leave the user hanging there and thinking on: “Is this
program now crashing or just doing some computationally intensive task?.” So, if you do a training task that
may take some time, make sure you print out a message about this before starting and after finishing it.

• Throw out unnecessary stuff from your source code. This is a warning to not take the previous point too
seriously. Balance is the key. If it’s something that can be done in a fewer lines or simpler than that’s the way
you should do it. Nevertheless, if for some reason you have such sections notify the user why you have chosen
to do so. Keep the amount of information as low as possible, while still getting the job done in an elegant way.

• Put your sample file into the opencv/samples/cpp/tutorial_code/sectionName folder. If you write a
tutorial for other languages than cpp, then change that part of the path. Before completing this you need to
decide that to what section (module) does your tutorial goes. Think about on what module relies most heavily

68 Chapter 1. Introduction to OpenCV

The OpenCV Tutorials, Release 2.4.0

your code and that is the one to use. If the answer to this question is more than one modules then the general
section is the one to use. For finding the opencv directory open up your file system and navigate where you
downloaded our repository.

• If the input resources are hard to acquire for the end user consider adding a few of them to the
opencv/samples/cpp/tutorial_code/images. Make sure that who reads your code can try it out!

Add the TOC entry

For this you will need to know some reStructuredText. There is no going around this. reStructuredText files have rst
extensions. However, these are simple text files. Use any text editor you like. Finding a text editor that offers syntax
highlighting for reStructuredText was quite a challenge at the time of writing this tutorial. In my experience, Intype is
a solid option on Windows, although there is still place for improvement.

Adding your source code to a table of content is important for multiple reasons. First and foremost this will allow for
the user base to find your tutorial from our websites tutorial table of content. Secondly, if you omit this Sphinx will
throw a warning that your tutorial file isn’t part of any TOC tree entry. And there is nothing more than the developer
team hates than an ever increasing warning/error list for their builds. Sphinx also uses this to build up the previous-
back-up buttons on the website. Finally, omitting this step will lead to that your tutorial will not be added to the PDF
version of the tutorials.

Navigate to the opencv/doc/tutorials/section/table_of_content_section folder (where the section is the
module to which you’re adding the tutorial). Open the table_of_content_section file. Now this may have two forms.
If no prior tutorials are present in this section that there is a template message about this and has the following form:

.. _Table-Of-Content-Section:

Section title

Description about the section.

.. include:: ../../definitions/noContent.rst

.. raw:: latex

\pagebreak

The first line is a reference to the section title in the reST system. The section title will be a link and you may refer to it
via the :ref: directive. The include directive imports the template text from the definitions directories noContent.rst
file. Sphinx does not creates the PDF from scratch. It does this by first creating a latex file. Then creates the PDF from
the latex file. With the raw directive you can directly add to this output commands. Its unique argument is for what
kind of output to add the content of the directive. For the PDFs it may happen that multiple sections will overlap on a
single page. To avoid this at the end of the TOC we add a pagebreak latex command, that hints to the LATEX system
that the next line should be on a new page.

If you have one of this, try to transform it to the following form:

.. _Table-Of-Content-Section:

Section title

.. include:: ../../definitions/tocDefinitions.rst

+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv

1.11. How to write a tutorial for OpenCV? 69

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://intype.info/

The OpenCV Tutorials, Release 2.4.0

=============== ==
|MatBasicIma| **Title:** :ref:‘matTheBasicImageContainer‘

Compatibility: > OpenCV 2.0

Author: |Author_BernatG|

You will learn how to store images in the memory and how to print out their content to the console.

=============== ===

.. |MatBasicIma| image:: images/matTheBasicImageStructure.jpg
:height: 90pt
:width: 90pt

.. raw:: latex

\pagebreak

.. toctree::
:hidden:

../mat - the basic image container/mat - the basic image container

If this is already present just add a new section of the content between the include and the raw directives (excluding
those lines). Here you’ll see a new include directive. This should be present only once in a TOC tree and the reST file
contains the definitions of all the authors contributing to the OpenCV tutorials. We are a multicultural community and
some of our name may contain some funky characters. However, reST only supports ANSI characters. Luckily we can
specify Unicode characters with the unicode directive. Doing this for all of your tutorials is a troublesome procedure.
Therefore, the tocDefinitions file contains the definition of your author name. Add it here once and afterwards just use
the replace construction. For example here’s the definition for my name:

.. |Author_BernatG| unicode:: Bern U+00E1 t U+0020 G U+00E1 bor

The |Author_BernatG| is the text definitions alias. I can use later this to add the definition, like I’ve done in the
TOCs Author part. After the :: and a space you start the definition. If you want to add an UNICODE character
(non-ASCI) leave an empty space and specify it in the format U+(UNICODE code). To find the UNICODE code of
a character I recommend using the FileFormat websites service. Spaces are trimmed from the definition, therefore we
add a space by its UNICODE character (U+0020).

Until the raw directive what you can see is a TOC tree entry. Here’s how a TOC entry will look like:

•

Title: Mat - The Basic Image Container
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn how to store images in the memory and how to print out their
content to the console.

As you can see we have an image to the left and a description box to the right. To create two boxes we use a table with
two columns and a single row. In the left column is the image and in the right one the description. However, the image
directive is way too long to fit in a column. Therefore, we need to use the substitution definition system. We add this
definition after the TOC tree. All images for the TOC tree are to be put in the images folder near its reStructuredText
file. We use the point measurement system because we are also creating PDFs. PDFs are printable documents, where
there is no such thing that pixels (px), just points (pt). And while generally space is no problem for web pages (we

70 Chapter 1. Introduction to OpenCV

http://www.fileformat.info
http://docutils.sourceforge.net/rst.html

The OpenCV Tutorials, Release 2.4.0

have monitors with huge resolutions) the size of the paper (A4 or letter) is constant and will be for a long time in the
future. Therefore, size constrains come in play more like for the PDF, than the generated HTML code.

Now your images should be as small as possible, while still offering the intended information for the user. Remember
that the tutorial will become part of the OpenCV source code. If you add large images (that manifest in form of
large image size) it will just increase the size of the repository pointlessly. If someone wants to download it later, its
download time will be that much longer. Not to mention the larger PDF size for the tutorials and the longer load time
for the web pages. In terms of pixels a TOC image should not be larger than 120 X 120 pixels. Resize your images if
they are larger!

Note: If you add a larger image and specify a smaller image size, Sphinx will not resize that. At build time will
add the full size image and the resize will be done by your browser after the image is loaded. A 120 X 120 image is
somewhere below 10KB. If you add a 110KB image, you have just pointlessly added a 100KB extra data to transfer
over the internet for every user!

Generally speaking you shouldn’t need to specify your images size (excluding the TOC entries). If no such is found
Sphinx will use the size of the image itself (so no resize occurs). Then again if for some reason you decide to specify a
size that should be the width of the image rather than its height. The reason for this again goes back to the PDFs. On a
PDF page the height is larger than the width. In the PDF the images will not be resized. If you specify a size that does
not fit in the page, then what does not fits in will be cut off. When creating your images for your tutorial you should
try to keep the image widths below 500 pixels, and calculate with around 400 point page width when specifying image
widths.

The image format depends on the content of the image. If you have some complex scene (many random like colors)
then use jpg. Otherwise, prefer using png. They are even some tools out there that optimize the size of PNG images,
such as PNGGauntlet. Use them to make your images as small as possible in size.

Now on the right side column of the table we add the information about the tutorial:

• In the first line it is the title of the tutorial. However, there is no need to specify it explicitly. We use the reference
system. We’ll start up our tutorial with a reference specification, just like in case of this TOC entry with its ‘‘ ..
_Table-Of-Content-Section:‘‘ . If after this you have a title (pointed out by the following line of -), then Sphinx
will replace the :ref:‘Table-Of-Content-Section‘ directive with the tile of the section in reference form
(creates a link in web page). Here’s how the definition looks in my case:

.. _matTheBasicImageContainer:

Mat - The Basic Image Container

Note, that according to the reStructuredText rules the * should be as long as your title.

• Compatibility. What version of OpenCV is required to run your sample code.

• Author. Use the substitution markup of reStructuredText.

• A short sentence describing the essence of your tutorial.

Now before each TOC entry you need to add the three lines of:

+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv

The plus sign (+) is to enumerate tutorials by using bullet points. So for every TOC entry we have a corresponding
bullet point represented by the +. Sphinx is highly indenting sensitive. Indentation is used to express from which point
until to which point does a construction last. Un-indentation means end of that construction. So to keep all the bullet
points to the same group the following TOC entries (until the next +) should be indented by two spaces.

1.11. How to write a tutorial for OpenCV? 71

http://pnggauntlet.com/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

The OpenCV Tutorials, Release 2.4.0

Here, I should also mention that always prefer using spaces instead of tabs. Working with only spaces makes possible
that if we both use monotype fonts we will see the same thing. Tab size is text editor dependent and as should be
avoided. Sphinx translates all tabs into 8 spaces before interpreting it.

It turns out that the automatic formatting of both the HTML and PDF(LATEX) system messes up our tables. Therefore,
we need to help them out a little. For the PDF generation we add the .. tabularcolumns:: m{100pt} m{300pt}
directive. This means that the first column should be 100 points wide and middle aligned. For the HTML look we sim-
ply name the following table of a toctableopencv class type. Then, we can modify the look of the table by modifying
the CSS of our web page. The CSS definitions go into the opencv/doc/_themes/blue/static/default.css_t
file.

.toctableopencv
{
width: 100% ;
table-layout: fixed;
}

.toctableopencv colgroup col:first-child
{
width: 100pt !important;
max-width: 100pt !important;
min-width: 100pt !important;
}

.toctableopencv colgroup col:nth-child(2)
{
width: 100% !important;
}

However, you should not need to modify this. Just add these three lines (plus keep the two space indentation) for all
TOC entries you add. At the end of the TOC file you’ll find:

.. raw:: latex

\pagebreak

.. toctree::
:hidden:

../mat - the basic image container/mat - the basic image container

The page break entry comes for separating sections and should be only one in a TOC tree reStructuredText file. Finally,
at the end of the TOC tree we need to add our tutorial to the Sphinx TOC tree system. Sphinx will generate from this
the previous-next-up information for the HTML file and add items to the PDF according to the order here. By default
this TOC tree directive generates a simple table of contents. However, we already created a fancy looking one so we
no longer need this basic one. Therefore, we add the hidden option to do not show it.

The path is of a relative type. We step back in the file system and then go into the mat - the basic image
container directory for the mat - the basic image container.rst file. Putting out the rst extension for the
file is optional.

Write the tutorial

Create a folder with the name of your tutorial. Preferably, use small letters only. Then create a text file in this folder
with rst extension and the same name. If you have images for the tutorial create an images folder and add your images
there. When creating your images follow the guidelines described in the previous part!

72 Chapter 1. Introduction to OpenCV

http://docutils.sourceforge.net/rst.html

The OpenCV Tutorials, Release 2.4.0

Now here’s our recommendation for the structure of the tutorial (although, remember that this is not carved in the
stone; if you have a better idea, use it!):

• Create the reference point and the title.

.. _matTheBasicImageContainer:

Mat - The Basic Image Container

You start the tutorial by specifying a reference point by the .. _matTheBasicImageContainer: and then its
title. The name of the reference point should be a unique one over the whole documentation. Therefore, do not
use general names like tutorial1. Use the * character to underline the title for its full width. The subtitles of the
tutorial should be underlined with = charachter.

• Goals. You start your tutorial by specifying what you will present. You can also enumerate the sub jobs to be
done. For this you can use a bullet point construction. There is a single configuration file for both the reference
manual and the tutorial documentation. In the reference manuals at the argument enumeration we do not want
any kind of bullet point style enumeration. Therefore, by default all the bullet points at this level are set to do
not show the dot before the entries in the HTML. You can override this by putting the bullet point in a container.
I’ve defined a square type bullet point view under the name enumeratevisibleitemswithsquare. The CSS style
definition for this is again in the opencvdoc_themesbluestaticdefault.css_t file. Here’s a quick example
of using it:

.. container:: enumeratevisibleitemswithsquare

+ Create the reference point and the title.
+ Second entry
+ Third entry

Note that you need the keep the indentation of the container directive. Directive indentations are always three
(3) spaces. Here you may even give usage tips for your sample code.

• Source code. Present your samples code to the user. It’s a good idea to offer a quick download link for the
HTML page by using the download directive and pointing out where the user may find your source code in the
file system by using the file directive:

Text :file:‘samples/cpp/tutorial_code/highgui/video-write/‘ folder of the OpenCV source library
or :download:‘text to appear in the webpage
<../../../../samples/cpp/tutorial_code/HighGUI/video-write/video-write.cpp>‘.

For the download link the path is a relative one, hence the multiple back stepping operations (..). Then you can
add the source code either by using the code block directive or the literal include one. In case of the code block
you will need to actually add all the source code text into your reStructuredText text and also apply the required
indentation:

.. code-block:: cpp

int i = 0;
l = ++j;

The only argument of the directive is the language used (here CPP). Then you add the source code into its
content (meaning one empty line after the directive) by keeping the indentation of the directive (3 spaces). With
the literal include directive you do not need to add the source code of the sample. You just specify the sample
and Sphinx will load it for you, during build time. Here’s an example usage:

.. literalinclude:: ../../../../samples/cpp/tutorial_code/HighGUI/video-write/video-write.cpp
:language: cpp
:linenos:

1.11. How to write a tutorial for OpenCV? 73

http://docutils.sourceforge.net/rst.html

The OpenCV Tutorials, Release 2.4.0

:tab-width: 4
:lines: 1-8, 21-22, 24-

After the directive you specify a relative path to the file from what to import. It has four options: the lan-
guage to use, if you add the :linenos: the line numbers will be shown, you can specify the tab size with the
:tab-width: and you do not need to load the whole file, you can show just the important lines. Use the lines
option to do not show redundant information (such as the help function). Here basically you specify ranges, if
the second range line number is missing than that means that until the end of the file. The ranges specified here
do no need to be in an ascending order, you may even reorganize the structure of how you want to show your
sample inside the tutorial.

• The tutorial. Well here goes the explanation for why and what have you used. Try to be short, clear, concise and
yet a thorough one. There’s no magic formula. Look into a few already made tutorials and start out from there.
Try to mix sample OpenCV code with your explanations. If with words is hard to describe something do not
hesitate to add in a reasonable size image, to overcome this issue.

When you present OpenCV functionality it’s a good idea to give a link to the used OpenCV data structure or
function. Because the OpenCV tutorials and reference manual are in separate PDF files it is not possible to
make this link work for the PDF format. Therefore, we use here only web page links to the opencv.itseez.com
website. The OpenCV functions and data structures may be used for multiple tasks. Nevertheless, we want to
avoid that every users creates its own reference to a commonly used function. So for this we use the global link
collection of Sphinx. This is defined in the file:opencv/doc/conf.py configuration file. Open it and go all the way
down to the last entry:

---- External links for tutorials -----------------
extlinks = {

’huivideo’ : (’http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#%s’, None)
}

In short here we defined a new huivideo directive that refers to an external webpage link. Its usage is:

A sample function of the highgui modules image write and read page is the :huivideo:‘imread() function <imread>‘.

Which turns to: A sample function of the highgui modules image write and read page is the imread()
function. The argument you give between the <> will be put in place of the %s in the upper defini-
tion, and as the link will anchor to the correct function. To find out the anchor of a given function
just open up a web page, search for the function and click on it. In the address bar it should appear like:
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#imread
. Look here for the name of the directives for each page of the OpenCV reference manual. If none present for
one of them feel free to add one for it.

For formulas you can add LATEX code that will translate in the web pages into images. You do this by using
the math directive. A usage tip:

.. math::

MSE = \frac{1}{c*i*j} \sum{(I_1-I_2)^2}

That after build turns into:

MSE =
1

c ∗ i ∗ j
∑

(I1 − I2)
2

You can even use it inline as :math:‘ MSE = \frac{1}{c*i*j} \sum{(I_1-I_2)^2}‘ that turns into
MSE = 1

c∗i∗j
∑

(I1 − I2)
2.

If you use some crazy LATEX library extension you need to add those to the ones to use at build time. Look
into the file:opencv/doc/conf.py configuration file for more information on this.

• Results. Well, here depending on your program show one of more of the following:

74 Chapter 1. Introduction to OpenCV

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#imread
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#imread

The OpenCV Tutorials, Release 2.4.0

– Console outputs by using the code block directive.

– Output images.

– Runtime videos, visualization. For this use your favorite screens capture software. Camtasia Studio cer-
tainly is one of the better choices, however their prices are out of this world. CamStudio is a free alterna-
tive, but less powerful. If you do a video you can upload it to YouTube and then use the raw directive with
HTML option to embed it into the generated web page:

You may observe a runtime instance of this on the ‘YouTube here <https://www.youtube.com/watch?v=jpBwHxsl1_0>‘_.

.. raw:: html

<div align="center">
<iframe title="Creating a video with OpenCV" width="560" height="349" src="http://www.youtube.com/embed/jpBwHxsl1_0?rel=0&loop=1" frameborder="0" allowfullscreen align="middle"></iframe>
</div>

This results in the text and video: You may observe a runtime instance of this on the YouTube here.

When these aren’t self-explanatory make sure to throw in a few guiding lines about what and why we can see.

• Build the documentation and check for errors or warnings. In the CMake make sure you check or pass the option
for building documentation. Then simply build the docs project for the PDF file and the docs_html project for
the web page. Read the output of the build and check for errors/warnings for what you have added. This is also
the time to observe and correct any kind of not so good looking parts. Remember to keep clean our build logs.

• Read again your tutorial and check for both programming and spelling errors. If found any, please correct them.

Take home the pride and joy of a job well done!

Once you are done contact me or dr. Gary Bradski with the tutorial. We may submit the tutorial ourselves to the trunk
branch of our repository or ask you to do so.

Now, to see your work live you may need to wait some time. The PDFs are updated usually at the launch of a new
OpenCV version. The web pages are a little more diverse. They are automatically rebuilt in each evening. However,
the opencv.itseez.com website contains only the most recent stable branch of OpenCV. Currently this is 2.3. When
we add something new (like a tutorial) that first goes to the trunk branch of our repository. A build of this you may
find on the opencv.itseez.com/trunk website. Although, we try to make a build every night occasionally we might
freeze any of the branches to fix upcoming issues. During this it may take a little longer to see your work live, however
if you submited it, be sure that eventually it will show up.

If you have any questions or advices relating to this tutorial you can contact me at -delete-bernat@-delete-
primeranks.net. Of course, delete the -delete- parts of that e-mail address.

1.11. How to write a tutorial for OpenCV? 75

http://www.techsmith.com/camtasia/
http://camstudio.org/
https://www.youtube.com/watch?v=jpBwHxsl1_0
mailto:-delete-bernat@-delete-primeranks.net
mailto:-delete-bernat@-delete-primeranks.net

The OpenCV Tutorials, Release 2.4.0

76 Chapter 1. Introduction to OpenCV

CHAPTER

TWO

CORE MODULE. THE CORE
FUNCTIONALITY

Here you will learn the about the basic building blocks of the library. A must read and know for understanding how to
manipulate the images on a pixel level.

•

Title: Mat - The Basic Image Container
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn how to store images in the memory and how to print out their
content to the console.

•

Title: How to scan images, lookup tables and time measurement with
OpenCV
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You’ll find out how to scan images (go through each of the image pixels)
with OpenCV. Bonus: time measurement with OpenCV.

•

Title: Mask operations on matrices
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You’ll find out how to scan images with neighbor access and use the filter2D
function to apply kernel filters on images.

•

Title: Adding (blending) two images using OpenCV
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to blend two images!

77

http://opencv.itseez.com/modules/imgproc/doc/filtering.html#filter2d

The OpenCV Tutorials, Release 2.4.0

•

Title: Changing the contrast and brightness of an image!
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to change our image appearance!

•

Title: Basic Drawing
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to draw simple geometry with OpenCV!

•

Title: Random generator and text with OpenCV
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will draw some fancy-looking stuff using OpenCV!

•

Title: Discrete Fourier Transform
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will see how and why use the Discrete Fourier transformation with
OpenCV.

•

Title: File Input and Output using XML and YAML files
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will see how to use the FileStorage data structure of OpenCV to write
and read data to XML or YAML file format.

•

Title: Interoperability with OpenCV 1
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
Did you used OpenCV before its 2.0 version? Do you wanna know what
happened with your library with 2.0? Don’t you know how to convert your
old OpenCV programs to the new C++ interface? Look here to shed light
on all this questions.

78 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filestorage

The OpenCV Tutorials, Release 2.4.0

2.1 Mat - The Basic Image Container

Goal

We have multiple ways to acquire digital images from the real world: digital cameras, scanners, computed tomography
or magnetic resonance imaging to just name a few. In every case what we (humans) see are images. However, when
transforming this to our digital devices what we record are numerical values for each of the points of the image.

For example in the above image you can see that the mirror of the care is nothing more than a matrix containing
all the intensity values of the pixel points. Now, how we get and store the pixels values may vary according to
what fits best our need, in the end all images inside a computer world may be reduced to numerical matrices and
some other information’s describing the matric itself. OpenCV is a computer vision library whose main focus is to
process and manipulate these information to find out further ones. Therefore, the first thing you need to learn and get
accommodated with is how OpenCV stores and handles images.

Mat

OpenCV has been around ever since 2001. In those days the library was built around a C interface. In those days
to store the image in the memory they used a C structure entitled IplImage. This is the one you’ll see in most of the
older tutorials and educational materials. The problem with this is that it brings to the table all the minuses of the
C language. The biggest issue is the manual management. It builds on the assumption that the user is responsible
for taking care of memory allocation and deallocation. While this is no issue in case of smaller programs once your
code base start to grove larger and larger it will be more and more a struggle to handle all this rather than focusing on
actually solving your development goal.

Luckily C++ came around and introduced the concept of classes making possible to build another road for the user:
automatic memory management (more or less). The good news is that C++ if fully compatible with C so no com-
patibility issues can arise from making the change. Therefore, OpenCV with its 2.0 version introduced a new C++
interface that by taking advantage of these offers a new way of doing things. A way, in which you do not need to fiddle
with memory management; making your code concise (less to write, to achieve more). The only main downside of the
C++ interface is that many embedded development systems at the moment support only C. Therefore, unless you are
targeting this platform, there’s no point on using the old methods (unless you’re a masochist programmer and you’re
asking for trouble).

The first thing you need to know about Mat is that you no longer need to manually allocate its size and release it as
soon as you do not need it. While doing this is still a possibility, most of the OpenCV functions will allocate its output
data manually. As a nice bonus if you pass on an already existing Mat object, what already has allocated the required
space for the matrix, this will be reused. In other words we use at all times only as much memory as much we must to
perform the task.

2.1. Mat - The Basic Image Container 79

The OpenCV Tutorials, Release 2.4.0

Mat is basically a class having two data parts: the matrix header (containing information such as the size of the matrix,
the method used for storing, at which address is the matrix stored and so on) and a pointer to the matrix containing
the pixel values (may take any dimensionality depending on the method chosen for storing) . The matrix header size
is constant. However, the size of the matrix itself may vary from image to image and usually is larger by order of
magnitudes. Therefore, when you’re passing on images in your program and at some point you need to create a copy
of the image the big price you will need to build is for the matrix itself rather than its header. OpenCV is an image
processing library. It contains a large collection of image processing functions. To solve a computational challenge
most of the time you will end up using multiple functions of the library. Due to this passing on images to functions
is a common practice. We should not forget that we are talking about image processing algorithms, which tend to be
quite computational heavy. The last thing we want to do is to further decrease the speed of your program by making
unnecessary copies of potentially large images.

To tackle this issue OpenCV uses a reference counting system. The idea is that each Mat object has its own header,
however the matrix may be shared between two instance of them by having their matrix pointer point to the same
address. Moreover, the copy operators will only copy the headers, and as also copy the pointer to the large matrix
too, however not the matrix itself.

1 Mat A, C; // creates just the header parts
2 A = imread(argv[1], CV_LOAD_IMAGE_COLOR); // here we’ll know the method used (allocate matrix)
3

4 Mat B(A); // Use the copy constructor
5

6 C = A; // Assignment operator

All the above objects, in the end point to the same single data matrix. Their headers are different, however making any
modification using either one of them will affect all the other ones too. In practice the different objects just provide
different access method to the same underlying data. Nevertheless, their header parts are different. The real interesting
part comes that you can create headers that refer only to a subsection of the full data. For example, to create a region
of interest (ROI) in an image you just create a new header with the new boundaries:

1 Mat D (A, Rect(10, 10, 100, 100)); // using a rectangle
2 Mat E = A(Range:all(), Range(1,3)); // using row and column boundaries

Now you may ask if the matrix itself may belong to multiple Mat objects who will take responsibility for its cleaning
when it’s no longer needed. The short answer is: the last object that used it. For this a reference counting mechanism
is used. Whenever somebody copies a header of a Mat object a counter is increased for the matrix. Whenever a header
is cleaned this counter is decreased. When the counter reaches zero the matrix too is freed. Because, sometimes you
will still want to copy the matrix itself too, there exists the clone() or the copyTo() function.

1 Mat F = A.clone();
2 Mat G;
3 A.copyTo(G);

Now modifying F or G will not affect the matrix pointed by the Mat header. What you need to remember from all this
is that:

• Output image allocation for OpenCV functions is automatic (unless specified otherwise).

• No need to think about memory freeing with OpenCVs C++ interface.

• The assignment operator and the copy constructor (ctor)copies only the header.

• Use the clone() or the copyTo() function to copy the underlying matrix of an image.

Storing methods

This is about how you store the pixel values. You can select the color space and the data type used. The color space
refers to how we combine color components in order to code a given color. The simplest one is the gray scale. Here

80 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-clone
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-copyto
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-clone
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-copyto

The OpenCV Tutorials, Release 2.4.0

the colors at our disposal are black and white. The combination of these allows us to create many shades of gray.

For colorful ways we have a lot more of methods to choose from. However, every one of them breaks it down to
three or four basic components and the combination of this will give all others. The most popular one of this is RGB,
mainly because this is also how our eye builds up colors in our eyes. Its base colors are red, green and blue. To code
the transparency of a color sometimes a fourth element: alpha (A) is added.

However, they are many color systems each with their own advantages:

• RGB is the most common as our eyes use something similar, our display systems also compose colors using
these.

• The HSV and HLS decompose colors into their hue, saturation and value/luminance components, which is a
more natural way for us to describe colors. Using you may for example dismiss the last component, making
your algorithm less sensible to light conditions of the input image.

• YCrCb is used by the popular JPEG image format.

• CIE L*a*b* is a perceptually uniform color space, which comes handy if you need to measure the distance of a
given color to another color.

Now each of the building components has their own valid domains. This leads to the data type used. How we store
a component defines just how fine control we have over its domain. The smallest data type possible is char, which
means one byte or 8 bits. This may be unsigned (so can store values from 0 to 255) or signed (values from -127 to
+127). Although in case of three components this already gives 16 million possible colors to represent (like in case of
RGB) we may acquire an even finer control by using the float (4 byte = 32 bit) or double (8 byte = 64 bit) data types
for each component. Nevertheless, remember that increasing the size of a component also increases the size of the
whole picture in the memory.

Creating explicitly a Mat object

In the Load, Modify, and Save an Image tutorial you could already see how to write a matrix to an image file by
using the :readWriteImageVideo:‘ imwrite() <imwrite>‘ function. However, for debugging purposes it’s much more
convenient to see the actual values. You can achieve this via the << operator of Mat. However, be aware that this only
works for two dimensional matrices.

Although Mat is a great class as image container it is also a general matrix class. Therefore, it is possible to create and
manipulate multidimensional matrices. You can create a Mat object in multiple ways:

• Mat() Constructor

Mat M(2,2, CV_8UC3, Scalar(0,0,255));
cout << "M = " << endl << " " << M << endl << endl;

For two dimensional and multichannel images we first define their size: row and column count wise.

Then we need to specify the data type to use for storing the elements and the number of channels per
matrix point. To do this we have multiple definitions made according to the following convention:

CV_[The number of bits per item][Signed or Unsigned][Type Prefix]C[The channel number]

For instance, CV_8UC3 means we use unsigned char types that are 8 bit long and each pixel has three
items of this to form the three channels. This are predefined for up to four channel numbers. The Scalar
is four element short vector. Specify this and you can initialize all matrix points with a custom value.

2.1. Mat - The Basic Image Container 81

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-mat
http://opencv.itseez.com/modules/core/doc/basic_structures.html#scalar

The OpenCV Tutorials, Release 2.4.0

However if you need more you can create the type with the upper macro and putting the channel number
in parenthesis as you can see below.

• Use C\C++ arrays and initialize via constructor

int sz[3] = {2,2,2};
Mat L(3,sz, CV_8UC(1), Scalar::all(0));

The upper example shows how to create a matrix with more than two dimensions. Specify its dimension, then
pass a pointer containing the size for each dimension and the rest remains the same.

• Create a header for an already existing IplImage pointer:

IplImage* img = cvLoadImage("greatwave.png", 1);
Mat mtx(img); // convert IplImage* -> Mat

• Create() function:

M.create(4,4, CV_8UC(2));
cout << "M = "<< endl << " " << M << endl << endl;

You cannot initialize the matrix values with this construction. It will only reallocate its matrix data
memory if the new size will not fit into the old one.

• MATLAB style initializer: zeros(), ones(), :eyes(). Specify size and data type to use:

Mat E = Mat::eye(4, 4, CV_64F);
cout << "E = " << endl << " " << E << endl << endl;

Mat O = Mat::ones(2, 2, CV_32F);
cout << "O = " << endl << " " << O << endl << endl;

Mat Z = Mat::zeros(3,3, CV_8UC1);
cout << "Z = " << endl << " " << Z << endl << endl;

• For small matrices you may use comma separated initializers:

Mat C = (Mat_<double>(3,3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
cout << "C = " << endl << " " << C << endl << endl;

82 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-create
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-zeros
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-ones
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-eye

The OpenCV Tutorials, Release 2.4.0

• Create a new header for an existing Mat object and clone() or copyTo() it.

Mat RowClone = C.row(1).clone();
cout << "RowClone = " << endl << " " << RowClone << endl << endl;

Print out formatting

Note: You can fill out a matrix with random values using the randu() function. You need to give the lover and upper
value between what you want the random values:

Mat R = Mat(3, 2, CV_8UC3);
randu(R, Scalar::all(0), Scalar::all(255));

In the above examples you could see the default formatting option. Nevertheless, OpenCV allows you to format your
matrix output format to fit the rules of:

• Default

cout << "R (default) = " << endl << R << endl << endl;

• Python

cout << "R (python) = " << endl << format(R,"python") << endl << endl;

• Comma separated values (CSV)

cout << "R (csv) = " << endl << format(R,"csv") << endl << endl;

• Numpy

cout << "R (numpy) = " << endl << format(R,"numpy") << endl << endl;

2.1. Mat - The Basic Image Container 83

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-clone
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-copyto
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#randu

The OpenCV Tutorials, Release 2.4.0

• C

cout << "R (c) = " << endl << format(R,"C") << endl << endl;

Print for other common items

OpenCV offers support for print of other common OpenCV data structures too via the << operator like:

• 2D Point

Point2f P(5, 1);
cout << "Point (2D) = " << P << endl << endl;

• 3D Point

Point3f P3f(2, 6, 7);
cout << "Point (3D) = " << P3f << endl << endl;

• std::vector via cv::Mat

vector<float> v;
v.push_back((float)CV_PI); v.push_back(2); v.push_back(3.01f);

cout << "Vector of floats via Mat = " << Mat(v) << endl << endl;

• std::vector of points

vector<Point2f> vPoints(20);
for (size_t E = 0; E < vPoints.size(); ++E)

vPoints[E] = Point2f((float)(E * 5), (float)(E % 7));

cout << "A vector of 2D Points = " << vPoints << endl << endl;

Most of the samples here have been included into a small console application. You can download it from here or in
the core section of the cpp samples.

A quick video demonstration of this you can find on YouTube.

84 Chapter 2. core module. The Core Functionality

https://www.youtube.com/watch?v=1tibU7vGWpk

The OpenCV Tutorials, Release 2.4.0

2.2 How to scan images, lookup tables and time measurement with
OpenCV

Goal

We’ll seek answers for the following questions:

• How to go through each and every pixel of an image?

• How is OpenCV matrix values stored?

• How to measure the performance of our algorithm?

• What are lookup tables and why use them?

Our test case

Let us consider a simple color reduction method. Using the unsigned char C and C++ type for matrix item storing a
channel of pixel may have up to 256 different values. For a three channel image this can allow the formation of way
too many colors (16 million to be exact). Working with so many color shades may give a heavy blow to our algorithm
performance. However, sometimes it is enough to work with a lot less of them to get the same final result.

In this cases it’s common that we make a color space reduction. This means that we divide the color space current
value with a new input value to end up with fewer colors. For instance every value between zero and nine takes the
new value zero, every value between ten and nineteen the value ten and so on.

When you divide an uchar (unsigned char - aka values between zero and 255) value with an int value the result will
be also char. These values may only be char values. Therefore, any fraction will be rounded down. Taking advantage
of this fact the upper operation in the uchar domain may be expressed as:

Inew = (
Iold

10
) ∗ 10

A simple color space reduction algorithm would consist of just passing through every pixel of an image matrix and
applying this formula. It’s worth noting that we do a divide and a multiplication operation. These operations are bloody
expensive for a system. If possible it’s worth avoiding them by using cheaper operations such as a few subtractions,
addition or in best case a simple assignment. Furthermore, note that we only have a limited number of input values for
the upper operation. In case of the uchar system this is 256 to be exact.

Therefore, for larger images it would be wise to calculate all possible values beforehand and during the assignment
just make the assignment, by using a lookup table. Lookup tables are simple arrays (having one or more dimensions)
that for a given input value variation holds the final output value. Its strength lies that we do not need to make the
calculation, we just need to read the result.

Our test case program (and the sample presented here) will do the following: read in a console line argument image
(that may be either color or gray scale - console line argument too) and apply the reduction with the given console
line argument integer value. In OpenCV, at the moment they are three major ways of going through an image pixel by
pixel. To make things a little more interesting will make the scanning for each image using all of these methods, and
print out how long it took.

You can download the full source code here or look it up in the samples directory of OpenCV at the cpp tutorial code
for the core section. Its basic usage is:

how_to_scan_images imageName.jpg intValueToReduce [G]

The final argument is optional. If given the image will be loaded in gray scale format, otherwise the RGB color way
is used. The first thing is to calculate the lookup table.

2.2. How to scan images, lookup tables and time measurement with OpenCV 85

The OpenCV Tutorials, Release 2.4.0

int divideWith; // convert our input string to number - C++ style
stringstream s;
s << argv[2];
s >> divideWith;
if (!s)
{

cout << "Invalid number entered for dividing. " << endl;
return -1;

}

uchar table[256];
for (int i = 0; i < 256; ++i)

table[i] = divideWith* (i/divideWith);

Here we first use the C++ stringstream class to convert the third command line argument from text to an integer format.
Then we use a simple look and the upper formula to calculate the lookup table. No OpenCV specific stuff here.

Another issue is how do we measure time? Well OpenCV offers two simple functions to achieve this getTickCount()
and getTickFrequency(). The first returns the number of ticks of your systems CPU from a certain event (like since
you booted your system). The second returns how many times your CPU emits a tick during a second. So to measure
in seconds the number of time elapsed between two operations is easy as:

double t = (double)getTickCount();
// do something ...
t = ((double)getTickCount() - t)/getTickFrequency();
cout << "Times passed in seconds: " << t << endl;

How the image matrix is stored in the memory?

As you could already read in my Mat - The Basic Image Container tutorial the size of the matrix depends of the color
system used. More accurately, it depends from the number of channels used. In case of a gray scale image we have
something like:

Column 0 Column 1 Column ... Column m
Row 0 0,0 0,1 ... 0, m
Row 1 1,0 1,1 ... 1, m
Row,0 ...,1, m
Row n n,0 n,1 n,... n, m

For multichannel images the columns contain as many sub columns as the number of channels. For example in case
of an RGB color system:

Column 0 Column 1 Column ... Column m
Row 0 0,0 0,0 0,0 0,1 0,1 0,1 0, m 0, m 0, m
Row 1 1,0 1,0 1,0 1,1 1,1 1,1 1, m 1, m 1, m
Row,0 ...,0 ...,0 ...,1 ...,1 ...,1, m ..., m ..., m
Row n n,0 n,0 n,0 n,1 n,1 n,1 n,... n,... n,... n, m n, m n, m

Note that the order of the channels is inverse: BGR instead of RGB. Because in many cases the memory is large
enough to store the rows in a successive fashion the rows may follow one after another, creating a single long row.
Because everything is in a single place following one after another this may help to speed up the scanning process.
We can use the isContinuous() function to ask the matrix if this is the case. Continue on to the next section to find an
example.

86 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/utility_and_system_functions_and_macros.html#gettickcount
http://opencv.itseez.com/modules/core/doc/utility_and_system_functions_and_macros.html#gettickfrequency
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-iscontinuous

The OpenCV Tutorials, Release 2.4.0

The efficient way

When it comes to performance you cannot beat the classic C style operator[] (pointer) access. Therefore, the most
efficient method we can recommend for making the assignment is:

Mat& ScanImageAndReduceC(Mat& I, const uchar* const table)
{

// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));

int channels = I.channels();

int nRows = I.rows * channels;
int nCols = I.cols;

if (I.isContinuous())
{

nCols *= nRows;
nRows = 1;

}

int i,j;
uchar* p;
for(i = 0; i < nRows; ++i)
{

p = I.ptr<uchar>(i);
for (j = 0; j < nCols; ++j)
{

p[j] = table[p[j]];
}

}
return I;

}

Here we basically just acquire a pointer to the start of each row and go through it until it ends. In the special case that
the matrix is stored in a continues manner we only need to request the pointer a single time and go all the way to the
end. We need to look out for color images: we have three channels so we need to pass through three times more items
in each row.

There’s another way of this. The data data member of a Mat object returns the pointer to the first row, first column. If
this pointer is null you have no valid input in that object. Checking this is the simplest method to check if your image
loading was a success. In case the storage is continues we can use this to go through the whole data pointer. In case of
a gray scale image this would look like:

uchar* p = I.data;

for(unsigned int i =0; i < ncol*nrows; ++i)

*p++ = table[*p];

You would get the same result. However, this code is a lot harder to read later on. It gets even harder if you have some
more advanced technique there. Moreover, in practice I’ve observed you’ll get the same performance result (as most
of the modern compilers will probably make this small optimization trick automatically for you).

The iterator (safe) method

In case of the efficient way making sure that you pass through the right amount of uchar fields and to skip the gaps that
may occur between the rows was your responsibility. The iterator method is considered a safer way as it takes over

2.2. How to scan images, lookup tables and time measurement with OpenCV 87

The OpenCV Tutorials, Release 2.4.0

these tasks from the user. All you need to do is ask the begin and the end of the image matrix and then just increase
the begin iterator until you reach the end. To acquire the value pointed by the iterator use the * operator (add it before
it).

Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table)
{

// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));

const int channels = I.channels();
switch(channels)
{
case 1:

{
MatIterator_<uchar> it, end;
for(it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)

*it = table[*it];
break;

}
case 3:

{
MatIterator_<Vec3b> it, end;
for(it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it)
{

(*it)[0] = table[(*it)[0]];
(*it)[1] = table[(*it)[1]];
(*it)[2] = table[(*it)[2]];

}
}

}

return I;
}

In case of color images we have three uchar items per column. This may be considered a short vector of uchar items,
that has been baptized in OpenCV with the Vec3b name. To access the n-th sub column we use simple operator[]
access. It’s important to remember that OpenCV iterators go through the columns and automatically skip to the next
row. Therefore in case of color images if you use a simple uchar iterator you’ll be able to access only the blue channel
values.

On-the-fly address calculation with reference returning

The final method isn’t recommended for scanning. It was made to acquire or modify somehow random elements in
the image. Its basic usage is to specify the row and column number of the item you want to access. During our earlier
scanning methods you could already observe that is important through what type we are looking at the image. It’s no
different here as you need manually to specify what type to use at the automatic lookup. You can observe this in case
of the gray scale images for the following source code (the usage of the + at() function):

Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table)
{

// accept only char type matrices
CV_Assert(I.depth() != sizeof(uchar));

const int channels = I.channels();
switch(channels)
{
case 1:

88 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-at

The OpenCV Tutorials, Release 2.4.0

{
for(int i = 0; i < I.rows; ++i)

for(int j = 0; j < I.cols; ++j)
I.at<uchar>(i,j) = table[I.at<uchar>(i,j)];

break;
}

case 3:
{
Mat_<Vec3b> _I = I;

for(int i = 0; i < I.rows; ++i)
for(int j = 0; j < I.cols; ++j)

{
_I(i,j)[0] = table[_I(i,j)[0]];
_I(i,j)[1] = table[_I(i,j)[1]];
_I(i,j)[2] = table[_I(i,j)[2]];

}
I = _I;
break;
}

}

return I;
}

The functions takes your input type and coordinates and calculates on the fly the address of the queried item. Then
returns a reference to that. This may be a constant when you get the value and non-constant when you set the value.
As a safety step in debug mode only* there is performed a check that your input coordinates are valid and does exist.
If this isn’t the case you’ll get a nice output message of this on the standard error output stream. Compared to the
efficient way in release mode the only difference in using this is that for every element of the image you’ll get a new
row pointer for what we use the C operator[] to acquire the column element.

If you need to multiple lookups using this method for an image it may be troublesome and time consuming to enter
the type and the at keyword for each of the accesses. To solve this problem OpenCV has a Mat_ data type. It’s the
same as Mat with the extra need that at definition you need to specify the data type through what to look at the data
matrix, however in return you can use the operator() for fast access of items. To make things even better this is easily
convertible from and to the usual Mat data type. A sample usage of this you can see in case of the color images of the
upper function. Nevertheless, it’s important to note that the same operation (with the same runtime speed) could have
been done with the at() function. It’s just a less to write for the lazy programmer trick.

The Core Function

This is a bonus method of achieving lookup table modification in an image. Because in image processing it’s quite
common that you want to replace all of a given image value to some other value OpenCV has a function that makes
the modification without the need from you to write the scanning of the image. We use the LUT() function of the core
module. First we build a Mat type of the lookup table:

Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.data;
for(int i = 0; i < 256; ++i)

p[i] = table[i];

Finally call the function (I is our input image and J the output one):

LUT(I, lookUpTable, J);

2.2. How to scan images, lookup tables and time measurement with OpenCV 89

http://opencv.itseez.com/modules/core/doc/basic_structures.html#id3
http://opencv.itseez.com/modules/core/doc/basic_structures.html#id3
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-at
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#lut

The OpenCV Tutorials, Release 2.4.0

Performance Difference

For the best result compile the program and run it on your own speed. For showing off better the differences I’ve used
a quite large (2560 X 1600) image. The performance presented here are for color images. For a more accurate value
I’ve averaged the value I got from the call of the function for hundred times.

Efficient Way 79.4717 milliseconds
Iterator 83.7201 milliseconds
On-The-Fly RA 93.7878 milliseconds
LUT function 32.5759 milliseconds

We can conclude a couple of things. If possible, use the already made functions of OpenCV (instead reinventing these).
The fastest method turns out to be the LUT function. This is because the OpenCV library is multi-thread enabled via
Intel Threaded Building Blocks. However, if you need to write a simple image scan prefer the pointer method. The
iterator is a safer bet, however quite slower. Using the on-the-fly reference access method for full image scan is the
most costly in debug mode. In the release mode it may beat the iterator approach or not, however it surely sacrifices
for this the safety trait of iterators.

Finally, you may watch a sample run of the program on the video posted on our YouTube channel.

2.3 Mask operations on matrices

Mask operations on matrices are quite simple. The idea is that we recalculate each pixels value in an image according
to a mask matrix (also known as kernel). This mask holds values that will adjust how much influence neighboring
pixels (and the current pixel) have on the new pixel value. From a mathematical point of view we make a weighted
average, with our specified values.

Our test case

Let us consider the issue of an image contrast enhancement method. Basically we want to apply for every pixel of the
image the following formula:

I(i, j) = 5 ∗ I(i, j) − [I(i− 1, j) + I(i+ 1, j) + I(i, j− 1) + I(i, j+ 1)]

⇐⇒ I(i, j) ∗M,whereM =

i\
j −1 0 +1

−1 0 −1 0

0 −1 5 −1

+1 0 −1 0

The first notation is by using a formula, while the second is a compacted version of the first by using a mask. You
use the mask by putting the center of the mask matrix (in the upper case noted by the zero-zero index) on the pixel
you want to calculate and sum up the pixel values multiplied with the overlapped matrix values. It’s the same thing,
however in case of large matrices the latter notation is a lot easier to look over.

Now let us see how we can make this happen by using the basic pixel access method or by using the filter2D function.

The Basic Method

Here’s a function that will do this:

void Sharpen(const Mat& myImage,Mat& Result)
{

CV_Assert(myImage.depth() == CV_8U); // accept only uchar images

90 Chapter 2. core module. The Core Functionality

https://www.youtube.com/watch?v=fB3AN5fjgwc
http://opencv.itseez.com/modules/imgproc/doc/filtering.html#filter2d

The OpenCV Tutorials, Release 2.4.0

Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels();

for(int j = 1 ; j < myImage.rows-1; ++j)
{

const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j);
const uchar* next = myImage.ptr<uchar>(j + 1);

uchar* output = Result.ptr<uchar>(j);

for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{

*output++ = saturate_cast<uchar>(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);

}
}

Result.row(0).setTo(Scalar(0));
Result.row(Result.rows-1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols-1).setTo(Scalar(0));

}

At first we make sure that the input images data is in unsigned char format. For this we use the CV_Assert function
that throws an error when the expression inside it is false.

CV_Assert(myImage.depth() == CV_8U); // accept only uchar images

We create an output image with the same size and the same type as our input. As you can see in the How the image
matrix is stored in the memory? section, depending on the number of channels we may have one or more subcolumns.
We will iterate through them via pointers so the total number of elements depends from this number.

Result.create(myImage.size(),myImage.type());
const int nChannels = myImage.channels();

We’ll use the plain C [] operator to access pixels. Because we need to access multiple rows at the same time we’ll
acquire the pointers for each of them (a previous, a current and a next line). We need another pointer to where we’re
going to save the calculation. Then simply access the right items with the [] operator. For moving the output pointer
ahead we simply increase this (with one byte) after each operation:

for(int j = 1 ; j < myImage.rows-1; ++j)
{

const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j);
const uchar* next = myImage.ptr<uchar>(j + 1);

uchar* output = Result.ptr<uchar>(j);

for(int i= nChannels;i < nChannels*(myImage.cols-1); ++i)
{

*output++ = saturate_cast<uchar>(5*current[i]
-current[i-nChannels] - current[i+nChannels] - previous[i] - next[i]);

}
}

On the borders of the image the upper notation results inexistent pixel locations (like minus one - minus one). In these
points our formula is undefined. A simple solution is to not apply the mask in these points and, for example, set the

2.3. Mask operations on matrices 91

http://opencv.itseez.com/modules/core/doc/utility_and_system_functions_and_macros.html#cv-assert

The OpenCV Tutorials, Release 2.4.0

pixels on the borders to zeros:

Result.row(0).setTo(Scalar(0)); // The top row
Result.row(Result.rows-1).setTo(Scalar(0)); // The bottom row
Result.col(0).setTo(Scalar(0)); // The left column
Result.col(Result.cols-1).setTo(Scalar(0)); // The right column

The filter2D function

Applying such filters are so common in image processing that in OpenCV there exist a function that will take care of
applying the mask (also called a kernel in some places). For this you first need to define a Mat object that holds the
mask:

Mat kern = (Mat_<char>(3,3) << 0, -1, 0,
-1, 5, -1,
0, -1, 0);

Then call the filter2D function specifying the input, the output image and the kernell to use:

filter2D(I, K, I.depth(), kern);

The function even has a fifth optional argument to specify the center of the kernel, and a sixth one for determining what
to do in the regions where the operation is undefined (borders). Using this function has the advantage that it’s shorter,
less verbose and because there are some optimization techniques implemented it is usually faster than the hand-coded
method. For example in my test while the second one took only 13 milliseconds the first took around 31 milliseconds.
Quite some difference.

For example:

You can download this source code from here or look in the OpenCV source code libraries sample directory at
samples/cpp/tutorial_code/core/mat_mask_operations/mat_mask_operations.cpp.

Check out an instance of running the program on our YouTube channel .

2.4 Adding (blending) two images using OpenCV

Goal

In this tutorial you will learn how to:

• What is linear blending and why it is useful.

• Add two images using addWeighted

92 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/imgproc/doc/filtering.html#filter2d
http://www.youtube.com/watch?v=7PF1tAU9se4
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=addweighted#addweighted

The OpenCV Tutorials, Release 2.4.0

Theory

Note: The explanation below belongs to the book Computer Vision: Algorithms and Applications by Richard Szeliski

From our previous tutorial, we know already a bit of Pixel operators. An interesting dyadic (two-input) operator is the
linear blend operator:

g(x) = (1− α)f0(x) + αf1(x)

By varying α from 0→ 1 this operator can be used to perform a temporal cross-disolve between two images or videos,
as seen in slide shows and film productions (cool, eh?)

Code

As usual, after the not-so-lengthy explanation, let’s go to the code:

#include <cv.h>
#include <highgui.h>
#include <iostream>

using namespace cv;

int main(int argc, char** argv)
{
double alpha = 0.5; double beta; double input;

Mat src1, src2, dst;

/// Ask the user enter alpha
std::cout<<" Simple Linear Blender "<<std::endl;
std::cout<<"-----------------------"<<std::endl;
std::cout<<"* Enter alpha [0-1]: ";
std::cin>>input;

/// We use the alpha provided by the user iff it is between 0 and 1
if(alpha >= 0 && alpha <= 1)

{ alpha = input; }

/// Read image (same size, same type)
src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

if(!src1.data) { printf("Error loading src1 \n"); return -1; }
if(!src2.data) { printf("Error loading src2 \n"); return -1; }

/// Create Windows
namedWindow("Linear Blend", 1);

beta = (1.0 - alpha);
addWeighted(src1, alpha, src2, beta, 0.0, dst);

imshow("Linear Blend", dst);

waitKey(0);
return 0;
}

2.4. Adding (blending) two images using OpenCV 93

http://szeliski.org/Book/

The OpenCV Tutorials, Release 2.4.0

Explanation

1. Since we are going to perform:

g(x) = (1− α)f0(x) + αf1(x)

We need two source images (f0(x) and f1(x)). So, we load them in the usual way:

src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

Warning: Since we are adding src1 and src2, they both have to be of the same size (width and height) and
type.

2. Now we need to generate the g(x) image. For this, the function addWeighted comes quite handy:

beta = (1.0 - alpha);
addWeighted(src1, alpha, src2, beta, 0.0, dst);

since addWeighted produces:

dst = α · src1+ β · src2+ γ

In this case, γ is the argument 0.0 in the code above.

3. Create windows, show the images and wait for the user to end the program.

Result

2.5 Changing the contrast and brightness of an image!

Goal

In this tutorial you will learn how to:

• Access pixel values

• Initialize a matrix with zeros

94 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=addweighted#addweighted
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=addweighted#addweighted

The OpenCV Tutorials, Release 2.4.0

• Learn what saturate_cast does and why it is useful

• Get some cool info about pixel transformations

Theory

Note: The explanation below belongs to the book Computer Vision: Algorithms and Applications by Richard Szeliski

Image Processing

• A general image processing operator is a function that takes one or more input images and produces an output
image.

• Image transforms can be seen as:

– Point operators (pixel transforms)

– Neighborhood (area-based) operators

Pixel Transforms

• In this kind of image processing transform, each output pixel’s value depends on only the corresponding input
pixel value (plus, potentially, some globally collected information or parameters).

• Examples of such operators include brightness and contrast adjustments as well as color correction and trans-
formations.

Brightness and contrast adjustments

• Two commonly used point processes are multiplication and addition with a constant:

g(x) = αf(x) + β

• The parameters α > 0 and β are often called the gain and bias parameters; sometimes these parameters are said
to control contrast and brightness respectively.

• You can think of f(x) as the source image pixels and g(x) as the output image pixels. Then, more conveniently
we can write the expression as:

g(i, j) = α · f(i, j) + β

where i and j indicates that the pixel is located in the i-th row and j-th column.

Code

• The following code performs the operation g(i, j) = α · f(i, j) + β :

#include <cv.h>
#include <highgui.h>
#include <iostream>

using namespace cv;

2.5. Changing the contrast and brightness of an image! 95

http://opencv.itseez.com/modules/core/doc/utility_and_system_functions_and_macros.html?highlight=saturate_cast#saturate-cast
http://szeliski.org/Book/

The OpenCV Tutorials, Release 2.4.0

double alpha; /**< Simple contrast control */
int beta; /**< Simple brightness control */

int main(int argc, char** argv)
{
/// Read image given by user
Mat image = imread(argv[1]);
Mat new_image = Mat::zeros(image.size(), image.type());

/// Initialize values
std::cout<<" Basic Linear Transforms "<<std::endl;
std::cout<<"-------------------------"<<std::endl;
std::cout<<"* Enter the alpha value [1.0-3.0]: ";std::cin>>alpha;
std::cout<<"* Enter the beta value [0-100]: "; std::cin>>beta;

/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
for(int y = 0; y < image.rows; y++)

{ for(int x = 0; x < image.cols; x++)
{ for(int c = 0; c < 3; c++)

{
new_image.at<Vec3b>(y,x)[c] =

saturate_cast<uchar>(alpha*(image.at<Vec3b>(y,x)[c]) + beta);
}

}
}

/// Create Windows
namedWindow("Original Image", 1);
namedWindow("New Image", 1);

/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);

/// Wait until user press some key
waitKey();
return 0;
}

Explanation

1. We begin by creating parameters to save α and β to be entered by the user:

double alpha;
int beta;

2. We load an image using imread and save it in a Mat object:

Mat image = imread(argv[1]);

3. Now, since we will make some transformations to this image, we need a new Mat object to store it. Also, we
want this to have the following features:

• Initial pixel values equal to zero

• Same size and type as the original image

96 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html?highlight=imread#imread

The OpenCV Tutorials, Release 2.4.0

Mat new_image = Mat::zeros(image.size(), image.type());

We observe that Mat::zeros returns a Matlab-style zero initializer based on image.size() and image.type()

4. Now, to perform the operation g(i, j) = α · f(i, j) + β we will access to each pixel in image. Since we are
operating with RGB images, we will have three values per pixel (R, G and B), so we will also access them
separately. Here is the piece of code:

for(int y = 0; y < image.rows; y++)
{ for(int x = 0; x < image.cols; x++)

{ for(int c = 0; c < 3; c++)
{ new_image.at<Vec3b>(y,x)[c] =

saturate_cast<uchar>(alpha*(image.at<Vec3b>(y,x)[c]) + beta); }
}
}

Notice the following:

• To access each pixel in the images we are using this syntax: image.at<Vec3b>(y,x)[c] where y is the row,
x is the column and c is R, G or B (0, 1 or 2).

• Since the operation α · p(i, j) + β can give values out of range or not integers (if α is float), we use
saturate_cast to make sure the values are valid.

5. Finally, we create windows and show the images, the usual way.

namedWindow("Original Image", 1);
namedWindow("New Image", 1);

imshow("Original Image", image);
imshow("New Image", new_image);

waitKey(0);

Note: Instead of using the for loops to access each pixel, we could have simply used this command:

image.convertTo(new_image, -1, alpha, beta);

where convertTo would effectively perform new_image = a*image + beta. However, we wanted to show you how to
access each pixel. In any case, both methods give the same result.

Result

• Running our code and using α = 2.2 and β = 50

$./BasicLinearTransforms lena.jpg
Basic Linear Transforms

* Enter the alpha value [1.0-3.0]: 2.2

* Enter the beta value [0-100]: 50

• We get this:

2.5. Changing the contrast and brightness of an image! 97

http://opencv.itseez.com/modules/core/doc/basic_structures.html?highlight=zeros#mat-zeros
http://opencv.itseez.com/modules/core/doc/utility_and_system_functions_and_macros.html?highlight=saturate_cast#saturate-cast
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat-convertto

The OpenCV Tutorials, Release 2.4.0

2.6 Basic Drawing

Goals

In this tutorial you will learn how to:

• Use Point to define 2D points in an image.

• Use Scalar and why it is useful

• Draw a line by using the OpenCV function line

• Draw an ellipse by using the OpenCV function ellipse

• Draw a rectangle by using the OpenCV function rectangle

• Draw a circle by using the OpenCV function circle

• Draw a filled polygon by using the OpenCV function fillPoly

OpenCV Theory

For this tutorial, we will heavily use two structures: Point and Scalar:

Point

It represents a 2D point, specified by its image coordinates x and y. We can define it as:

Point pt;
pt.x = 10;
pt.y = 8;

or

Point pt = Point(10, 8);

98 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/basic_structures.html#point
http://opencv.itseez.com/modules/core/doc/basic_structures.html#scalar
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#line
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#ellipse
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#rectangle
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#circle
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#fillpoly
http://opencv.itseez.com/modules/core/doc/basic_structures.html#point
http://opencv.itseez.com/modules/core/doc/basic_structures.html#scalar

The OpenCV Tutorials, Release 2.4.0

Scalar

• Represents a 4-element vector. The type Scalar is widely used in OpenCV for passing pixel values.

• In this tutorial, we will use it extensively to represent RGB color values (3 parameters). It is not necessary to
define the last argument if it is not going to be used.

• Let’s see an example, if we are asked for a color argument and we give:

Scalar(a, b, c)

We would be defining a RGB color such as: Red = c, Green = b and Blue = a

Code

• This code is in your OpenCV sample folder. Otherwise you can grab it from here

Explanation

1. Since we plan to draw two examples (an atom and a rook), we have to create 02 images and two windows to
display them.

/// Windows names
char atom_window[] = "Drawing 1: Atom";
char rook_window[] = "Drawing 2: Rook";

/// Create black empty images
Mat atom_image = Mat::zeros(w, w, CV_8UC3);
Mat rook_image = Mat::zeros(w, w, CV_8UC3);

2. We created functions to draw different geometric shapes. For instance, to draw the atom we used MyEllipse and
MyFilledCircle:

/// 1. Draw a simple atom:

/// 1.a. Creating ellipses
MyEllipse(atom_image, 90);
MyEllipse(atom_image, 0);
MyEllipse(atom_image, 45);
MyEllipse(atom_image, -45);

/// 1.b. Creating circles
MyFilledCircle(atom_image, Point(w/2.0, w/2.0));

3. And to draw the rook we employed MyLine, rectangle and a MyPolygon:

/// 2. Draw a rook

/// 2.a. Create a convex polygon
MyPolygon(rook_image);

/// 2.b. Creating rectangles
rectangle(rook_image,

Point(0, 7*w/8.0),
Point(w, w),
Scalar(0, 255, 255),
-1,

2.6. Basic Drawing 99

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/core/Matrix/Drawing_1.cpp

The OpenCV Tutorials, Release 2.4.0

8);

/// 2.c. Create a few lines
MyLine(rook_image, Point(0, 15*w/16), Point(w, 15*w/16));
MyLine(rook_image, Point(w/4, 7*w/8), Point(w/4, w));
MyLine(rook_image, Point(w/2, 7*w/8), Point(w/2, w));
MyLine(rook_image, Point(3*w/4, 7*w/8), Point(3*w/4, w));

4. Let’s check what is inside each of these functions:

• MyLine

void MyLine(Mat img, Point start, Point end)
{

int thickness = 2;
int lineType = 8;
line(img,

start,
end,
Scalar(0, 0, 0),
thickness,
lineType);

}

As we can see, MyLine just call the function line, which does the following:

– Draw a line from Point start to Point end

– The line is displayed in the image img

– The line color is defined by Scalar(0, 0, 0) which is the RGB value correspondent to Black

– The line thickness is set to thickness (in this case 2)

– The line is a 8-connected one (lineType = 8)

• MyEllipse

void MyEllipse(Mat img, double angle)
{

int thickness = 2;
int lineType = 8;

ellipse(img,
Point(w/2.0, w/2.0),
Size(w/4.0, w/16.0),
angle,
0,
360,
Scalar(255, 0, 0),
thickness,
lineType);

}

From the code above, we can observe that the function ellipse draws an ellipse such that:

– The ellipse is displayed in the image img

– The ellipse center is located in the point (w/2.0, w/2.0) and is enclosed in a box of size (w/4.0, w/16.0)

– The ellipse is rotated angle degrees

– The ellipse extends an arc between 0 and 360 degrees

100 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/drawing_functions.html#line
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#ellipse

The OpenCV Tutorials, Release 2.4.0

– The color of the figure will be Scalar(255, 255, 0) which means blue in RGB value.

– The ellipse’s thickness is 2.

• MyFilledCircle

void MyFilledCircle(Mat img, Point center)
{
int thickness = -1;
int lineType = 8;

circle(img,
center,
w/32.0,
Scalar(0, 0, 255),
thickness,
lineType);

}

Similar to the ellipse function, we can observe that circle receives as arguments:

– The image where the circle will be displayed (img)

– The center of the circle denoted as the Point center

– The radius of the circle: w/32.0

– The color of the circle: Scalar(0, 0, 255) which means Red in BGR

– Since thickness = -1, the circle will be drawn filled.

• MyPolygon

void MyPolygon(Mat img)
{

int lineType = 8;

/** Create some points */
Point rook_points[1][20];
rook_points[0][0] = Point(w/4.0, 7*w/8.0);
rook_points[0][1] = Point(3*w/4.0, 7*w/8.0);
rook_points[0][2] = Point(3*w/4.0, 13*w/16.0);
rook_points[0][3] = Point(11*w/16.0, 13*w/16.0);
rook_points[0][4] = Point(19*w/32.0, 3*w/8.0);
rook_points[0][5] = Point(3*w/4.0, 3*w/8.0);
rook_points[0][6] = Point(3*w/4.0, w/8.0);
rook_points[0][7] = Point(26*w/40.0, w/8.0);
rook_points[0][8] = Point(26*w/40.0, w/4.0);
rook_points[0][9] = Point(22*w/40.0, w/4.0);
rook_points[0][10] = Point(22*w/40.0, w/8.0);
rook_points[0][11] = Point(18*w/40.0, w/8.0);
rook_points[0][12] = Point(18*w/40.0, w/4.0);
rook_points[0][13] = Point(14*w/40.0, w/4.0);
rook_points[0][14] = Point(14*w/40.0, w/8.0);
rook_points[0][15] = Point(w/4.0, w/8.0);
rook_points[0][16] = Point(w/4.0, 3*w/8.0);
rook_points[0][17] = Point(13*w/32.0, 3*w/8.0);
rook_points[0][18] = Point(5*w/16.0, 13*w/16.0);
rook_points[0][19] = Point(w/4.0, 13*w/16.0) ;

const Point* ppt[1] = { rook_points[0] };
int npt[] = { 20 };

2.6. Basic Drawing 101

The OpenCV Tutorials, Release 2.4.0

fillPoly(img,
ppt,
npt,
1,
Scalar(255, 255, 255),
lineType);

}

To draw a filled polygon we use the function fillPoly. We note that:

– The polygon will be drawn on img

– The vertices of the polygon are the set of points in ppt

– The total number of vertices to be drawn are npt

– The number of polygons to be drawn is only 1

– The color of the polygon is defined by Scalar(255, 255, 255), which is the BGR value for white

• rectangle

rectangle(rook_image,
Point(0, 7*w/8.0),
Point(w, w),
Scalar(0, 255, 255),
-1,
8);

Finally we have the rectangle function (we did not create a special function for this guy). We note that:

– The rectangle will be drawn on rook_image

– Two opposite vertices of the rectangle are defined by ** Point(0, 7*w/8.0)** and Point(w, w)

– The color of the rectangle is given by Scalar(0, 255, 255) which is the BGR value for yellow

– Since the thickness value is given by -1, the rectangle will be filled.

Result

Compiling and running your program should give you a result like this:

102 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/drawing_functions.html#fillpoly
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#rectangle

The OpenCV Tutorials, Release 2.4.0

2.7 Random generator and text with OpenCV

Goals

In this tutorial you will learn how to:

• Use the Random Number generator class (RNG) and how to get a random number from a uniform distribution.

• Display text on an OpenCV window by using the function putText

Code

• In the previous tutorial (Basic Drawing) we drew diverse geometric figures, giving as input parameters such as
coordinates (in the form of Points), color, thickness, etc. You might have noticed that we gave specific values
for these arguments.

• In this tutorial, we intend to use random values for the drawing parameters. Also, we intend to populate our
image with a big number of geometric figures. Since we will be initializing them in a random fashion, this
process will be automatic and made by using loops .

• This code is in your OpenCV sample folder. Otherwise you can grab it from here .

Explanation

1. Let’s start by checking out the main function. We observe that first thing we do is creating a Random Number
Generator object (RNG):

RNG rng(0xFFFFFFFF);

RNG implements a random number generator. In this example, rng is a RNG element initialized with the value
0xFFFFFFFF

2. Then we create a matrix initialized to zeros (which means that it will appear as black), specifying its height,
width and its type:

2.7. Random generator and text with OpenCV 103

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=rng#rng
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#puttext
http://opencv.itseez.com/modules/core/doc/basic_structures.html#point
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/core/Matrix/Drawing_2.cpp

The OpenCV Tutorials, Release 2.4.0

/// Initialize a matrix filled with zeros
Mat image = Mat::zeros(window_height, window_width, CV_8UC3);

/// Show it in a window during DELAY ms
imshow(window_name, image);

3. Then we proceed to draw crazy stuff. After taking a look at the code, you can see that it is mainly divided in 8
sections, defined as functions:

/// Now, let’s draw some lines
c = Drawing_Random_Lines(image, window_name, rng);
if(c != 0) return 0;

/// Go on drawing, this time nice rectangles
c = Drawing_Random_Rectangles(image, window_name, rng);
if(c != 0) return 0;

/// Draw some ellipses
c = Drawing_Random_Ellipses(image, window_name, rng);
if(c != 0) return 0;

/// Now some polylines
c = Drawing_Random_Polylines(image, window_name, rng);
if(c != 0) return 0;

/// Draw filled polygons
c = Drawing_Random_Filled_Polygons(image, window_name, rng);
if(c != 0) return 0;

/// Draw circles
c = Drawing_Random_Circles(image, window_name, rng);
if(c != 0) return 0;

/// Display text in random positions
c = Displaying_Random_Text(image, window_name, rng);
if(c != 0) return 0;

/// Displaying the big end!
c = Displaying_Big_End(image, window_name, rng);

All of these functions follow the same pattern, so we will analyze only a couple of them, since the same expla-
nation applies for all.

4. Checking out the function Drawing_Random_Lines:

int Drawing_Random_Lines(Mat image, char* window_name, RNG rng)
{

int lineType = 8;
Point pt1, pt2;

for(int i = 0; i < NUMBER; i++)
{
pt1.x = rng.uniform(x_1, x_2);
pt1.y = rng.uniform(y_1, y_2);
pt2.x = rng.uniform(x_1, x_2);
pt2.y = rng.uniform(y_1, y_2);

line(image, pt1, pt2, randomColor(rng), rng.uniform(1, 10), 8);
imshow(window_name, image);

104 Chapter 2. core module. The Core Functionality

The OpenCV Tutorials, Release 2.4.0

if(waitKey(DELAY) >= 0)
{ return -1; }
}
return 0;

}

We can observe the following:

• The for loop will repeat NUMBER times. Since the function line is inside this loop, that means that
NUMBER lines will be generated.

• The line extremes are given by pt1 and pt2. For pt1 we can see that:

pt1.x = rng.uniform(x_1, x_2);
pt1.y = rng.uniform(y_1, y_2);

– We know that rng is a Random number generator object. In the code above we are calling
rng.uniform(a,b). This generates a radombly uniformed distribution between the values a and b
(inclusive in a, exclusive in b).

– From the explanation above, we deduce that the extremes pt1 and pt2 will be random values, so the
lines positions will be quite impredictable, giving a nice visual effect (check out the Result section
below).

– As another observation, we notice that in the line arguments, for the color input we enter:

randomColor(rng)

Let’s check the function implementation:

static Scalar randomColor(RNG& rng)
{
int icolor = (unsigned) rng;
return Scalar(icolor&255, (icolor>>8)&255, (icolor>>16)&255);
}

As we can see, the return value is an Scalar with 3 randomly initialized values, which are used as the
R, G and B parameters for the line color. Hence, the color of the lines will be random too!

5. The explanation above applies for the other functions generating circles, ellipses, polygones, etc. The parameters
such as center and vertices are also generated randomly.

6. Before finishing, we also should take a look at the functions Display_Random_Text and Displaying_Big_End,
since they both have a few interesting features:

7. Display_Random_Text:

int Displaying_Random_Text(Mat image, char* window_name, RNG rng)
{

int lineType = 8;

for (int i = 1; i < NUMBER; i++)
{

Point org;
org.x = rng.uniform(x_1, x_2);
org.y = rng.uniform(y_1, y_2);

putText(image, "Testing text rendering", org, rng.uniform(0,8),
rng.uniform(0,100)*0.05+0.1, randomColor(rng), rng.uniform(1, 10), lineType);

2.7. Random generator and text with OpenCV 105

http://opencv.itseez.com/modules/core/doc/drawing_functions.html#line
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#line

The OpenCV Tutorials, Release 2.4.0

imshow(window_name, image);
if(waitKey(DELAY) >= 0)

{ return -1; }
}

return 0;
}

Everything looks familiar but the expression:

putText(image, "Testing text rendering", org, rng.uniform(0,8),
rng.uniform(0,100)*0.05+0.1, randomColor(rng), rng.uniform(1, 10), lineType);

So, what does the function putText do? In our example:

• Draws the text “Testing text rendering” in image

• The bottom-left corner of the text will be located in the Point org

• The font type is a random integer value in the range: [0, 8 >.

• The scale of the font is denoted by the expression rng.uniform(0, 100)x0.05 + 0.1 (meaning its range is:
[0.1, 5.1 >)

• The text color is random (denoted by randomColor(rng))

• The text thickness ranges between 1 and 10, as specified by rng.uniform(1,10)

As a result, we will get (analagously to the other drawing functions) NUMBER texts over our image, in random
locations.

8. Displaying_Big_End

int Displaying_Big_End(Mat image, char* window_name, RNG rng)
{

Size textsize = getTextSize("OpenCV forever!", CV_FONT_HERSHEY_COMPLEX, 3, 5, 0);
Point org((window_width - textsize.width)/2, (window_height - textsize.height)/2);
int lineType = 8;

Mat image2;

for(int i = 0; i < 255; i += 2)
{

image2 = image - Scalar::all(i);
putText(image2, "OpenCV forever!", org, CV_FONT_HERSHEY_COMPLEX, 3,

Scalar(i, i, 255), 5, lineType);

imshow(window_name, image2);
if(waitKey(DELAY) >= 0)

{ return -1; }
}

return 0;
}

Besides the function getTextSize (which gets the size of the argument text), the new operation we can observe
is inside the foor loop:

image2 = image - Scalar::all(i)

So, image2 is the substraction of image and Scalar::all(i). In fact, what happens here is that every pixel of
image2 will be the result of substracting every pixel of image minus the value of i (remember that for each pixel

106 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/drawing_functions.html#puttext

The OpenCV Tutorials, Release 2.4.0

we are considering three values such as R, G and B, so each of them will be affected)

Also remember that the substraction operation always performs internally a saturate operation, which
means that the result obtained will always be inside the allowed range (no negative and between 0 and
255 for our example).

Result

As you just saw in the Code section, the program will sequentially execute diverse drawing functions, which will
produce:

1. First a random set of NUMBER lines will appear on screen such as it can be seen in this screenshot:

2. Then, a new set of figures, these time rectangles will follow.

3. Now some ellipses will appear, each of them with random position, size, thickness and arc length:

4. Now, polylines with 03 segments will appear on screen, again in random configurations.

5. Filled polygons (in this example triangles) will follow.

6. The last geometric figure to appear: circles!

7. Near the end, the text “Testing Text Rendering” will appear in a variety of fonts, sizes, colors and positions.

8. And the big end (which by the way expresses a big truth too):

2.8 Discrete Fourier Transform

Goal

We’ll seek answers for the following questions:

• What is a Fourier transform and why use it?

2.8. Discrete Fourier Transform 107

The OpenCV Tutorials, Release 2.4.0

• How to do it in OpenCV?

• Usage of functions such as: copyMakeBorder(), merge(), dft(), getOptimalDFTSize(), log() and normalize() .

Source code

You can download this from here or find it in the samples/cpp/tutorial_code/core/discrete_fourier_transform/discrete_fourier_transform.cpp
of the OpenCV source code library.

Here’s a sample usage of dft() :

1 #include "opencv2/core/core.hpp"
2 #include "opencv2/imgproc/imgproc.hpp"
3 #include "opencv2/highgui/highgui.hpp"
4 #include <iostream>
5 int main(int argc, char ** argv)
6 {
7 const char* filename = argc >=2 ? argv[1] : "lena.jpg";
8

9 Mat I = imread(filename, CV_LOAD_IMAGE_GRAYSCALE);
10 if(I.empty())
11 return -1;
12

13 Mat padded; //expand input image to optimal size
14 int m = getOptimalDFTSize(I.rows);
15 int n = getOptimalDFTSize(I.cols); // on the border add zero values
16 copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
17

18 Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
19 Mat complexI;
20 merge(planes, 2, complexI); // Add to the expanded another plane with zeros
21

22 dft(complexI, complexI); // this way the result may fit in the source matrix
23

24 // compute the magnitude and switch to logarithmic scale
25 // => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
26 split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
27 magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
28 Mat magI = planes[0];
29

30 magI += Scalar::all(1); // switch to logarithmic scale
31 log(magI, magI);
32

33 // crop the spectrum, if it has an odd number of rows or columns
34 magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
35

36 // rearrange the quadrants of Fourier image so that the origin is at the image center
37 int cx = magI.cols/2;
38 int cy = magI.rows/2;
39

40 Mat q0(magI, Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
41 Mat q1(magI, Rect(cx, 0, cx, cy)); // Top-Right
42 Mat q2(magI, Rect(0, cy, cx, cy)); // Bottom-Left
43 Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right
44

45 Mat tmp; // swap quadrants (Top-Left with Bottom-Right)
46 q0.copyTo(tmp);
47 q3.copyTo(q0);

108 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/imgproc/doc/filtering.html#copymakeborder
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#merge
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#dft
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#getoptimaldftsize
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#log
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#normalize
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#dft

The OpenCV Tutorials, Release 2.4.0

48 tmp.copyTo(q3);
49

50 q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
51 q2.copyTo(q1);
52 tmp.copyTo(q2);
53

54 normalize(magI, magI, 0, 1, CV_MINMAX); // Transform the matrix with float values into a
55 // viewable image form (float between values 0 and 1).
56

57 imshow("Input Image" , I); // Show the result
58 imshow("spectrum magnitude", magI);
59 waitKey();
60

61 return 0;
62 }

Explanation

The Fourier Transform will decompose an image into its sinus and cosines components. In other words, it will trans-
form an image from its spatial domain to its frequency domain. The idea is that any function may be approximated
exactly with the sum of infinite sinus and cosines functions. The Fourier Transform is a way how to do this. Mathe-
matically a two dimensional images Fourier transform is:

F(k, l) =

N−1∑
i=0

N−1∑
j=0

f(i, j)e−i2π(
ki
N

+ lj
N

)

eix = cos x+ i sin x

Here f is the image value in its spatial domain and F in its frequency domain. The result of the transformation is
complex numbers. Displaying this is possible either via a real image and a complex image or via a magnitude and a
phase image. However, throughout the image processing algorithms only the magnitude image is interesting as this
contains all the information we need about the images geometric structure. Nevertheless, if you intend to make some
modifications of the image in these forms and then you need to retransform it you’ll need to preserve both of these.

In this sample I’ll show how to calculate and show the magnitude image of a Fourier Transform. In case of digital
images are discrete. This means they may take up a value from a given domain value. For example in a basic gray
scale image values usually are between zero and 255. Therefore the Fourier Transform too needs to be of a discrete
type resulting in a Discrete Fourier Transform (DFT). You’ll want to use this whenever you need to determine the
structure of an image from a geometrical point of view. Here are the steps to follow (in case of a gray scale input
image I):

1. Expand the image to an optimal size. The performance of a DFT is dependent of the image size. It tends to be
the fastest for image sizes that are multiple of the numbers two, three and five. Therefore, to achieve maximal
performance it is generally a good idea to pad border values to the image to get a size with such traits. The
getOptimalDFTSize() returns this optimal size and we can use the copyMakeBorder() function to expand the
borders of an image:

Mat padded; //expand input image to optimal size
int m = getOptimalDFTSize(I.rows);
int n = getOptimalDFTSize(I.cols); // on the border add zero pixels
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));

The appended pixels are initialized with zero.

2. Make place for both the complex and the real values. The result of a Fourier Transform is complex. This
implies that for each image value the result is two image values (one per component). Moreover, the frequency

2.8. Discrete Fourier Transform 109

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#getoptimaldftsize
http://opencv.itseez.com/modules/imgproc/doc/filtering.html#copymakeborder

The OpenCV Tutorials, Release 2.4.0

domains range is much larger than its spatial counterpart. Therefore, we store these usually at least in a float
format. Therefore we’ll convert our input image to this type and expand it with another channel to hold the
complex values:

Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI); // Add to the expanded another plane with zeros

3. Make the Discrete Fourier Transform. It’s possible an in-place calculation (same input as output):

dft(complexI, complexI); // this way the result may fit in the source matrix

4. Transform the real and complex values to magnitude. A complex number has a real (Re) and a complex
(imaginary - Im) part. The results of a DFT are complex numbers. The magnitude of a DFT is:

M =
2

√
Re(DFT(I))

2
+ Im(DFT(I))

2

Translated to OpenCV code:

split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
Mat magI = planes[0];

5. Switch to a logarithmic scale. It turns out that the dynamic range of the Fourier coefficients is too large to be
displayed on the screen. We have some small and some high changing values that we can’t observe like this.
Therefore the high values will all turn out as white points, while the small ones as black. To use the gray scale
values to for visualization we can transform our linear scale to a logarithmic one:

M1 = log (1+M)

Translated to OpenCV code:

magI += Scalar::all(1); // switch to logarithmic scale
log(magI, magI);

6. Crop and rearrange. Remember, that at the first step, we expanded the image? Well, it’s time to throw away
the newly introduced values. For visualization purposes we may also rearrange the quadrants of the result, so
that the origin (zero, zero) corresponds with the image center.

magI = magI(Rect(0, 0, magI.cols & -2, magI.rows & -2));
int cx = magI.cols/2;
int cy = magI.rows/2;

Mat q0(magI, Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1(magI, Rect(cx, 0, cx, cy)); // Top-Right
Mat q2(magI, Rect(0, cy, cx, cy)); // Bottom-Left
Mat q3(magI, Rect(cx, cy, cx, cy)); // Bottom-Right

Mat tmp; // swap quadrants (Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);

q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2);

7. Normalize. This is done again for visualization purposes. We now have the magnitudes, however this are still
out of our image display range of zero to one. We normalize our values to this range using the normalize()
function.

110 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html#normalize

The OpenCV Tutorials, Release 2.4.0

normalize(magI, magI, 0, 1, CV_MINMAX); // Transform the matrix with float values into a
// viewable image form (float between values 0 and 1).

Result

An application idea would be to determine the geometrical orientation present in the image. For example, let us find
out if a text is horizontal or not? Looking at some text you’ll notice that the text lines sort of form also horizontal lines
and the letters form sort of vertical lines. These two main components of a text snippet may be also seen in case of the
Fourier transform. Let us use this horizontal and this rotated image about a text.

In case of the horizontal text:

In case of a rotated text:

You can see that the most influential components of the frequency domain (brightest dots on the magnitude image)
follow the geometric rotation of objects on the image. From this we may calculate the offset and perform an image
rotation to correct eventual miss alignments.

2.9 File Input and Output using XML and YAML files

Goal

You’ll find answers for the following questions:

• How to print and read text entries to a file and OpenCV using YAML or XML files?

• How to do the same for OpenCV data structures?

• How to do this for your data structures?

• Usage of OpenCV data structures such as FileStorage, FileNode or FileNodeIterator.

2.9. File Input and Output using XML and YAML files 111

http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filestorage
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filenode
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filenodeiterator

The OpenCV Tutorials, Release 2.4.0

Source code

You can download this from here or find it in the samples/cpp/tutorial_code/core/file_input_output/file_input_output.cpp
of the OpenCV source code library.

Here’s a sample code of how to achieve all the stuff enumerated at the goal list.

1 #include <opencv2/core/core.hpp>
2 #include <iostream>
3 #include <string>
4

5 using namespace cv;
6 using namespace std;
7

8 class MyData
9 {

10 public:
11 MyData() : A(0), X(0), id()
12 {}
13 explicit MyData(int) : A(97), X(CV_PI), id("mydata1234") // explicit to avoid implicit conversion
14 {}
15 void write(FileStorage& fs) const //Write serialization for this class
16 {
17 fs << "{" << "A" << A << "X" << X << "id" << id << "}";
18 }
19 void read(const FileNode& node) //Read serialization for this class
20 {
21 A = (int)node["A"];
22 X = (double)node["X"];
23 id = (string)node["id"];
24 }
25 public: // Data Members
26 int A;
27 double X;
28 string id;
29 };
30

31 //These write and read functions must be defined for the serialization in FileStorage to work
32 void write(FileStorage& fs, const std::string&, const MyData& x)
33 {
34 x.write(fs);
35 }
36 void read(const FileNode& node, MyData& x, const MyData& default_value = MyData()){
37 if(node.empty())
38 x = default_value;
39 else
40 x.read(node);
41 }
42

43 // This function will print our custom class to the console
44 ostream& operator<<(ostream& out, const MyData& m)
45 {
46 out << "{ id = " << m.id << ", ";
47 out << "X = " << m.X << ", ";
48 out << "A = " << m.A << "}";
49 return out;
50 }
51

52 int main(int ac, char** av)

112 Chapter 2. core module. The Core Functionality

The OpenCV Tutorials, Release 2.4.0

53 {
54 if (ac != 2)
55 {
56 help(av);
57 return 1;
58 }
59

60 string filename = av[1];
61 { //write
62 Mat R = Mat_<uchar>::eye(3, 3),
63 T = Mat_<double>::zeros(3, 1);
64 MyData m(1);
65

66 FileStorage fs(filename, FileStorage::WRITE);
67

68 fs << "iterationNr" << 100;
69 fs << "strings" << "["; // text - string sequence
70 fs << "image1.jpg" << "Awesomeness" << "baboon.jpg";
71 fs << "]"; // close sequence
72

73 fs << "Mapping"; // text - mapping
74 fs << "{" << "One" << 1;
75 fs << "Two" << 2 << "}";
76

77 fs << "R" << R; // cv::Mat
78 fs << "T" << T;
79

80 fs << "MyData" << m; // your own data structures
81

82 fs.release(); // explicit close
83 cout << "Write Done." << endl;
84 }
85

86 {//read
87 cout << endl << "Reading: " << endl;
88 FileStorage fs;
89 fs.open(filename, FileStorage::READ);
90

91 int itNr;
92 //fs["iterationNr"] >> itNr;
93 itNr = (int) fs["iterationNr"];
94 cout << itNr;
95 if (!fs.isOpened())
96 {
97 cerr << "Failed to open " << filename << endl;
98 help(av);
99 return 1;

100 }
101

102 FileNode n = fs["strings"]; // Read string sequence - Get node
103 if (n.type() != FileNode::SEQ)
104 {
105 cerr << "strings is not a sequence! FAIL" << endl;
106 return 1;
107 }
108

109 FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
110 for (; it != it_end; ++it)

2.9. File Input and Output using XML and YAML files 113

The OpenCV Tutorials, Release 2.4.0

111 cout << (string)*it << endl;
112

113

114 n = fs["Mapping"]; // Read mappings from a sequence
115 cout << "Two " << (int)(n["Two"]) << "; ";
116 cout << "One " << (int)(n["One"]) << endl << endl;
117

118

119 MyData m;
120 Mat R, T;
121

122 fs["R"] >> R; // Read cv::Mat
123 fs["T"] >> T;
124 fs["MyData"] >> m; // Read your own structure_

125

126 cout << endl
127 << "R = " << R << endl;
128 cout << "T = " << T << endl << endl;
129 cout << "MyData = " << endl << m << endl << endl;
130

131 //Show default behavior for non existing nodes
132 cout << "Attempt to read NonExisting (should initialize the data structure with its default).";
133 fs["NonExisting"] >> m;
134 cout << endl << "NonExisting = " << endl << m << endl;
135 }
136

137 cout << endl
138 << "Tip: Open up " << filename << " with a text editor to see the serialized data." << endl;
139

140 return 0;
141 }

Explanation

Here we talk only about XML and YAML file inputs. Your output (and its respective input) file may have only one of
these extensions and the structure coming from this. They are two kinds of data structures you may serialize: mappings
(like the STL map) and element sequence (like the STL vector>. The difference between these is that in a map every
element has a unique name through what you may access it. For sequences you need to go through them to query a
specific item.

1. XML\YAML File Open and Close. Before you write any content to such file you need to open it and at the
end to close it. The XMLYAML data structure in OpenCV is FileStorage. To specify that this structure to which
file binds on your hard drive you can use either its constructor or the open() function of this:

string filename = "I.xml";
FileStorage fs(filename, FileStorage::WRITE);
\\...
fs.open(filename, FileStorage::READ);

Either one of this you use the second argument is a constant specifying the type of operations you’ll be able to
on them: WRITE, READ or APPEND. The extension specified in the file name also determinates the output
format that will be used. The output may be even compressed if you specify an extension such as .xml.gz.

The file automatically closes when the FileStorage objects is destroyed. However, you may explicitly call for
this by using the release function:

114 Chapter 2. core module. The Core Functionality

http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filestorage
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filestorage

The OpenCV Tutorials, Release 2.4.0

fs.release(); // explicit close

2. Input and Output of text and numbers. The data structure uses the same << output operator that the STL
library. For outputting any type of data structure we need first to specify its name. We do this by just simply
printing out the name of this. For basic types you may follow this with the print of the value :

fs << "iterationNr" << 100;

Reading in is a simple addressing (via the [] operator) and casting operation or a read via the >> operator :

int itNr;
fs["iterationNr"] >> itNr;
itNr = (int) fs["iterationNr"];

3. Input\Output of OpenCV Data structures. Well these behave exactly just as the basic C++ types:

Mat R = Mat_<uchar >::eye (3, 3),
T = Mat_<double>::zeros(3, 1);

fs << "R" << R; // Write cv::Mat
fs << "T" << T;

fs["R"] >> R; // Read cv::Mat
fs["T"] >> T;

4. Input\Output of vectors (arrays) and associative maps. As I mentioned beforehand we can output maps and
sequences (array, vector) too. Again we first print the name of the variable and then we have to specify if our
output is either a sequence or map.

For sequence before the first element print the “[” character and after the last one the “]” character:

fs << "strings" << "["; // text - string sequence
fs << "image1.jpg" << "Awesomeness" << "baboon.jpg";
fs << "]"; // close sequence

For maps the drill is the same however now we use the “{” and “}” delimiter characters:

fs << "Mapping"; // text - mapping
fs << "{" << "One" << 1;
fs << "Two" << 2 << "}";

To read from these we use the FileNode and the FileNodeIterator data structures. The [] operator of the FileStor-
age class returns a FileNode data type. If the node is sequential we can use the FileNodeIterator to iterate through
the items:

FileNode n = fs["strings"]; // Read string sequence - Get node
if (n.type() != FileNode::SEQ)
{

cerr << "strings is not a sequence! FAIL" << endl;
return 1;

}

FileNodeIterator it = n.begin(), it_end = n.end(); // Go through the node
for (; it != it_end; ++it)

cout << (string)*it << endl;

For maps you can use the [] operator again to acces the given item (or the >> operator too):

2.9. File Input and Output using XML and YAML files 115

http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filenode
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filenodeiterator
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filestorage
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filestorage
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filenode
http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#filenodeiterator

The OpenCV Tutorials, Release 2.4.0

n = fs["Mapping"]; // Read mappings from a sequence
cout << "Two " << (int)(n["Two"]) << "; ";
cout << "One " << (int)(n["One"]) << endl << endl;

5. Read and write your own data structures. Suppose you have a data structure such as:

class MyData
{
public:

MyData() : A(0), X(0), id() {}
public: // Data Members

int A;
double X;
string id;

};

It’s possible to serialize this through the OpenCV I/O XML/YAML interface (just as in case of the OpenCV data
structures) by adding a read and a write function inside and outside of your class. For the inside part:

void write(FileStorage& fs) const //Write serialization for this class
{

fs << "{" << "A" << A << "X" << X << "id" << id << "}";
}

void read(const FileNode& node) //Read serialization for this class
{

A = (int)node["A"];
X = (double)node["X"];
id = (string)node["id"];

}

Then you need to add the following functions definitions outside the class:

void write(FileStorage& fs, const std::string&, const MyData& x)
{
x.write(fs);
}

void read(const FileNode& node, MyData& x, const MyData& default_value = MyData())
{
if(node.empty())

x = default_value;
else

x.read(node);
}

Here you can observe that in the read section we defined what happens if the user tries to read a non-existing
node. In this case we just return the default initialization value, however a more verbose solution would be to
return for instance a minus one value for an object ID.

Once you added these four functions use the >> operator for write and the << operator for read:

MyData m(1);
fs << "MyData" << m; // your own data structures
fs["MyData"] >> m; // Read your own structure_

Or to try out reading a non-existing read:

fs["NonExisting"] >> m; // Do not add a fs << "NonExisting" << m command for this to work
cout << endl << "NonExisting = " << endl << m << endl;

116 Chapter 2. core module. The Core Functionality

The OpenCV Tutorials, Release 2.4.0

Result

Well mostly we just print out the defined numbers. On the screen of your console you could see:

Write Done.

Reading:
100image1.jpg
Awesomeness
baboon.jpg
Two 2; One 1

R = [1, 0, 0;
0, 1, 0;
0, 0, 1]

T = [0; 0; 0]

MyData =
{ id = mydata1234, X = 3.14159, A = 97}

Attempt to read NonExisting (should initialize the data structure with its default).
NonExisting =
{ id = , X = 0, A = 0}

Tip: Open up output.xml with a text editor to see the serialized data.

Nevertheless, it’s much more interesting what you may see in the output xml file:

<?xml version="1.0"?>
<opencv_storage>
<iterationNr>100</iterationNr>
<strings>

image1.jpg Awesomeness baboon.jpg</strings>
<Mapping>

<One>1</One>
<Two>2</Two></Mapping>

<R type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>u</dt>
<data>

1 0 0 0 1 0 0 0 1</data></R>
<T type_id="opencv-matrix">

<rows>3</rows>
<cols>1</cols>
<dt>d</dt>
<data>

0. 0. 0.</data></T>
<MyData>

<A>97
<X>3.1415926535897931e+000</X>
<id>mydata1234</id></MyData>

</opencv_storage>

Or the YAML file:

%YAML:1.0
iterationNr: 100

2.9. File Input and Output using XML and YAML files 117

The OpenCV Tutorials, Release 2.4.0

strings:
- "image1.jpg"
- Awesomeness
- "baboon.jpg"

Mapping:
One: 1
Two: 2

R: !!opencv-matrix
rows: 3
cols: 3
dt: u
data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

T: !!opencv-matrix
rows: 3
cols: 1
dt: d
data: [0., 0., 0.]

MyData:
A: 97
X: 3.1415926535897931e+000
id: mydata1234

You may observe a runtime instance of this on the YouTube here .

2.10 Interoperability with OpenCV 1

Goal

For the OpenCV developer team it’s important to constantly improve the library. We are constantly thinking about
methods that will ease your work process, while still maintain the libraries flexibility. The new C++ interface is a
development of us that serves this goal. Nevertheless, backward compatibility remains important. We do not want
to break your code written for earlier version of the OpenCV library. Therefore, we made sure that we add some
functions that deal with this. In the following you’ll learn:

• What changed with the version 2 of OpenCV in the way you use the library compared to its first version

• How to add some Gaussian noise to an image

• What are lookup tables and why use them?

General

When making the switch you first need to learn some about the new data structure for images: Mat - The Basic Image
Container, this replaces the old CvMat and IplImage ones. Switching to the new functions is easier. You just need to
remember a couple of new things.

OpenCV 2 received reorganization. No longer are all the functions crammed into a single library. We have many
modules, each of them containing data structures and functions relevant to certain tasks. This way you do not need to
ship a large library if you use just a subset of OpenCV. This means that you should also include only those headers
you will use. For example:

#include <opencv2/core/core.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>

118 Chapter 2. core module. The Core Functionality

https://www.youtube.com/watch?v=A4yqVnByMMM

The OpenCV Tutorials, Release 2.4.0

All the OpenCV related stuff is put into the cv namespace to avoid name conflicts with other libraries data structures
and functions. Therefore, either you need to prepend the cv:: keyword before everything that comes from OpenCV or
after the includes, you just add a directive to use this:

using namespace cv; // The new C++ interface API is inside this namespace. Import it.

Because the functions are already in a namespace there is no need for them to contain the cv prefix in their name.
As such all the new C++ compatible functions don’t have this and they follow the camel case naming rule. This
means the first letter is small (unless it’s a name, like Canny) and the subsequent words start with a capital letter (like
copyMakeBorder).

Now, remember that you need to link to your application all the modules you use, and in case you are on Windows
using the DLL system you will need to add, again, to the path all the binaries. For more in-depth information if you’re
on Windows read How to build applications with OpenCV inside the Microsoft Visual Studio and for Linux an example
usage is explained in Using OpenCV with Eclipse (plugin CDT).

Now for converting the Mat object you can use either the IplImage or the CvMat operators. While in the C interface
you used to work with pointers here it’s no longer the case. In the C++ interface we have mostly Mat objects. These
objects may be freely converted to both IplImage and CvMat with simple assignment. For example:

Mat I;
IplImage pI = I;
CvMat mI = I;

Now if you want pointers the conversion gets just a little more complicated. The compilers can no longer automatically
determinate what you want and as you need to explicitly specify your goal. This is to call the IplImage and CvMat
operators and then get their pointers. For getting the pointer we use the & sign:

Mat I;
IplImage* pI = &I.operator IplImage();
CvMat* mI = &I.operator CvMat();

One of the biggest complaints of the C interface is that it leaves all the memory management to you. You need to figure
out when it is safe to release your unused objects and make sure you do so before the program finishes or you could
have troublesome memory leeks. To work around this issue in OpenCV there is introduced a sort of smart pointer.
This will automatically release the object when it’s no longer in use. To use this declare the pointers as a specialization
of the Ptr :

Ptr<IplImage> piI = &I.operator IplImage();

Converting from the C data structures to the Mat is done by passing these inside its constructor. For example:

Mat K(piL), L;
L = Mat(pI);

A case study

Now that you have the basics done here’s an example that mixes the usage of the C interface with
the C++ one. You will also find it in the sample directory of the OpenCV source code library at the
samples/cpp/tutorial_code/core/interoperability_with_OpenCV_1/interoperability_with_OpenCV_1.cpp
. To further help on seeing the difference the programs supports two modes: one mixed C and C++ and one pure C++.
If you define the DEMO_MIXED_API_USE you’ll end up using the first. The program separates the color planes,
does some modifications on them and in the end merge them back together.

1 #include <stdio.h>
2 #include <iostream>
3

2.10. Interoperability with OpenCV 1 119

The OpenCV Tutorials, Release 2.4.0

4 #include <opencv2/core/core.hpp>
5 #include <opencv2/imgproc/imgproc.hpp>
6 #include <opencv2/highgui/highgui.hpp>
7

8 using namespace cv; // The new C++ interface API is inside this namespace. Import it.
9 using namespace std;

10 #define DEMO_MIXED_API_USE
11

12 int main(int argc, char** argv)
13 {
14 const char* imagename = argc > 1 ? argv[1] : "lena.jpg";
15

16 #ifdef DEMO_MIXED_API_USE
17 Ptr<IplImage> IplI = cvLoadImage(imagename); // Ptr<T> is safe ref-counting pointer class
18 if(IplI.empty())
19 {
20 cerr << "Can not load image " << imagename << endl;
21 return -1;
22 }
23 Mat I(IplI); // Convert to the new style container. Only header created. Image not copied.
24 #else
25 Mat I = imread(imagename); // the newer cvLoadImage alternative, MATLAB-style function
26 if(I.empty()) // same as if(!I.data)
27 {
28 cerr << "Can not load image " << imagename << endl;
29 return -1;
30 }
31 #endif

Here you can observe that with the new structure we have no pointer problems, although it is possible to use the old
functions and in the end just transform the result to a Mat object.

1 // convert image to YUV color space. The output image will be created automatically.
2 Mat I_YUV;
3 cvtColor(I, I_YUV, CV_BGR2YCrCb);
4

5 vector<Mat> planes; // Use the STL’s vector structure to store multiple Mat objects
6 split(I_YUV, planes); // split the image into separate color planes (Y U V)

Because, we want to mess around with the images luma component we first convert from the default RGB to the YUV
color space and then split the result up into separate planes. Here the program splits: in the first example it processes
each plane using one of the three major image scanning algorithms in OpenCV (C [] operator, iterator, individual
element access). In a second variant we add to the image some Gaussian noise and then mix together the channels
according to some formula.

The scanning version looks like:

1 // Method 1. process Y plane using an iterator
2 MatIterator_<uchar> it = planes[0].begin<uchar>(), it_end = planes[0].end<uchar>();
3 for(; it != it_end; ++it)
4 {
5 double v = *it * 1.7 + rand()%21 - 10;
6 *it = saturate_cast<uchar>(v*v/255);
7 }
8

9 for(int y = 0; y < I_YUV.rows; y++)
10 {
11 // Method 2. process the first chroma plane using pre-stored row pointer.
12 uchar* Uptr = planes[1].ptr<uchar>(y);

120 Chapter 2. core module. The Core Functionality

The OpenCV Tutorials, Release 2.4.0

13 for(int x = 0; x < I_YUV.cols; x++)
14 {
15 Uptr[x] = saturate_cast<uchar>((Uptr[x]-128)/2 + 128);
16

17 // Method 3. process the second chroma plane using individual element access
18 uchar& Vxy = planes[2].at<uchar>(y, x);
19 Vxy = saturate_cast<uchar>((Vxy-128)/2 + 128);
20 }
21 }

Here you can observe that we may go through all the pixels of an image in three fashions: an iterator, a C pointer
and an individual element access style. You can read a more in-depth description of these in the How to scan images,
lookup tables and time measurement with OpenCV tutorial. Converting from the old function names is easy. Just
remove the cv prefix and use the new Mat data structure. Here’s an example of this by using the weighted addition
function:

1 Mat noisyI(I.size(), CV_8U); // Create a matrix of the specified size and type
2

3 // Fills the matrix with normally distributed random values (around number with deviation off).
4 // There is also randu() for uniformly distributed random number generation
5 randn(noisyI, Scalar::all(128), Scalar::all(20));
6

7 // blur the noisyI a bit, kernel size is 3x3 and both sigma’s are set to 0.5
8 GaussianBlur(noisyI, noisyI, Size(3, 3), 0.5, 0.5);
9

10 const double brightness_gain = 0;
11 const double contrast_gain = 1.7;
12

13 #ifdef DEMO_MIXED_API_USE
14 // To pass the new matrices to the functions that only work with IplImage or CvMat do:
15 // step 1) Convert the headers (tip: data will not be copied).
16 // step 2) call the function (tip: to pass a pointer do not forget unary "&" to form pointers)
17

18 IplImage cv_planes_0 = planes[0], cv_noise = noisyI;
19 cvAddWeighted(&cv_planes_0, contrast_gain, &cv_noise, 1, -128 + brightness_gain, &cv_planes_0);
20 #else
21 addWeighted(planes[0], contrast_gain, noisyI, 1, -128 + brightness_gain, planes[0]);
22 #endif
23

24 const double color_scale = 0.5;
25 // Mat::convertTo() replaces cvConvertScale.
26 // One must explicitly specify the output matrix type (we keep it intact - planes[1].type())
27 planes[1].convertTo(planes[1], planes[1].type(), color_scale, 128*(1-color_scale));
28

29 // alternative form of cv::convertScale if we know the datatype at compile time ("uchar" here).
30 // This expression will not create any temporary arrays (so should be almost as fast as above)
31 planes[2] = Mat_<uchar>(planes[2]*color_scale + 128*(1-color_scale));
32

33 // Mat::mul replaces cvMul(). Again, no temporary arrays are created in case of simple expressions.
34 planes[0] = planes[0].mul(planes[0], 1./255);

As you may observe the planes variable is of type Mat. However, converting from Mat to IplImage is easy and made
automatically with a simple assignment operator.

1

2 merge(planes, I_YUV); // now merge the results back
3 cvtColor(I_YUV, I, CV_YCrCb2BGR); // and produce the output RGB image
4

5

2.10. Interoperability with OpenCV 1 121

The OpenCV Tutorials, Release 2.4.0

6 namedWindow("image with grain", CV_WINDOW_AUTOSIZE); // use this to create images
7

8 #ifdef DEMO_MIXED_API_USE
9 // this is to demonstrate that I and IplI really share the data - the result of the above

10 // processing is stored in I and thus in IplI too.
11 cvShowImage("image with grain", IplI);
12 #else
13 imshow("image with grain", I); // the new MATLAB style function show

The new imshow highgui function accepts both the Mat and IplImage data structures. Compile and run the program
and if the first image below is your input you may get either the first or second as output:

You may observe a runtime instance of this on the YouTube here and you can download the source code from
here or find it in the samples/cpp/tutorial_code/core/interoperability_with_OpenCV_1/interoperability_with_OpenCV_1.cpp
of the OpenCV source code library.

122 Chapter 2. core module. The Core Functionality

https://www.youtube.com/watch?v=qckm-zvo31w

CHAPTER

THREE

IMGPROC MODULE. IMAGE
PROCESSING

In this section you will learn about the image processing (manipulation) functions inside OpenCV.

•

Title: Smoothing Images
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Let’s take a look at some basic linear filters!

•

Title: Eroding and Dilating
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Let’s change the shape of objects!

•

Title: More Morphology Transformations
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Here we investigate different morphology operators

•

Title: Image Pyramids
Compatibility: > OpenCV 2.0
Author: Ana Huamán
What if I need a bigger/smaller image?

123

The OpenCV Tutorials, Release 2.4.0

•

Title: Basic Thresholding Operations
Compatibility: > OpenCV 2.0
Author: Ana Huamán
After so much processing, it is time to decide which pixels stay!

•

Title: Making your own linear filters!
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn to design our own filters by using OpenCV functions

•

Title: Adding borders to your images
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to pad our images!

•

Title: Sobel Derivatives
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to calculate gradients and use them to detect edges!

•

Title: Laplace Operator
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn about the Laplace operator and how to detect edges with it.

•

Title: Canny Edge Detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn a sophisticated alternative to detect edges.

124 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

•

Title: Hough Line Transform
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to detect lines

•

Title: Hough Circle Transform
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to detect circles

•

Title: Remapping
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to manipulate pixels locations

•

Title: Affine Transformations
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to rotate, translate and scale our images

•

Title: Histogram Equalization
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to improve the contrast in our images

•

Title: Histogram Calculation
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to create and generate histograms

125

The OpenCV Tutorials, Release 2.4.0

•

Title: Histogram Comparison
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn to calculate metrics between histograms

•

Title: Back Projection
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to use histograms to find similar objects in images

•

Title: Template Matching
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to match templates in an image

•

Title: Finding contours in your image
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to find contours of objects in our image

•

Title: Convex Hull
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to get hull contours and draw them!

•

Title: Creating Bounding boxes and circles for contours
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to obtain bounding boxes and circles for our contours.

126 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

•

Title: Creating Bounding rotated boxes and ellipses for contours
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to obtain rotated bounding boxes and ellipses for our
contours.

•

Title: Image Moments
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn to calculate the moments of an image

•

Title: Point Polygon Test
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we learn how to calculate distances from the image to contours

127

The OpenCV Tutorials, Release 2.4.0

3.1 Smoothing Images

Goal

In this tutorial you will learn how to apply diverse linear filters to smooth images using OpenCV functions such as:

• blur

• GaussianBlur

• medianBlur

• bilateralFilter

Theory

Note: The explanation below belongs to the book Computer Vision: Algorithms and Applications by Richard Szeliski
and to LearningOpenCV

• Smoothing, also called blurring, is a simple and frequently used image processing operation.

• There are many reasons for smoothing. In this tutorial we will focus on smoothing in order to reduce noise
(other uses will be seen in the following tutorials).

• To perform a smoothing operation we will apply a filter to our image. The most common type of filters are
linear, in which an output pixel’s value (i.e. g(i, j)) is determined as a weighted sum of input pixel values (i.e.
f(i+ k, j+ l)) :

g(i, j) =
∑
k,l

f(i+ k, j+ l)h(k, l)

h(k, l) is called the kernel, which is nothing more than the coefficients of the filter.

It helps to visualize a filter as a window of coefficients sliding across the image.

• There are many kind of filters, here we will mention the most used:

Normalized Box Filter

• This filter is the simplest of all! Each output pixel is the mean of its kernel neighbors (all of them contribute
with equal weights)

• The kernel is below:

K =
1

Kwidth · Kheight

1 1 1 ... 1
1 1 1 ... 1
. 1
. 1
1 1 1 ... 1

128 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=blur#blur
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=gaussianblur#gaussianblur
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=medianblur#medianblur
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=bilateralfilter#bilateralfilter
http://szeliski.org/Book/

The OpenCV Tutorials, Release 2.4.0

Gaussian Filter

• Probably the most useful filter (although not the fastest). Gaussian filtering is done by convolving each point in
the input array with a Gaussian kernel and then summing them all to produce the output array.

• Just to make the picture clearer, remember how a 1D Gaussian kernel look like?

Assuming that an image is 1D, you can notice that the pixel located in the middle would have the biggest weight.
The weight of its neighbors decreases as the spatial distance between them and the center pixel increases.

Note: Remember that a 2D Gaussian can be represented as :

G0(x, y) = Ae

−(x− µx)
2

2σ2x
+
−(y− µy)

2

2σ2y

where µ is the mean (the peak) and σ represents the variance (per each of the variables x and y)

Median Filter

The median filter run through each element of the signal (in this case the image) and replace each pixel with the
median of its neighboring pixels (located in a square neighborhood around the evaluated pixel).

Bilateral Filter

• So far, we have explained some filters which main goal is to smooth an input image. However, sometimes the
filters do not only dissolve the noise, but also smooth away the edges. To avoid this (at certain extent at least),
we can use a bilateral filter.

• In an analogous way as the Gaussian filter, the bilateral filter also considers the neighboring pixels with weights
assigned to each of them. These weights have two components, the first of which is the same weighting used by
the Gaussian filter. The second component takes into account the difference in intensity between the neighboring
pixels and the evaluated one.

• For a more detailed explanation you can check this link

3.1. Smoothing Images 129

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

The OpenCV Tutorials, Release 2.4.0

Code

• What does this program do?

– Loads an image

– Applies 4 different kinds of filters (explained in Theory) and show the filtered images sequentially

• Downloadable code: Click here

• Code at glance:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace std;
using namespace cv;

/// Global Variables
int DELAY_CAPTION = 1500;
int DELAY_BLUR = 100;
int MAX_KERNEL_LENGTH = 31;

Mat src; Mat dst;
char window_name[] = "Filter Demo 1";

/// Function headers
int display_caption(char* caption);
int display_dst(int delay);

/**
* function main

*/
int main(int argc, char** argv)
{

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Load the source image
src = imread("../images/lena.jpg", 1);

if(display_caption("Original Image") != 0) { return 0; }

dst = src.clone();
if(display_dst(DELAY_CAPTION) != 0) { return 0; }

/// Applying Homogeneous blur
if(display_caption("Homogeneous Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ blur(src, dst, Size(i, i), Point(-1,-1));

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Applying Gaussian blur
if(display_caption("Gaussian Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ GaussianBlur(src, dst, Size(i, i), 0, 0);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Applying Median blur

130 Chapter 3. imgproc module. Image Processing

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Smoothing.cpp

The OpenCV Tutorials, Release 2.4.0

if(display_caption("Median Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ medianBlur (src, dst, i);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Applying Bilateral Filter
if(display_caption("Bilateral Blur") != 0) { return 0; }

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ bilateralFilter (src, dst, i, i*2, i/2);
if(display_dst(DELAY_BLUR) != 0) { return 0; } }

/// Wait until user press a key
display_caption("End: Press a key!");

waitKey(0);
return 0;

}

int display_caption(char* caption)
{

dst = Mat::zeros(src.size(), src.type());
putText(dst, caption,

Point(src.cols/4, src.rows/2),
CV_FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255));

imshow(window_name, dst);
int c = waitKey(DELAY_CAPTION);
if(c >= 0) { return -1; }
return 0;

}

int display_dst(int delay)
{

imshow(window_name, dst);
int c = waitKey (delay);
if(c >= 0) { return -1; }
return 0;

}

Explanation

1. Let’s check the OpenCV functions that involve only the smoothing procedure, since the rest is already known
by now.

2. Normalized Block Filter:

OpenCV offers the function blur to perform smoothing with this filter.

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ blur(src, dst, Size(i, i), Point(-1,-1));

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

We specify 4 arguments (more details, check the Reference):

• src: Source image

3.1. Smoothing Images 131

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=blur#blur

The OpenCV Tutorials, Release 2.4.0

• dst: Destination image

• Size(w,h): Defines the size of the kernel to be used (of width w pixels and height h pixels)

• Point(-1, -1): Indicates where the anchor point (the pixel evaluated) is located with respect to the neigh-
borhood. If there is a negative value, then the center of the kernel is considered the anchor point.

3. Gaussian Filter:

It is performed by the function GaussianBlur :

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ GaussianBlur(src, dst, Size(i, i), 0, 0);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

Here we use 4 arguments (more details, check the OpenCV reference):

• src: Source image

• dst: Destination image

• Size(w, h): The size of the kernel to be used (the neighbors to be considered). w and h have to be odd and
positive numbers otherwise thi size will be calculated using the σx and σy arguments.

• σx: The standard deviation in x. Writing 0 implies that σx is calculated using kernel size.

• σy: The standard deviation in y. Writing 0 implies that σy is calculated using kernel size.

4. Median Filter:

This filter is provided by the medianBlur function:

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ medianBlur (src, dst, i);

if(display_dst(DELAY_BLUR) != 0) { return 0; } }

We use three arguments:

• src: Source image

• dst: Destination image, must be the same type as src

• i: Size of the kernel (only one because we use a square window). Must be odd.

5. Bilateral Filter

Provided by OpenCV function bilateralFilter

for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2)
{ bilateralFilter (src, dst, i, i*2, i/2);
if(display_dst(DELAY_BLUR) != 0) { return 0; } }

We use 5 arguments:

• src: Source image

• dst: Destination image

• d: The diameter of each pixel neighborhood.

• σColor: Standard deviation in the color space.

• σSpace: Standard deviation in the coordinate space (in pixel terms)

132 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=gaussianblur#gaussianblur
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=medianblur#medianblur
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=bilateralfilter#bilateralfilter

The OpenCV Tutorials, Release 2.4.0

Results

• The code opens an image (in this case lena.jpg) and display it under the effects of the 4 filters explained.

• Here is a snapshot of the image smoothed using medianBlur:

3.2 Eroding and Dilating

Goal

In this tutorial you will learn how to:

• Apply two very common morphology operators: Dilation and Erosion. For this purpose, you will use the
following OpenCV functions:

– erode

– dilate

Cool Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

3.2. Eroding and Dilating 133

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=erode#erode
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=dilate#dilate

The OpenCV Tutorials, Release 2.4.0

Morphological Operations

• In short: A set of operations that process images based on shapes. Morphological operations apply a structuring
element to an input image and generate an output image.

• The most basic morphological operations are two: Erosion and Dilation. They have a wide array of uses, i.e. :

– Removing noise

– Isolation of individual elements and joining disparate elements in an image.

– Finding of intensity bumps or holes in an image

• We will explain dilation and erosion briefly, using the following image as an example:

Dilation

• This operations consists of convoluting an image A with some kernel (B), which can have any shape or size,
usually a square or circle.

• The kernel B has a defined anchor point, usually being the center of the kernel.

• As the kernel B is scanned over the image, we compute the maximal pixel value overlapped by B and replace the
image pixel in the anchor point position with that maximal value. As you can deduce, this maximizing operation
causes bright regions within an image to “grow” (therefore the name dilation). Take as an example the image
above. Applying dilation we can get:

The background (bright) dilates around the black regions of the letter.

134 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

Erosion

• This operation is the sister of dilation. What this does is to compute a local minimum over the area of the kernel.

• As the kernel B is scanned over the image, we compute the minimal pixel value overlapped by B and replace
the image pixel under the anchor point with that minimal value.

• Analagously to the example for dilation, we can apply the erosion operator to the original image (shown above).
You can see in the result below that the bright areas of the image (the background, apparently), get thinner,
whereas the dark zones (the “writing”(gets bigger.

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "highgui.h"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, erosion_dst, dilation_dst;

int erosion_elem = 0;
int erosion_size = 0;
int dilation_elem = 0;
int dilation_size = 0;
int const max_elem = 2;
int const max_kernel_size = 21;

/** Function Headers */
void Erosion(int, void*);
void Dilation(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1]);

3.2. Eroding and Dilating 135

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Morphology_1.cpp

The OpenCV Tutorials, Release 2.4.0

if(!src.data)
{ return -1; }

/// Create windows
namedWindow("Erosion Demo", CV_WINDOW_AUTOSIZE);
namedWindow("Dilation Demo", CV_WINDOW_AUTOSIZE);
cvMoveWindow("Dilation Demo", src.cols, 0);

/// Create Erosion Trackbar
createTrackbar("Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Erosion Demo",

&erosion_elem, max_elem,
Erosion);

createTrackbar("Kernel size:\n 2n +1", "Erosion Demo",
&erosion_size, max_kernel_size,
Erosion);

/// Create Dilation Trackbar
createTrackbar("Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Dilation Demo",

&dilation_elem, max_elem,
Dilation);

createTrackbar("Kernel size:\n 2n +1", "Dilation Demo",
&dilation_size, max_kernel_size,
Dilation);

/// Default start
Erosion(0, 0);
Dilation(0, 0);

waitKey(0);
return 0;

}

/** @function Erosion */
void Erosion(int, void*)
{

int erosion_type;
if(erosion_elem == 0){ erosion_type = MORPH_RECT; }
else if(erosion_elem == 1){ erosion_type = MORPH_CROSS; }
else if(erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(erosion_type,
Size(2*erosion_size + 1, 2*erosion_size+1),
Point(erosion_size, erosion_size));

/// Apply the erosion operation
erode(src, erosion_dst, element);
imshow("Erosion Demo", erosion_dst);

}

/** @function Dilation */
void Dilation(int, void*)
{

int dilation_type;
if(dilation_elem == 0){ dilation_type = MORPH_RECT; }
else if(dilation_elem == 1){ dilation_type = MORPH_CROSS; }
else if(dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }

136 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

Mat element = getStructuringElement(dilation_type,
Size(2*dilation_size + 1, 2*dilation_size+1),
Point(dilation_size, dilation_size));

/// Apply the dilation operation
dilate(src, dilation_dst, element);
imshow("Dilation Demo", dilation_dst);

}

Explanation

1. Most of the stuff shown is known by you (if you have any doubt, please refer to the tutorials in previous sections).
Let’s check the general structure of the program:

• Load an image (can be RGB or grayscale)

• Create two windows (one for dilation output, the other for erosion)

• Create a set of 02 Trackbars for each operation:

– The first trackbar “Element” returns either erosion_elem or dilation_elem

– The second trackbar “Kernel size” return erosion_size or dilation_size for the corresponding opera-
tion.

• Every time we move any slider, the user’s function Erosion or Dilation will be called and it will update
the output image based on the current trackbar values.

Let’s analyze these two functions:

2. erosion:

/** @function Erosion */
void Erosion(int, void*)
{

int erosion_type;
if(erosion_elem == 0){ erosion_type = MORPH_RECT; }
else if(erosion_elem == 1){ erosion_type = MORPH_CROSS; }
else if(erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(erosion_type,
Size(2*erosion_size + 1, 2*erosion_size+1),
Point(erosion_size, erosion_size));

/// Apply the erosion operation
erode(src, erosion_dst, element);
imshow("Erosion Demo", erosion_dst);

}

• The function that performs the erosion operation is erode. As we can see, it receives three arguments:

– src: The source image

– erosion_dst: The output image

– element: This is the kernel we will use to perform the operation. If we do not specify, the default
is a simple 3x3 matrix. Otherwise, we can specify its shape. For this, we need to use the function
getStructuringElement:

Mat element = getStructuringElement(erosion_type,
Size(2*erosion_size + 1, 2*erosion_size+1),
Point(erosion_size, erosion_size));

3.2. Eroding and Dilating 137

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=erode#erode
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=getstructuringelement#getstructuringelement

The OpenCV Tutorials, Release 2.4.0

We can choose any of three shapes for our kernel:

* Rectangular box: MORPH_RECT

* Cross: MORPH_CROSS

* Ellipse: MORPH_ELLIPSE

Then, we just have to specify the size of our kernel and the anchor point. If not specified, it is assumed
to be in the center.

• That is all. We are ready to perform the erosion of our image.

Note: Additionally, there is another parameter that allows you to perform multiple erosions (iterations) at once.
We are not using it in this simple tutorial, though. You can check out the Reference for more details.

3. dilation:

The code is below. As you can see, it is completely similar to the snippet of code for erosion. Here we also have the
option of defining our kernel, its anchor point and the size of the operator to be used.

/** @function Dilation */
void Dilation(int, void*)
{

int dilation_type;
if(dilation_elem == 0){ dilation_type = MORPH_RECT; }
else if(dilation_elem == 1){ dilation_type = MORPH_CROSS; }
else if(dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }

Mat element = getStructuringElement(dilation_type,
Size(2*dilation_size + 1, 2*dilation_size+1),
Point(dilation_size, dilation_size));

/// Apply the dilation operation
dilate(src, dilation_dst, element);
imshow("Dilation Demo", dilation_dst);

}

Results

• Compile the code above and execute it with an image as argument. For instance, using this image:

138 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

We get the results below. Varying the indices in the Trackbars give different output images, naturally. Try them
out! You can even try to add a third Trackbar to control the number of iterations.

3.3 More Morphology Transformations

Goal

In this tutorial you will learn how to:

• Use the OpenCV function morphologyEx to apply Morphological Transformation such as:

– Opening

– Closing

3.3. More Morphology Transformations 139

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=morphologyex#morphologyex

The OpenCV Tutorials, Release 2.4.0

– Morphological Gradient

– Top Hat

– Black Hat

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

In the previous tutorial we covered two basic Morphology operations:

• Erosion

• Dilation.

Based on these two we can effectuate more sophisticated transformations to our images. Here we discuss briefly 05
operations offered by OpenCV:

Opening

• It is obtained by the erosion of an image followed by a dilation.

dst = open(src, element) = dilate(erode(src, element))

• Useful for removing small objects (it is assumed that the objects are bright on a dark foreground)

• For instance, check out the example below. The image at the left is the original and the image at the right is
the result after applying the opening transformation. We can observe that the small spaces in the corners of the
letter tend to dissapear.

Closing

• It is obtained by the dilation of an image followed by an erosion.

dst = close(src, element) = erode(dilate(src, element))

• Useful to remove small holes (dark regions).

140 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

Morphological Gradient

• It is the difference between the dilation and the erosion of an image.

dst = morphgrad(src, element) = dilate(src, element) − erode(src, element)

• It is useful for finding the outline of an object as can be seen below:

Top Hat

• It is the difference between an input image and its opening.

dst = tophat(src, element) = src− open(src, element)

3.3. More Morphology Transformations 141

The OpenCV Tutorials, Release 2.4.0

Black Hat

• It is the difference between the closing and its input image

dst = blackhat(src, element) = close(src, element) − src

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, dst;

int morph_elem = 0;
int morph_size = 0;
int morph_operator = 0;
int const max_operator = 4;
int const max_elem = 2;
int const max_kernel_size = 21;

char* window_name = "Morphology Transformations Demo";

/** Function Headers */
void Morphology_Operations(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

142 Chapter 3. imgproc module. Image Processing

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Morphology_2.cpp

The OpenCV Tutorials, Release 2.4.0

/// Create Trackbar to select Morphology operation
createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat", window_name, &morph_operator, max_operator, Morphology_Operations);

/// Create Trackbar to select kernel type
createTrackbar("Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,

&morph_elem, max_elem,
Morphology_Operations);

/// Create Trackbar to choose kernel size
createTrackbar("Kernel size:\n 2n +1", window_name,

&morph_size, max_kernel_size,
Morphology_Operations);

/// Default start
Morphology_Operations(0, 0);

waitKey(0);
return 0;
}

/**
* @function Morphology_Operations

*/
void Morphology_Operations(int, void*)
{

// Since MORPH_X : 2,3,4,5 and 6
int operation = morph_operator + 2;

Mat element = getStructuringElement(morph_elem, Size(2*morph_size + 1, 2*morph_size+1), Point(morph_size, morph_size));

/// Apply the specified morphology operation
morphologyEx(src, dst, operation, element);
imshow(window_name, dst);
}

Explanation

1. Let’s check the general structure of the program:

• Load an image

• Create a window to display results of the Morphological operations

• Create 03 Trackbars for the user to enter parameters:

– The first trackbar “Operator” returns the kind of morphology operation to use (morph_operator).

createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat",
window_name, &morph_operator, max_operator,
Morphology_Operations);

– The second trackbar “Element” returns morph_elem, which indicates what kind of structure our
kernel is:

createTrackbar("Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,
&morph_elem, max_elem,
Morphology_Operations);

3.3. More Morphology Transformations 143

The OpenCV Tutorials, Release 2.4.0

– The final trackbar “Kernel Size” returns the size of the kernel to be used (morph_size)

createTrackbar("Kernel size:\n 2n +1", window_name,
&morph_size, max_kernel_size,
Morphology_Operations);

• Every time we move any slider, the user’s function Morphology_Operations will be called to effectuate
a new morphology operation and it will update the output image based on the current trackbar values.

/**
* @function Morphology_Operations

*/
void Morphology_Operations(int, void*)
{

// Since MORPH_X : 2,3,4,5 and 6
int operation = morph_operator + 2;

Mat element = getStructuringElement(morph_elem, Size(2*morph_size + 1, 2*morph_size+1), Point(morph_size, morph_size));

/// Apply the specified morphology operation
morphologyEx(src, dst, operation, element);
imshow(window_name, dst);
}

We can observe that the key function to perform the morphology transformations is morphologyEx. In this
example we use four arguments (leaving the rest as defaults):

– src : Source (input) image

– dst: Output image

– operation: The kind of morphology transformation to be performed. Note that we have 5 alternatives:

* Opening: MORPH_OPEN : 2

* Closing: MORPH_CLOSE: 3

* Gradient: MORPH_GRADIENT: 4

* Top Hat: MORPH_TOPHAT: 5

* Black Hat: MORPH_BLACKHAT: 6

As you can see the values range from <2-6>, that is why we add (+2) to the values entered by the
Trackbar:

int operation = morph_operator + 2;

– element: The kernel to be used. We use the function getStructuringElement to define our own struc-
ture.

Results

• After compiling the code above we can execute it giving an image path as an argument. For this tutorial we use
as input the image: baboon.png:

144 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=morphologyex#morphologyex
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=getstructuringelement#getstructuringelement

The OpenCV Tutorials, Release 2.4.0

• And here are two snapshots of the display window. The first picture shows the output after using the operator
Opening with a cross kernel. The second picture (right side, shows the result of using a Blackhat operator with
an ellipse kernel.

3.4 Image Pyramids

Goal

In this tutorial you will learn how to:

• Use the OpenCV functions pyrUp and pyrDown to downsample or upsample a given image.

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

• Usually we need to convert an image to a size different than its original. For this, there are two possible options:

1. Upsize the image (zoom in) or

2. Downsize it (zoom out).

• Although there is a geometric transformation function in OpenCV that -literally- resize an image (resize, which
we will show in a future tutorial), in this section we analyze first the use of Image Pyramids, which are widely
applied in a huge range of vision applications.

3.4. Image Pyramids 145

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrup#pyrup
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrdown#pyrdown
http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=resize#resize

The OpenCV Tutorials, Release 2.4.0

Image Pyramid

• An image pyramid is a collection of images - all arising from a single original image - that are successively
downsampled until some desired stopping point is reached.

• There are two common kinds of image pyramids:

– Gaussian pyramid: Used to downsample images

– Laplacian pyramid: Used to reconstruct an upsampled image from an image lower in the pyramid (with
less resolution)

• In this tutorial we’ll use the Gaussian pyramid.

Gaussian Pyramid

• Imagine the pyramid as a set of layers in which the higher the layer, the smaller the size.

• Every layer is numbered from bottom to top, so layer (i+ 1) (denoted as Gi+1 is smaller than layer i (Gi).

• To produce layer (i+ 1) in the Gaussian pyramid, we do the following:

– Convolve Gi with a Gaussian kernel:

1

16

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

– Remove every even-numbered row and column.

• You can easily notice that the resulting image will be exactly one-quarter the area of its predecessor. Iterating
this process on the input image G0 (original image) produces the entire pyramid.

• The procedure above was useful to downsample an image. What if we want to make it bigger?:

– First, upsize the image to twice the original in each dimension, wit the new even rows and columns filled
with zeros (0)

– Perform a convolution with the same kernel shown above (multiplied by 4) to approximate the values of
the “missing pixels”

146 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

• These two procedures (downsampling and upsampling as explained above) are implemented by the OpenCV
functions pyrUp and pyrDown, as we will see in an example with the code below:

Note: When we reduce the size of an image, we are actually losing information of the image.

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <math.h>
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, dst, tmp;
char* window_name = "Pyramids Demo";

/**
* @function main

*/
int main(int argc, char** argv)
{

/// General instructions
printf("\n Zoom In-Out demo \n ");
printf("------------------ \n");
printf(" * [u] -> Zoom in \n");
printf(" * [d] -> Zoom out \n");
printf(" * [ESC] -> Close program \n \n");

/// Test image - Make sure it s divisible by 2^{n}
src = imread("../images/chicky_512.jpg");
if(!src.data)

{ printf(" No data! -- Exiting the program \n");
return -1; }

tmp = src;
dst = tmp;

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);
imshow(window_name, dst);

/// Loop
while(true)
{

int c;
c = waitKey(10);

if((char)c == 27)
{ break; }

if((char)c == ’u’)

3.4. Image Pyramids 147

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrup#pyrup
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrdown#pyrdown
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Pyramids.cpp

The OpenCV Tutorials, Release 2.4.0

{ pyrUp(tmp, dst, Size(tmp.cols*2, tmp.rows*2));
printf("** Zoom In: Image x 2 \n");

}
else if((char)c == ’d’)
{ pyrDown(tmp, dst, Size(tmp.cols/2, tmp.rows/2));

printf("** Zoom Out: Image / 2 \n");
}

imshow(window_name, dst);
tmp = dst;

}
return 0;

}

Explanation

1. Let’s check the general structure of the program:

• Load an image (in this case it is defined in the program, the user does not have to enter it as an argument)

/// Test image - Make sure it s divisible by 2^{n}
src = imread("../images/chicky_512.jpg");
if(!src.data)

{ printf(" No data! -- Exiting the program \n");
return -1; }

• Create a Mat object to store the result of the operations (dst) and one to save temporal results (tmp).

Mat src, dst, tmp;
/* ... */
tmp = src;
dst = tmp;

• Create a window to display the result

namedWindow(window_name, CV_WINDOW_AUTOSIZE);
imshow(window_name, dst);

• Perform an infinite loop waiting for user input.

while(true)
{

int c;
c = waitKey(10);

if((char)c == 27)
{ break; }

if((char)c == ’u’)
{ pyrUp(tmp, dst, Size(tmp.cols*2, tmp.rows*2));

printf("** Zoom In: Image x 2 \n");
}

else if((char)c == ’d’)
{ pyrDown(tmp, dst, Size(tmp.cols/2, tmp.rows/2));
printf("** Zoom Out: Image / 2 \n");

}

imshow(window_name, dst);

148 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

tmp = dst;
}

Our program exits if the user presses ESC. Besides, it has two options:

– Perform upsampling (after pressing ‘u’)

pyrUp(tmp, dst, Size(tmp.cols*2, tmp.rows*2)

We use the function pyrUp with 03 arguments:

* tmp: The current image, it is initialized with the src original image.

* dst: The destination image (to be shown on screen, supposedly the double of the input image)

* Size(tmp.cols*2, tmp.rows*2) : The destination size. Since we are upsampling, pyrUp expects a
size double than the input image (in this case tmp).

– Perform downsampling (after pressing ‘d’)

pyrDown(tmp, dst, Size(tmp.cols/2, tmp.rows/2)

Similarly as with pyrUp, we use the function pyrDown with 03 arguments:

* tmp: The current image, it is initialized with the src original image.

* dst: The destination image (to be shown on screen, supposedly half the input image)

* Size(tmp.cols/2, tmp.rows/2) : The destination size. Since we are upsampling, pyrDown expects
half the size the input image (in this case tmp).

– Notice that it is important that the input image can be divided by a factor of two (in both dimensions).
Otherwise, an error will be shown.

– Finally, we update the input image tmp with the current image displayed, so the subsequent operations
are performed on it.

tmp = dst;

Results

• After compiling the code above we can test it. The program calls an image chicky_512.jpg that comes in the
tutorial_code/image folder. Notice that this image is 512× 512, hence a downsample won’t generate any error
(512 = 29). The original image is shown below:

3.4. Image Pyramids 149

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrup#pyrup
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrup#pyrup
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrup#pyrup
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrdown#pyrdown
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrdown#pyrdown

The OpenCV Tutorials, Release 2.4.0

• First we apply two successive pyrDown operations by pressing ‘d’. Our output is:

• Note that we should have lost some resolution due to the fact that we are diminishing the size of the image. This
is evident after we apply pyrUp twice (by pressing ‘u’). Our output is now:

150 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrdown#pyrdown
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=pyrup#pyrup

The OpenCV Tutorials, Release 2.4.0

3.5 Basic Thresholding Operations

Goal

In this tutorial you will learn how to:

• Perform basic thresholding operations using OpenCV function threshold

Cool Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

What is Thresholding?

• The simplest segmentation method

• Application example: Separate out regions of an image corresponding to objects which we want to analyze.
This separation is based on the variation of intensity between the object pixels and the background pixels.

• To differentiate the pixels we are interested in from the rest (which will eventually be rejected), we perform a
comparison of each pixel intensity value with respect to a threshold (determined according to the problem to
solve).

3.5. Basic Thresholding Operations 151

http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold#threshold

The OpenCV Tutorials, Release 2.4.0

• Once we have separated properly the important pixels, we can set them with a determined value to identify them
(i.e. we can assign them a value of 0 (black), 255 (white) or any value that suits your needs).

Types of Thresholding

• OpenCV offers the function threshold to perform thresholding operations.

• We can effectuate 5 types of Thresholding operations with this function. We will explain them in the following
subsections.

• To illustrate how these thresholding processes work, let’s consider that we have a source image with pixels with
intensity values src(x, y). The plot below depicts this. The horizontal blue line represents the threshold thresh
(fixed).

Threshold Binary

• This thresholding operation can be expressed as:

dst(x, y) =

{
maxVal if src(x, y) > thresh
0 otherwise

• So, if the intensity of the pixel src(x, y) is higher than thresh, then the new pixel intensity is set to aMaxVal.
Otherwise, the pixels are set to 0.

152 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold#threshold

The OpenCV Tutorials, Release 2.4.0

Threshold Binary, Inverted

• This thresholding operation can be expressed as:

dst(x, y) =

{
0 if src(x, y) > thresh
maxVal otherwise

• If the intensity of the pixel src(x, y) is higher than thresh, then the new pixel intensity is set to a 0. Otherwise,
it is set toMaxVal.

Truncate

• This thresholding operation can be expressed as:

dst(x, y) =

{
threshold if src(x, y) > thresh
src(x, y) otherwise

• The maximum intensity value for the pixels is thresh, if src(x, y) is greater, then its value is truncated. See
figure below:

3.5. Basic Thresholding Operations 153

The OpenCV Tutorials, Release 2.4.0

Threshold to Zero

• This operation can be expressed as:

dst(x, y) =

{
src(x, y) if src(x, y) > thresh
0 otherwise

• If src(x, y) is lower than thresh, the new pixel value will be set to 0.

Threshold to Zero, Inverted

• This operation can be expressed as:

dst(x, y) =

{
0 if src(x, y) > thresh
src(x, y) otherwise

• If src(x, y) is greater than thresh, the new pixel value will be set to 0.

Code

The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables

154 Chapter 3. imgproc module. Image Processing

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgProc/Threshold.cpp

The OpenCV Tutorials, Release 2.4.0

int threshold_value = 0;
int threshold_type = 3;;
int const max_value = 255;
int const max_type = 4;
int const max_BINARY_value = 255;

Mat src, src_gray, dst;
char* window_name = "Threshold Demo";

char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
char* trackbar_value = "Value";

/// Function headers
void Threshold_Demo(int, void*);

/**
* @function main

*/
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1], 1);

/// Convert the image to Gray
cvtColor(src, src_gray, CV_RGB2GRAY);

/// Create a window to display results
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Create Trackbar to choose type of Threshold
createTrackbar(trackbar_type,

window_name, &threshold_type,
max_type, Threshold_Demo);

createTrackbar(trackbar_value,
window_name, &threshold_value,
max_value, Threshold_Demo);

/// Call the function to initialize
Threshold_Demo(0, 0);

/// Wait until user finishes program
while(true)
{

int c;
c = waitKey(20);
if((char)c == 27)
{ break; }

}

}

/**
* @function Threshold_Demo

*/
void Threshold_Demo(int, void*)
{

3.5. Basic Thresholding Operations 155

The OpenCV Tutorials, Release 2.4.0

/* 0: Binary
1: Binary Inverted
2: Threshold Truncated
3: Threshold to Zero
4: Threshold to Zero Inverted

*/

threshold(src_gray, dst, threshold_value, max_BINARY_value,threshold_type);

imshow(window_name, dst);
}

Explanation

1. Let’s check the general structure of the program:

• Load an image. If it is RGB we convert it to Grayscale. For this, remember that we can use the function
cvtColor:

src = imread(argv[1], 1);

/// Convert the image to Gray
cvtColor(src, src_gray, CV_RGB2GRAY);

• Create a window to display the result

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

• Create 2 trackbars for the user to enter user input:

– Type of thresholding: Binary, To Zero, etc...

– Threshold value

createTrackbar(trackbar_type,
window_name, &threshold_type,
max_type, Threshold_Demo);

createTrackbar(trackbar_value,
window_name, &threshold_value,
max_value, Threshold_Demo);

• Wait until the user enters the threshold value, the type of thresholding (or until the program exits)

• Whenever the user changes the value of any of the Trackbars, the function Threshold_Demo is called:

/**
* @function Threshold_Demo

*/
void Threshold_Demo(int, void*)
{

/* 0: Binary
1: Binary Inverted
2: Threshold Truncated
3: Threshold to Zero
4: Threshold to Zero Inverted

*/

threshold(src_gray, dst, threshold_value, max_BINARY_value,threshold_type);

156 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cvtcolor#cvtcolor

The OpenCV Tutorials, Release 2.4.0

imshow(window_name, dst);
}

As you can see, the function threshold is invoked. We give 5 parameters:

– src_gray: Our input image

– dst: Destination (output) image

– threshold_value: The thresh value with respect to which the thresholding operation is made

– max_BINARY_value: The value used with the Binary thresholding operations (to set the chosen pixels)

– threshold_type: One of the 5 thresholding operations. They are listed in the comment section of the
function above.

Results

1. After compiling this program, run it giving a path to an image as argument. For instance, for an input image as:

2. First, we try to threshold our image with a binary threhold inverted. We expect that the pixels brighter than the
thresh will turn dark, which is what actually happens, as we can see in the snapshot below (notice from the
original image, that the doggie’s tongue and eyes are particularly bright in comparison with the image, this is
reflected in the output image).

3.5. Basic Thresholding Operations 157

http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=threshold#threshold

The OpenCV Tutorials, Release 2.4.0

3. Now we try with the threshold to zero. With this, we expect that the darkest pixels (below the threshold) will
become completely black, whereas the pixels with value greater than the threshold will keep its original value.
This is verified by the following snapshot of the output image:

158 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

3.6 Making your own linear filters!

Goal

In this tutorial you will learn how to:

• Use the OpenCV function filter2D to create your own linear filters.

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

Convolution

In a very general sense, convolution is an operation between every part of an image and an operator (kernel).

What is a kernel?

A kernel is essentially a fixed size array of numerical coefficeints along with an anchor point in that array, which is
tipically located at the center.

3.6. Making your own linear filters! 159

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=filter2d#filter2d

The OpenCV Tutorials, Release 2.4.0

How does convolution with a kernel work?

Assume you want to know the resulting value of a particular location in the image. The value of the convolution is
calculated in the following way:

1. Place the kernel anchor on top of a determined pixel, with the rest of the kernel overlaying the corresponding
local pixels in the image.

2. Multiply the kernel coefficients by the corresponding image pixel values and sum the result.

3. Place the result to the location of the anchor in the input image.

4. Repeat the process for all pixels by scanning the kernel over the entire image.

Expressing the procedure above in the form of an equation we would have:

H(x, y) =

Mi−1∑
i=0

Mj−1∑
j=0

I(x+ i− ai, y+ j− aj)K(i, j)

Fortunately, OpenCV provides you with the function filter2D so you do not have to code all these operations.

Code

1. What does this program do?

• Loads an image

• Performs a normalized box filter. For instance, for a kernel of size size = 3, the kernel would be:

K =
1

3 · 3

1 1 1
1 1 1
1 1 1

The program will perform the filter operation with kernels of sizes 3, 5, 7, 9 and 11.

• The filter output (with each kernel) will be shown during 500 milliseconds

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

160 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=filter2d#filter2d
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/filter2D_demo.cpp

The OpenCV Tutorials, Release 2.4.0

using namespace cv;

/** @function main */
int main (int argc, char** argv)
{

/// Declare variables
Mat src, dst;

Mat kernel;
Point anchor;
double delta;
int ddepth;
int kernel_size;
char* window_name = "filter2D Demo";

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Initialize arguments for the filter
anchor = Point(-1, -1);
delta = 0;
ddepth = -1;

/// Loop - Will filter the image with different kernel sizes each 0.5 seconds
int ind = 0;
while(true)
{

c = waitKey(500);
/// Press ’ESC’ to exit the program
if((char)c == 27)
{ break; }

/// Update kernel size for a normalized box filter
kernel_size = 3 + 2*(ind%5);
kernel = Mat::ones(kernel_size, kernel_size, CV_32F)/ (float)(kernel_size*kernel_size);

/// Apply filter
filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT);
imshow(window_name, dst);
ind++;

}

return 0;
}

Explanation

1. Load an image

3.6. Making your own linear filters! 161

The OpenCV Tutorials, Release 2.4.0

src = imread(argv[1]);

if(!src.data)
{ return -1; }

2. Create a window to display the result

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

3. Initialize the arguments for the linear filter

anchor = Point(-1, -1);
delta = 0;
ddepth = -1;

4. Perform an infinite loop updating the kernel size and applying our linear filter to the input image. Let’s analyze
that more in detail:

5. First we define the kernel our filter is going to use. Here it is:

kernel_size = 3 + 2*(ind%5);
kernel = Mat::ones(kernel_size, kernel_size, CV_32F)/ (float)(kernel_size*kernel_size);

The first line is to update the kernel_size to odd values in the range: [3, 11]. The second line actually builds the
kernel by setting its value to a matrix filled with 1 ′s and normalizing it by dividing it between the number of
elements.

6. After setting the kernel, we can generate the filter by using the function filter2D:

filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT);

The arguments denote:

(a) src: Source image

(b) dst: Destination image

(c) ddepth: The depth of dst. A negative value (such as −1) indicates that the depth is the same as the source.

(d) kernel: The kernel to be scanned through the image

(e) anchor: The position of the anchor relative to its kernel. The location Point(-1, -1) indicates the center by
default.

(f) delta: A value to be added to each pixel during the convolution. By default it is 0

(g) BORDER_DEFAULT: We let this value by default (more details in the following tutorial)

7. Our program will effectuate a while loop, each 500 ms the kernel size of our filter will be updated in the range
indicated.

Results

1. After compiling the code above, you can execute it giving as argument the path of an image. The result should
be a window that shows an image blurred by a normalized filter. Each 0.5 seconds the kernel size should change,
as can be seen in the series of snapshots below:

162 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=filter2d#filter2d

The OpenCV Tutorials, Release 2.4.0

3.7 Adding borders to your images

Goal

In this tutorial you will learn how to:

• Use the OpenCV function copyMakeBorder to set the borders (extra padding to your image).

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

1. In our previous tutorial we learned to use convolution to operate on images. One problem that naturally arises is
how to handle the boundaries. How can we convolve them if the evaluated points are at the edge of the image?

2. What most of OpenCV functions do is to copy a given image onto another slightly larger image and then
automatically pads the boundary (by any of the methods explained in the sample code just below). This way,
the convolution can be performed over the needed pixels without problems (the extra padding is cut after the
operation is done).

3. In this tutorial, we will briefly explore two ways of defining the extra padding (border) for an image:

(a) BORDER_CONSTANT: Pad the image with a constant value (i.e. black or 0

(b) BORDER_REPLICATE: The row or column at the very edge of the original is replicated to the extra
border.

This will be seen more clearly in the Code section.

Code

1. What does this program do?

• Load an image

• Let the user choose what kind of padding use in the input image. There are two options:

(a) Constant value border: Applies a padding of a constant value for the whole border. This value will be
updated randomly each 0.5 seconds.

(b) Replicated border: The border will be replicated from the pixel values at the edges of the original
image.

3.7. Adding borders to your images 163

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=copymakeborder#copymakeborder

The OpenCV Tutorials, Release 2.4.0

The user chooses either option by pressing ‘c’ (constant) or ‘r’ (replicate)

• The program finishes when the user presses ‘ESC’

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global Variables
Mat src, dst;
int top, bottom, left, right;
int borderType;
Scalar value;
char* window_name = "copyMakeBorder Demo";
RNG rng(12345);

/** @function main */
int main(int argc, char** argv)
{

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1;
printf(" No data entered, please enter the path to an image file \n");

}

/// Brief how-to for this program
printf("\n \t copyMakeBorder Demo: \n");
printf("\t -------------------- \n");
printf(" ** Press ’c’ to set the border to a random constant value \n");
printf(" ** Press ’r’ to set the border to be replicated \n");
printf(" ** Press ’ESC’ to exit the program \n");

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Initialize arguments for the filter
top = (int) (0.05*src.rows); bottom = (int) (0.05*src.rows);
left = (int) (0.05*src.cols); right = (int) (0.05*src.cols);
dst = src;

imshow(window_name, dst);

while(true)
{

c = waitKey(500);

if((char)c == 27)
{ break; }

else if((char)c == ’c’)
{ borderType = BORDER_CONSTANT; }

164 Chapter 3. imgproc module. Image Processing

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/copyMakeBorder_demo.cpp

The OpenCV Tutorials, Release 2.4.0

else if((char)c == ’r’)
{ borderType = BORDER_REPLICATE; }

value = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));
copyMakeBorder(src, dst, top, bottom, left, right, borderType, value);

imshow(window_name, dst);
}

return 0;
}

Explanation

1. First we declare the variables we are going to use:

Mat src, dst;
int top, bottom, left, right;
int borderType;
Scalar value;
char* window_name = "copyMakeBorder Demo";
RNG rng(12345);

Especial attention deserves the variable rng which is a random number generator. We use it to generate the
random border color, as we will see soon.

2. As usual we load our source image src:

src = imread(argv[1]);

if(!src.data)
{ return -1;
printf(" No data entered, please enter the path to an image file \n");

}

3. After giving a short intro of how to use the program, we create a window:

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

4. Now we initialize the argument that defines the size of the borders (top, bottom, left and right). We give them a
value of 5% the size of src.

top = (int) (0.05*src.rows); bottom = (int) (0.05*src.rows);
left = (int) (0.05*src.cols); right = (int) (0.05*src.cols);

5. The program begins a while loop. If the user presses ‘c’ or ‘r’, the borderType variable takes the value of
BORDER_CONSTANT or BORDER_REPLICATE respectively:

while(true)
{

c = waitKey(500);

if((char)c == 27)
{ break; }

else if((char)c == ’c’)
{ borderType = BORDER_CONSTANT; }

else if((char)c == ’r’)
{ borderType = BORDER_REPLICATE; }

3.7. Adding borders to your images 165

The OpenCV Tutorials, Release 2.4.0

6. In each iteration (after 0.5 seconds), the variable value is updated...

value = Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255));

with a random value generated by the RNG variable rng. This value is a number picked randomly in the range
[0, 255]

7. Finally, we call the function copyMakeBorder to apply the respective padding:

copyMakeBorder(src, dst, top, bottom, left, right, borderType, value);

The arguments are:

(a) src: Source image

(b) dst: Destination image

(c) top, bottom, left, right: Length in pixels of the borders at each side of the image. We define them as being
5% of the original size of the image.

(d) borderType: Define what type of border is applied. It can be constant or replicate for this example.

(e) value: If borderType is BORDER_CONSTANT, this is the value used to fill the border pixels.

8. We display our output image in the image created previously

imshow(window_name, dst);

Results

1. After compiling the code above, you can execute it giving as argument the path of an image. The result should
be:

• By default, it begins with the border set to BORDER_CONSTANT. Hence, a succession of random colored
borders will be shown.

• If you press ‘r’, the border will become a replica of the edge pixels.

• If you press ‘c’, the random colored borders will appear again

• If you press ‘ESC’ the program will exit.

Below some screenshot showing how the border changes color and how the BORDER_REPLICATE option
looks:

166 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=copymakeborder#copymakeborder

The OpenCV Tutorials, Release 2.4.0

3.8 Sobel Derivatives

Goal

In this tutorial you will learn how to:

• Use the OpenCV function Sobel to calculate the derivatives from an image.

• Use the OpenCV function Scharr to calculate a more accurate derivative for a kernel of size 3 · 3

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

1. In the last two tutorials we have seen applicative examples of convolutions. One of the most important convolu-
tions is the computation of derivatives in an image (or an approximation to them).

2. Why may be important the calculus of the derivatives in an image? Let’s imagine we want to detect the edges
present in the image. For instance:

3.8. Sobel Derivatives 167

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=sobel#sobel
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=scharr#scharr

The OpenCV Tutorials, Release 2.4.0

You can easily notice that in an edge, the pixel intensity changes in a notorious way. A good way to express
changes is by using derivatives. A high change in gradient indicates a major change in the image.

3. To be more graphical, let’s assume we have a 1D-image. An edge is shown by the “jump” in intensity in the plot
below:

4. The edge “jump” can be seen more easily if we take the first derivative (actually, here appears as a maximum)

168 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

5. So, from the explanation above, we can deduce that a method to detect edges in an image can be performed by
locating pixel locations where the gradient is higher than its neighbors (or to generalize, higher than a threshold).

6. More detailed explanation, please refer to Learning OpenCV by Bradski and Kaehler

Sobel Operator

1. The Sobel Operator is a discrete differentiation operator. It computes an approximation of the gradient of an
image intensity function.

2. The Sobel Operator combines Gaussian smoothing and differentiation.

Formulation

Assuming that the image to be operated is I:

1. We calculate two derivatives:

(a) Horizontal changes: This is computed by convolving I with a kernel Gx with odd size. For example for
a kernel size of 3, Gx would be computed as:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗ I
(b) Vertical changes: This is computed by convolving I with a kernel Gy with odd size. For example for a

kernel size of 3, Gy would be computed as:

Gy =

−1 −2 −1
0 0 0
+1 +2 +1

 ∗ I
2. At each point of the image we calculate an approximation of the gradient in that point by combining both results

above:

3.8. Sobel Derivatives 169

The OpenCV Tutorials, Release 2.4.0

G =
√
G2x +G

2
y

Although sometimes the following simpler equation is used:

G = |Gx|+ |Gy|

Note:

When the size of the kernel is 3, the Sobel kernel shown above may produce noticeable inaccuracies (after
all, Sobel is only an approximation of the derivative). OpenCV addresses this inaccuracy for kernels of
size 3 by using the Scharr function. This is as fast but more accurate than the standar Sobel function. It
implements the following kernels:

Gx =

 −3 0 +3
−10 0 +10
−3 0 +3

Gy =

−3 −10 −3
0 0 0
+3 +10 +3

You can check out more information of this function in the OpenCV reference (Scharr). Also, in the sample code
below, you will notice that above the code for Sobel function there is also code for the Scharr function commented.
Uncommenting it (and obviously commenting the Sobel stuff) should give you an idea of how this function works.

Code

1. What does this program do?

• Applies the Sobel Operator and generates as output an image with the detected edges bright on a darker
background.

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/** @function main */
int main(int argc, char** argv)
{

Mat src, src_gray;
Mat grad;
char* window_name = "Sobel Demo - Simple Edge Detector";
int scale = 1;
int delta = 0;
int ddepth = CV_16S;

170 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=scharr#scharr
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=scharr#scharr
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=sobel#sobel
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=scharr#scharr
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Sobel_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

/// Convert it to gray
cvtColor(src, src_gray, CV_RGB2GRAY);

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Generate grad_x and grad_y
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;

/// Gradient X
//Scharr(src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT);
Sobel(src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_x, abs_grad_x);

/// Gradient Y
//Scharr(src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT);
Sobel(src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);
convertScaleAbs(grad_y, abs_grad_y);

/// Total Gradient (approximate)
addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);

imshow(window_name, grad);

waitKey(0);

return 0;
}

Explanation

1. First we declare the variables we are going to use:

Mat src, src_gray;
Mat grad;
char* window_name = "Sobel Demo - Simple Edge Detector";
int scale = 1;
int delta = 0;
int ddepth = CV_16S;

2. As usual we load our source image src:

src = imread(argv[1]);

if(!src.data)
{ return -1; }

3.8. Sobel Derivatives 171

The OpenCV Tutorials, Release 2.4.0

3. First, we apply a GaussianBlur to our image to reduce the noise (kernel size = 3)

GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

4. Now we convert our filtered image to grayscale:

cvtColor(src, src_gray, CV_RGB2GRAY);

5. Second, we calculate the “derivatives” in x and y directions. For this, we use the function Sobel as shown below:

Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;

/// Gradient X
Sobel(src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT);
/// Gradient Y
Sobel(src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT);

The function takes the following arguments:

• src_gray: In our example, the input image. Here it is CV_8U

• grad_x/grad_y: The output image.

• ddepth: The depth of the output image. We set it to CV_16S to avoid overflow.

• x_order: The order of the derivative in x direction.

• y_order: The order of the derivative in y direction.

• scale, delta and BORDER_DEFAULT: We use default values.

Notice that to calculate the gradient in x direction we use: xorder = 1 and yorder = 0. We do analogously for
the y direction.

6. We convert our partial results back to CV_8U:

convertScaleAbs(grad_x, abs_grad_x);
convertScaleAbs(grad_y, abs_grad_y);

7. Finally, we try to approximate the gradient by adding both directional gradients (note that this is not an exact
calculation at all! but it is good for our purposes).

addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);

8. Finally, we show our result:

imshow(window_name, grad);

Results

1. Here is the output of applying our basic detector to lena.jpg:

172 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=gaussianblur#gaussianblur
http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=sobel#sobel

The OpenCV Tutorials, Release 2.4.0

3.9 Laplace Operator

Goal

In this tutorial you will learn how to:

• Use the OpenCV function Laplacian to implement a discrete analog of the Laplacian operator.

Theory

1. In the previous tutorial we learned how to use the Sobel Operator. It was based on the fact that in the edge area,
the pixel intensity shows a “jump” or a high variation of intensity. Getting the first derivative of the intensity,
we observed that an edge is characterized by a maximum, as it can be seen in the figure:

3.9. Laplace Operator 173

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=laplacian#laplacian

The OpenCV Tutorials, Release 2.4.0

2. And...what happens if we take the second derivative?

You can observe that the second derivative is zero! So, we can also use this criterion to attempt to detect edges in
an image. However, note that zeros will not only appear in edges (they can actually appear in other meaningless
locations); this can be solved by applying filtering where needed.

Laplacian Operator

1. From the explanation above, we deduce that the second derivative can be used to detect edges. Since images are
“2D”, we would need to take the derivative in both dimensions. Here, the Laplacian operator comes handy.

2. The Laplacian operator is defined by:

Laplace(f) =
∂2f

∂x2
+
∂2f

∂y2

1. The Laplacian operator is implemented in OpenCV by the function Laplacian. In fact, since the Laplacian uses
the gradient of images, it calls internally the Sobel operator to perform its computation.

174 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/filtering.html?highlight=laplacian#laplacian

The OpenCV Tutorials, Release 2.4.0

Code

1. What does this program do?

• Loads an image

• Remove noise by applying a Gaussian blur and then convert the original image to grayscale

• Applies a Laplacian operator to the grayscale image and stores the output image

• Display the result in a window

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/** @function main */
int main(int argc, char** argv)
{

Mat src, src_gray, dst;
int kernel_size = 3;
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
char* window_name = "Laplace Demo";

int c;

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Remove noise by blurring with a Gaussian filter
GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

/// Convert the image to grayscale
cvtColor(src, src_gray, CV_RGB2GRAY);

/// Create window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Apply Laplace function
Mat abs_dst;

Laplacian(src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT);
convertScaleAbs(dst, abs_dst);

/// Show what you got
imshow(window_name, abs_dst);

waitKey(0);

return 0;

3.9. Laplace Operator 175

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Laplace_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

}

Explanation

1. Create some needed variables:

Mat src, src_gray, dst;
int kernel_size = 3;
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
char* window_name = "Laplace Demo";

2. Loads the source image:

src = imread(argv[1]);

if(!src.data)
{ return -1; }

3. Apply a Gaussian blur to reduce noise:

GaussianBlur(src, src, Size(3,3), 0, 0, BORDER_DEFAULT);

4. Convert the image to grayscale using cvtColor

cvtColor(src, src_gray, CV_RGB2GRAY);

5. Apply the Laplacian operator to the grayscale image:

Laplacian(src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT);

where the arguments are:

• src_gray: The input image.

• dst: Destination (output) image

• ddepth: Depth of the destination image. Since our input is CV_8U we define ddepth = CV_16S to avoid
overflow

• kernel_size: The kernel size of the Sobel operator to be applied internally. We use 3 in this example.

• scale, delta and BORDER_DEFAULT: We leave them as default values.

6. Convert the output from the Laplacian operator to a CV_8U image:

convertScaleAbs(dst, abs_dst);

7. Display the result in a window:

imshow(window_name, abs_dst);

Results

1. After compiling the code above, we can run it giving as argument the path to an image. For example, using as
an input:

176 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cvtcolor#cvtcolor

The OpenCV Tutorials, Release 2.4.0

2. We obtain the following result. Notice how the trees and the silhouette of the cow are approximately well defined
(except in areas in which the intensity are very similar, i.e. around the cow’s head). Also, note that the roof of
the house behind the trees (right side) is notoriously marked. This is due to the fact that the contrast is higher in
that region.

3.10 Canny Edge Detector

Goal

In this tutorial you will learn how to:

• Use the OpenCV function Canny to implement the Canny Edge Detector.

Theory

1. The Canny Edge detector was developed by John F. Canny in 1986. Also known to many as the optimal detector,
Canny algorithm aims to satisfy three main criteria:

3.10. Canny Edge Detector 177

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=canny#canny

The OpenCV Tutorials, Release 2.4.0

• Low error rate: Meaning a good detection of only existent edges.

• Good localization: The distance between edge pixels detected and real edge pixels have to be minimized.

• Minimal response: Only one detector response per edge.

Steps

1. Filter out any noise. The Gaussian filter is used for this purpose. An example of a Gaussian kernel of size = 5
that might be used is shown below:

K =
1

159

2 4 5 4 2
4 9 12 9 4
5 12 15 12 5
4 9 12 9 4
2 4 5 4 2

2. Find the intensity gradient of the image. For this, we follow a procedure analogous to Sobel:

(a) Apply a pair of convolution masks (in x and y directions:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

Gy =

−1 −2 −1
0 0 0
+1 +2 +1

(b) Find the gradient strength and direction with:

G =
√
G2x +G

2
y

θ = arctan(
Gy

Gx
)

The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)

3. Non-maximum suppression is applied. This removes pixels that are not considered to be part of an edge. Hence,
only thin lines (candidate edges) will remain.

4. Hysteresis: The final step. Canny does use two thresholds (upper and lower):

(a) If a pixel gradient is higher than the upper threshold, the pixel is accepted as an edge

(b) If a pixel gradient value is below the lower threshold, then it is rejected.

(c) If the pixel gradient is between the two thresholds, then it will be accepted only if it is connected to a pixel
that is above the upper threshold.

Canny recommended a upper:lower ratio between 2:1 and 3:1.

5. For more details, you can always consult your favorite Computer Vision book.

Code

1. What does this program do?

178 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

• Asks the user to enter a numerical value to set the lower threshold for our Canny Edge Detector (by means
of a Trackbar)

• Applies the Canny Detector and generates a mask (bright lines representing the edges on a black back-
ground).

• Applies the mask obtained on the original image and display it in a window.

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>

using namespace cv;

/// Global variables

Mat src, src_gray;
Mat dst, detected_edges;

int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";

/**
* @function CannyThreshold

* @brief Trackbar callback - Canny thresholds input with a ratio 1:3

*/
void CannyThreshold(int, void*)
{

/// Reduce noise with a kernel 3x3
blur(src_gray, detected_edges, Size(3,3));

/// Canny detector
Canny(detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size);

/// Using Canny’s output as a mask, we display our result
dst = Scalar::all(0);

src.copyTo(dst, detected_edges);
imshow(window_name, dst);
}

/** @function main */
int main(int argc, char** argv)
{

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

/// Create a matrix of the same type and size as src (for dst)
dst.create(src.size(), src.type());

3.10. Canny Edge Detector 179

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/CannyDetector_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Convert the image to grayscale
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create a window
namedWindow(window_name, CV_WINDOW_AUTOSIZE);

/// Create a Trackbar for user to enter threshold
createTrackbar("Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold);

/// Show the image
CannyThreshold(0, 0);

/// Wait until user exit program by pressing a key
waitKey(0);

return 0;
}

Explanation

1. Create some needed variables:

Mat src, src_gray;
Mat dst, detected_edges;

int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
char* window_name = "Edge Map";

Note the following:

a. We establish a ratio of lower:upper threshold of 3:1 (with the variable *ratio*)
b. We set the kernel size of :math:‘3‘ (for the Sobel operations to be performed internally by the Canny function)
c. We set a maximum value for the lower Threshold of :math:‘100‘.

2. Loads the source image:

/// Load an image
src = imread(argv[1]);

if(!src.data)
{ return -1; }

3. Create a matrix of the same type and size of src (to be dst)

dst.create(src.size(), src.type());

4. Convert the image to grayscale (using the function cvtColor:

cvtColor(src, src_gray, CV_BGR2GRAY);

5. Create a window to display the results

180 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/miscellaneous_transformations.html?highlight=cvtcolor#cvtcolor

The OpenCV Tutorials, Release 2.4.0

namedWindow(window_name, CV_WINDOW_AUTOSIZE);

6. Create a Trackbar for the user to enter the lower threshold for our Canny detector:

createTrackbar("Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold);

Observe the following:

(a) The variable to be controlled by the Trackbar is lowThreshold with a limit of max_lowThreshold (which
we set to 100 previously)

(b) Each time the Trackbar registers an action, the callback function CannyThreshold will be invoked.

7. Let’s check the CannyThreshold function, step by step:

(a) First, we blur the image with a filter of kernel size 3:

blur(src_gray, detected_edges, Size(3,3));

(b) Second, we apply the OpenCV function Canny:

Canny(detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size);

where the arguments are:

• detected_edges: Source image, grayscale

• detected_edges: Output of the detector (can be the same as the input)

• lowThreshold: The value entered by the user moving the Trackbar

• highThreshold: Set in the program as three times the lower threshold (following Canny’s recommen-
dation)

• kernel_size: We defined it to be 3 (the size of the Sobel kernel to be used internally)

8. We fill a dst image with zeros (meaning the image is completely black).

dst = Scalar::all(0);

9. Finally, we will use the function copyTo to map only the areas of the image that are identified as edges (on a
black background).

src.copyTo(dst, detected_edges);

copyTo copy the src image onto dst. However, it will only copy the pixels in the locations where they have non-
zero values. Since the output of the Canny detector is the edge contours on a black background, the resulting
dst will be black in all the area but the detected edges.

10. We display our result:

imshow(window_name, dst);

Result

• After compiling the code above, we can run it giving as argument the path to an image. For example, using as
an input the following image:

3.10. Canny Edge Detector 181

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=canny#canny
http://opencv.itseez.com/modules/core/doc/basic_structures.html?highlight=copyto#mat-copyto
http://opencv.itseez.com/modules/core/doc/basic_structures.html?highlight=copyto#mat-copyto

The OpenCV Tutorials, Release 2.4.0

• Moving the slider, trying different threshold, we obtain the following result:

• Notice how the image is superposed to the black background on the edge regions.

3.11 Hough Line Transform

Goal

In this tutorial you will learn how to:

• Use the OpenCV functions HoughLines and HoughLinesP to detect lines in an image.

Theory

Note: The explanation below belongs to the book Learning OpenCV by Bradski and Kaehler.

Hough Line Transform

1. The Hough Line Transform is a transform used to detect straight lines.

2. To apply the Transform, first an edge detection pre-processing is desirable.

182 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=houghlines#houghlines
http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=houghlinesp#houghlinesp

The OpenCV Tutorials, Release 2.4.0

How does it work?

1. As you know, a line in the image space can be expressed with two variables. For example:

(a) In the Cartesian coordinate system: Parameters: (m,b).

(b) In the Polar coordinate system: Parameters: (r, θ)

For Hough Transforms, we will express lines in the Polar system. Hence, a line equation can be written as:

y =

(
−

cos θ
sin θ

)
x+

(r

sin θ

)
Arranging the terms: r = x cos θ+ y sin θ

1. In general for each point (x0, y0), we can define the family of lines that goes through that point as:

rθ = x0 · cos θ+ y0 · sin θ

Meaning that each pair (rθ, θ) represents each line that passes by (x0, y0).

2. If for a given (x0, y0) we plot the family of lines that goes through it, we get a sinusoid. For instance, for x0 = 8
and y0 = 6 we get the following plot (in a plane θ - r):

3.11. Hough Line Transform 183

The OpenCV Tutorials, Release 2.4.0

We consider only points such that r > 0 and 0 < θ < 2π.

3. We can do the same operation above for all the points in an image. If the curves of two different points intersect
in the plane θ - r, that means that both points belong to a same line. For instance, following with the example
above and drawing the plot for two more points: x1 = 9, y1 = 4 and x2 = 12, y2 = 3, we get:

The three plots intersect in one single point (0.925, 9.6), these coordinates are the parameters (θ, r) or the line
in which (x0, y0), (x1, y1) and (x2, y2) lay.

4. What does all the stuff above mean? It means that in general, a line can be detected by finding the number of
intersections between curves.The more curves intersecting means that the line represented by that intersection
have more points. In general, we can define a threshold of the minimum number of intersections needed to
detect a line.

5. This is what the Hough Line Transform does. It keeps track of the intersection between curves of every point in
the image. If the number of intersections is above some threshold, then it declares it as a line with the parameters
(θ, rθ) of the intersection point.

Standard and Probabilistic Hough Line Transform

OpenCV implements two kind of Hough Line Transforms:

1. The Standard Hough Transform

• It consists in pretty much what we just explained in the previous section. It gives you as result a vector of
couples (θ, rθ)

• In OpenCV it is implemented with the function HoughLines

2. The Probabilistic Hough Line Transform

• A more efficient implementation of the Hough Line Transform. It gives as output the extremes of the detected
lines (x0, y0, x1, y1)

• In OpenCV it is implemented with the function HoughLinesP

Code

1. What does this program do?

• Loads an image

184 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=houghlines#houghlines
http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=houghlinesp#houghlinesp

The OpenCV Tutorials, Release 2.4.0

• Applies either a Standard Hough Line Transform or a Probabilistic Line Transform.

• Display the original image and the detected line in two windows.

2. The sample code that we will explain can be downloaded from here. A slightly fancier version (which shows
both Hough standard and probabilistic with trackbars for changing the threshold values) can be found here.

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>

using namespace cv;
using namespace std;

void help()
{
cout << "\nThis program demonstrates line finding with the Hough transform.\n"

"Usage:\n"
"./houghlines <image_name>, Default is pic1.jpg\n" << endl;

}

int main(int argc, char** argv)
{
const char* filename = argc >= 2 ? argv[1] : "pic1.jpg";

Mat src = imread(filename, 0);
if(src.empty())
{

help();
cout << "can not open " << filename << endl;
return -1;

}

Mat dst, cdst;
Canny(src, dst, 50, 200, 3);
cvtColor(dst, cdst, CV_GRAY2BGR);

#if 0
vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0);

for(size_t i = 0; i < lines.size(); i++)
{

float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));
pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line(cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);

}
#else
vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10);
for(size_t i = 0; i < lines.size(); i++)
{

3.11. Hough Line Transform 185

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughLines_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

Vec4i l = lines[i];
line(cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);

}
#endif
imshow("source", src);
imshow("detected lines", cdst);

waitKey();

return 0;
}

Explanation

1. Load an image

Mat src = imread(filename, 0);
if(src.empty())
{

help();
cout << "can not open " << filename << endl;
return -1;

}

2. Detect the edges of the image by using a Canny detector

Canny(src, dst, 50, 200, 3);

Now we will apply the Hough Line Transform. We will explain how to use both OpenCV functions available
for this purpose:

3. Standard Hough Line Transform

(a) First, you apply the Transform:

vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0);

with the following arguments:

• dst: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)

• lines: A vector that will store the parameters (r, θ) of the detected lines

• rho : The resolution of the parameter r in pixels. We use 1 pixel.

• theta: The resolution of the parameter θ in radians. We use 1 degree (CV_PI/180)

• threshold: The minimum number of intersections to “detect” a line

• srn and stn: Default parameters to zero. Check OpenCV reference for more info.

(b) And then you display the result by drawing the lines.

for(size_t i = 0; i < lines.size(); i++)
{

float rho = lines[i][0], theta = lines[i][1];
Point pt1, pt2;
double a = cos(theta), b = sin(theta);
double x0 = a*rho, y0 = b*rho;
pt1.x = cvRound(x0 + 1000*(-b));

186 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

pt1.y = cvRound(y0 + 1000*(a));
pt2.x = cvRound(x0 - 1000*(-b));
pt2.y = cvRound(y0 - 1000*(a));
line(cdst, pt1, pt2, Scalar(0,0,255), 3, CV_AA);

}

4. Probabilistic Hough Line Transform

(a) First you apply the transform:

vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10);

with the arguments:

• dst: Output of the edge detector. It should be a grayscale image (although in fact it is a binary one)

• lines: A vector that will store the parameters (xstart, ystart, xend, yend) of the detected lines

• rho : The resolution of the parameter r in pixels. We use 1 pixel.

• theta: The resolution of the parameter θ in radians. We use 1 degree (CV_PI/180)

• threshold: The minimum number of intersections to “detect” a line

• minLinLength: The minimum number of points that can form a line. Lines with less than this number
of points are disregarded.

• maxLineGap: The maximum gap between two points to be considered in the same line.

(b) And then you display the result by drawing the lines.

for(size_t i = 0; i < lines.size(); i++)
{

Vec4i l = lines[i];
line(cdst, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, CV_AA);

}

5. Display the original image and the detected lines:

imshow("source", src);
imshow("detected lines", cdst);

6. Wait until the user exits the program

waitKey();

Result

Note: The results below are obtained using the slightly fancier version we mentioned in the Code section. It still
implements the same stuff as above, only adding the Trackbar for the Threshold.

Using an input image such as:

3.11. Hough Line Transform 187

The OpenCV Tutorials, Release 2.4.0

We get the following result by using the Probabilistic Hough Line Transform:

You may observe that the number of lines detected vary while you change the threshold. The explanation is sort of
evident: If you establish a higher threshold, fewer lines will be detected (since you will need more points to declare a
line detected).

3.12 Hough Circle Transform

Goal

In this tutorial you will learn how to:

• Use the OpenCV function HoughCircles to detect circles in an image.

188 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=houghcircles#houghcircles

The OpenCV Tutorials, Release 2.4.0

Theory

Hough Circle Transform

• The Hough Circle Transform works in a roughly analogous way to the Hough Line Transform explained in the
previous tutorial.

• In the line detection case, a line was defined by two parameters (r, θ). In the circle case, we need three parame-
ters to define a circle:

C : (xcenter, ycenter, r)

where (xcenter, ycenter) define the center position (gree point) and r is the radius, which allows us to com-
pletely define a circle, as it can be seen below:

• For sake of efficiency, OpenCV implements a detection method slightly trickier than the standard Hough Trans-
form: The Hough gradient method. For more details, please check the book Learning OpenCV or your favorite
Computer Vision bibliography

Code

1. What does this program do?

• Loads an image and blur it to reduce the noise

• Applies the Hough Circle Transform to the blurred image .

• Display the detected circle in a window.

2. The sample code that we will explain can be downloaded from here. A slightly fancier version (which shows
both Hough standard and probabilistic with trackbars for changing the threshold values) can be found here.

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;

/** @function main */

3.12. Hough Circle Transform 189

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/houghlines.cpp
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/HoughCircle_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

int main(int argc, char** argv)
{

Mat src, src_gray;

/// Read the image
src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

/// Convert it to gray
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Reduce the noise so we avoid false circle detection
GaussianBlur(src_gray, src_gray, Size(9, 9), 2, 2);

vector<Vec3f> circles;

/// Apply the Hough Transform to find the circles
HoughCircles(src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0);

/// Draw the circles detected
for(size_t i = 0; i < circles.size(); i++)
{

Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle(src, center, 3, Scalar(0,255,0), -1, 8, 0);
// circle outline
circle(src, center, radius, Scalar(0,0,255), 3, 8, 0);

}

/// Show your results
namedWindow("Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE);
imshow("Hough Circle Transform Demo", src);

waitKey(0);
return 0;

}

Explanation

1. Load an image

src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

2. Convert it to grayscale:

cvtColor(src, src_gray, CV_BGR2GRAY);

3. Apply a Gaussian blur to reduce noise and avoid false circle detection:

GaussianBlur(src_gray, src_gray, Size(9, 9), 2, 2);

4. Proceed to apply Hough Circle Transform:

190 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

vector<Vec3f> circles;

HoughCircles(src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0);

with the arguments:

• src_gray: Input image (grayscale)

• circles: A vector that stores sets of 3 values: xc, yc, r for each detected circle.

• CV_HOUGH_GRADIENT: Define the detection method. Currently this is the only one available in
OpenCV

• dp = 1: The inverse ratio of resolution

• min_dist = src_gray.rows/8: Minimum distance between detected centers

• param_1 = 200: Upper threshold for the internal Canny edge detector

• param_2 = 100*: Threshold for center detection.

• min_radius = 0: Minimum radio to be detected. If unknown, put zero as default.

• max_radius = 0: Maximum radius to be detected. If unknown, put zero as default

5. Draw the detected circles:

for(size_t i = 0; i < circles.size(); i++)
{

Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
int radius = cvRound(circles[i][2]);
// circle center
circle(src, center, 3, Scalar(0,255,0), -1, 8, 0);
// circle outline
circle(src, center, radius, Scalar(0,0,255), 3, 8, 0);

}

You can see that we will draw the circle(s) on red and the center(s) with a small green dot

6. Display the detected circle(s):

namedWindow("Hough Circle Transform Demo", CV_WINDOW_AUTOSIZE);
imshow("Hough Circle Transform Demo", src);

7. Wait for the user to exit the program

waitKey(0);

Result

The result of running the code above with a test image is shown below:

3.12. Hough Circle Transform 191

The OpenCV Tutorials, Release 2.4.0

3.13 Remapping

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function remap to implement simple remapping routines.

Theory

What is remapping?

• It is the process of taking pixels from one place in the image and locating them in another position in a new
image.

• To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel loca-
tions, since there will not always be a one-to-one-pixel correspondence between source and destination images.

• We can express the remap for every pixel location (x, y) as:

g(x, y) = f(h(x, y))

where g() is the remapped image, f() the source image and h(x, y) is the mapping function that operates on
(x, y).

• Let’s think in a quick example. Imagine that we have an image I and, say, we want to do a remap such that:

h(x, y) = (I.cols− x, y)

What would happen? It is easily seen that the image would flip in the x direction. For instance, consider the
input image:

192 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=remap#remap

The OpenCV Tutorials, Release 2.4.0

observe how the red circle changes positions with respect to x (considering x the horizontal direction):

• In OpenCV, the function remap offers a simple remapping implementation.

Code

1. What does this program do?

• Loads an image

• Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a
window.

• Wait for the user to exit the program

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;

/// Global variables
Mat src, dst;

3.13. Remapping 193

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=remap#remap
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;

/// Function Headers
void update_map(void);

/**
* @function main

*/
int main(int argc, char** argv)
{

/// Load the image
src = imread(argv[1], 1);

/// Create dst, map_x and map_y with the same size as src:
dst.create(src.size(), src.type());
map_x.create(src.size(), CV_32FC1);
map_y.create(src.size(), CV_32FC1);

/// Create window
namedWindow(remap_window, CV_WINDOW_AUTOSIZE);

/// Loop
while(true)
{

/// Each 1 sec. Press ESC to exit the program
int c = waitKey(1000);

if((char)c == 27)
{ break; }

/// Update map_x & map_y. Then apply remap
update_map();
remap(src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0));

/// Display results
imshow(remap_window, dst);

}
return 0;
}

/**
* @function update_map

* @brief Fill the map_x and map_y matrices with 4 types of mappings

*/
void update_map(void)
{

ind = ind%4;

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{
switch(ind)
{

case 0:
if(i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75)

{

194 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

map_x.at<float>(j,i) = 2*(i - src.cols*0.25) + 0.5 ;
map_y.at<float>(j,i) = 2*(j - src.rows*0.25) + 0.5 ;
}

else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;

}
break;

case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;
break;

case 2:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;

case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;

} // end of switch
}

}
ind++;

}

Explanation

1. Create some variables we will use:

Mat src, dst;
Mat map_x, map_y;
char* remap_window = "Remap demo";
int ind = 0;

2. Load an image:

src = imread(argv[1], 1);

3. Create the destination image and the two mapping matrices (for x and y)

dst.create(src.size(), src.type());
map_x.create(src.size(), CV_32FC1);
map_y.create(src.size(), CV_32FC1);

4. Create a window to display results

namedWindow(remap_window, CV_WINDOW_AUTOSIZE);

5. Establish a loop. Each 1000 ms we update our mapping matrices (mat_x and mat_y) and apply them to our
source image:

while(true)
{

/// Each 1 sec. Press ESC to exit the program
int c = waitKey(1000);

if((char)c == 27)

3.13. Remapping 195

The OpenCV Tutorials, Release 2.4.0

{ break; }

/// Update map_x & map_y. Then apply remap
update_map();
remap(src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0));

/// Display results
imshow(remap_window, dst);

}

The function that applies the remapping is remap. We give the following arguments:

• src: Source image

• dst: Destination image of same size as src

• map_x: The mapping function in the x direction. It is equivalent to the first component of h(i, j)

• map_y: Same as above, but in y direction. Note that map_y and map_x are both of the same size as src

• CV_INTER_LINEAR: The type of interpolation to use for non-integer pixels. This is by default.

• BORDER_CONSTANT: Default

How do we update our mapping matrices mat_x and mat_y? Go on reading:

6. Updating the mapping matrices: We are going to perform 4 different mappings:

(a) Reduce the picture to half its size and will display it in the middle:

h(i, j) = (2 ∗ i− src.cols/2+ 0.5, 2 ∗ j− src.rows/2+ 0.5)

for all pairs (i, j) such that:
src.cols

4
< i <

3 · src.cols
4

and
src.rows

4
< j <

3 · src.rows
4

(b) Turn the image upside down: h(i, j) = (i, src.rows− j)

(c) Reflect the image from left to right: h(i, j) = (src.cols− i, j)

(d) Combination of b and c: h(i, j) = (src.cols− i, src.rows− j)

This is expressed in the following snippet. Here, map_x represents the first coordinate of h(i,j) and map_y
the second coordinate.

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{
switch(ind)
{

case 0:
if(i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75)

{
map_x.at<float>(j,i) = 2*(i - src.cols*0.25) + 0.5 ;
map_y.at<float>(j,i) = 2*(j - src.rows*0.25) + 0.5 ;
}

else
{ map_x.at<float>(j,i) = 0 ;
map_y.at<float>(j,i) = 0 ;

}
break;

case 1:
map_x.at<float>(j,i) = i ;
map_y.at<float>(j,i) = src.rows - j ;

196 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=remap#remap

The OpenCV Tutorials, Release 2.4.0

break;
case 2:

map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = j ;
break;

case 3:
map_x.at<float>(j,i) = src.cols - i ;
map_y.at<float>(j,i) = src.rows - j ;
break;

} // end of switch
}

}
ind++;
}

Result

1. After compiling the code above, you can execute it giving as argument an image path. For instance, by using
the following image:

2. This is the result of reducing it to half the size and centering it:

3. Turning it upside down:

3.13. Remapping 197

The OpenCV Tutorials, Release 2.4.0

4. Reflecting it in the x direction:

5. Reflecting it in both directions:

3.14 Affine Transformations

Goal

In this tutorial you will learn how to:

1. Use the OpenCV function warpAffine to implement simple remapping routines.

198 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=warpaffine#warpaffine

The OpenCV Tutorials, Release 2.4.0

2. Use the OpenCV function getRotationMatrix2D to obtain a 2× 3 rotation matrix

Theory

What is an Affine Transformation?

1. It is any transformation that can be expressed in the form of a matrix multiplication (linear transformation)
followed by a vector addition (translation).

2. From the above, We can use an Affine Transformation to express:

(a) Rotations (linear transformation)

(b) Translations (vector addition)

(c) Scale operations (linear transformation)

you can see that, in essence, an Affine Transformation represents a relation between two images.

3. The usual way to represent an Affine Transform is by using a 2× 3 matrix.

A =

[
a00 a01
a10 a11

]
2×2

B =

[
b00
b10

]
2×1

M =
[
A B

]
=

[
a00 a01 b00
a10 a11 b10

]
2×3

Considering that we want to transform a 2D vector X =

[
x
y

]
by using A and B, we can do it equivalently with:

T = A ·
[
x
y

]
+ B or T =M · [x, y, 1]T

T =

[
a00x+ a01y+ b00
a10x+ a11y+ b10

]

How do we get an Affine Transformation?

1. Excellent question. We mentioned that an Affine Transformation is basically a relation between two images.
The information about this relation can come, roughly, in two ways:

(a) We know both X and T and we also know that they are related. Then our job is to findM

(b) We know M and :math:’X‘. To obtain T we only need to apply T = M · X. Our information for M may
be explicit (i.e. have the 2-by-3 matrix) or it can come as a geometric relation between points.

2. Let’s explain a little bit better (b). Since M relates 02 images, we can analyze the simplest case in which it
relates three points in both images. Look at the figure below:

3.14. Affine Transformations 199

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=getrotationmatrix2d#getrotationmatrix2d

The OpenCV Tutorials, Release 2.4.0

the points 1, 2 and 3 (forming a triangle in image 1) are mapped into image 2, still forming a triangle, but now
they have changed notoriously. If we find the Affine Transformation with these 3 points (you can choose them
as you like), then we can apply this found relation to the whole pixels in the image.

Code

1. What does this program do?

• Loads an image

• Applies an Affine Transform to the image. This Transform is obtained from the relation between three
points. We use the function warpAffine for that purpose.

• Applies a Rotation to the image after being transformed. This rotation is with respect to the image center

• Waits until the user exits the program

2. The tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;
using namespace std;

/// Global variables
char* source_window = "Source image";
char* warp_window = "Warp";
char* warp_rotate_window = "Warp + Rotate";

/** @function main */
int main(int argc, char** argv)
{

Point2f srcTri[3];
Point2f dstTri[3];

Mat rot_mat(2, 3, CV_32FC1);
Mat warp_mat(2, 3, CV_32FC1);
Mat src, warp_dst, warp_rotate_dst;

/// Load the image
src = imread(argv[1], 1);

200 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=warpaffine#warpaffine
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ImgTrans/Geometric_Transforms_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Set the dst image the same type and size as src
warp_dst = Mat::zeros(src.rows, src.cols, src.type());

/// Set your 3 points to calculate the Affine Transform
srcTri[0] = Point2f(0,0);
srcTri[1] = Point2f(src.cols - 1, 0);
srcTri[2] = Point2f(0, src.rows - 1);

dstTri[0] = Point2f(src.cols*0.0, src.rows*0.33);
dstTri[1] = Point2f(src.cols*0.85, src.rows*0.25);
dstTri[2] = Point2f(src.cols*0.15, src.rows*0.7);

/// Get the Affine Transform
warp_mat = getAffineTransform(srcTri, dstTri);

/// Apply the Affine Transform just found to the src image
warpAffine(src, warp_dst, warp_mat, warp_dst.size());

/** Rotating the image after Warp */

/// Compute a rotation matrix with respect to the center of the image
Point center = Point(warp_dst.cols/2, warp_dst.rows/2);
double angle = -50.0;
double scale = 0.6;

/// Get the rotation matrix with the specifications above
rot_mat = getRotationMatrix2D(center, angle, scale);

/// Rotate the warped image
warpAffine(warp_dst, warp_rotate_dst, rot_mat, warp_dst.size());

/// Show what you got
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

namedWindow(warp_window, CV_WINDOW_AUTOSIZE);
imshow(warp_window, warp_dst);

namedWindow(warp_rotate_window, CV_WINDOW_AUTOSIZE);
imshow(warp_rotate_window, warp_rotate_dst);

/// Wait until user exits the program
waitKey(0);

return 0;
}

Explanation

1. Declare some variables we will use, such as the matrices to store our results and 2 arrays of points to store the
2D points that define our Affine Transform.

Point2f srcTri[3];
Point2f dstTri[3];

Mat rot_mat(2, 3, CV_32FC1);

3.14. Affine Transformations 201

The OpenCV Tutorials, Release 2.4.0

Mat warp_mat(2, 3, CV_32FC1);
Mat src, warp_dst, warp_rotate_dst;

2. Load an image:

src = imread(argv[1], 1);

3. Initialize the destination image as having the same size and type as the source:

warp_dst = Mat::zeros(src.rows, src.cols, src.type());

4. Affine Transform: As we explained lines above, we need two sets of 3 points to derive the affine transform
relation. Take a look:

srcTri[0] = Point2f(0,0);
srcTri[1] = Point2f(src.cols - 1, 0);
srcTri[2] = Point2f(0, src.rows - 1);

dstTri[0] = Point2f(src.cols*0.0, src.rows*0.33);
dstTri[1] = Point2f(src.cols*0.85, src.rows*0.25);
dstTri[2] = Point2f(src.cols*0.15, src.rows*0.7);

You may want to draw the points to make a better idea of how they change. Their locations are approximately
the same as the ones depicted in the example figure (in the Theory section). You may note that the size and
orientation of the triangle defined by the 3 points change.

5. Armed with both sets of points, we calculate the Affine Transform by using OpenCV function getAffineTrans-
form:

warp_mat = getAffineTransform(srcTri, dstTri);

We get as an output a 2× 3 matrix (in this case warp_mat)

6. We apply the Affine Transform just found to the src image

warpAffine(src, warp_dst, warp_mat, warp_dst.size());

with the following arguments:

• src: Input image

• warp_dst: Output image

• warp_mat: Affine transform

• warp_dst.size(): The desired size of the output image

We just got our first transformed image! We will display it in one bit. Before that, we also want to rotate it...

7. Rotate: To rotate an image, we need to know two things:

(a) The center with respect to which the image will rotate

(b) The angle to be rotated. In OpenCV a positive angle is counter-clockwise

(c) Optional: A scale factor

We define these parameters with the following snippet:

Point center = Point(warp_dst.cols/2, warp_dst.rows/2);
double angle = -50.0;
double scale = 0.6;

202 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=getaffinetransform#getaffinetransform
http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=getaffinetransform#getaffinetransform

The OpenCV Tutorials, Release 2.4.0

8. We generate the rotation matrix with the OpenCV function getRotationMatrix2D, which returns a 2× 3 matrix
(in this case rot_mat)

rot_mat = getRotationMatrix2D(center, angle, scale);

9. We now apply the found rotation to the output of our previous Transformation.

warpAffine(warp_dst, warp_rotate_dst, rot_mat, warp_dst.size());

10. Finally, we display our results in two windows plus the original image for good measure:

namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

namedWindow(warp_window, CV_WINDOW_AUTOSIZE);
imshow(warp_window, warp_dst);

namedWindow(warp_rotate_window, CV_WINDOW_AUTOSIZE);
imshow(warp_rotate_window, warp_rotate_dst);

11. We just have to wait until the user exits the program

waitKey(0);

Result

1. After compiling the code above, we can give it the path of an image as argument. For instance, for a picture
like:

after applying the first Affine Transform we obtain:

3.14. Affine Transformations 203

http://opencv.itseez.com/modules/imgproc/doc/geometric_transformations.html?highlight=getrotationmatrix2d#getrotationmatrix2d

The OpenCV Tutorials, Release 2.4.0

and finally, after applying a negative rotation (remember negative means clockwise) and a scale factor, we get:

3.15 Histogram Equalization

Goal

In this tutorial you will learn:

• What an image histogram is and why it is useful

• To equalize histograms of images by using the OpenCV function:equalize_hist:equalizeHist <>

Theory

What is an Image Histogram?

• It is a graphical representation of the intensity distribution of an image.

204 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

• It quantifies the number of pixels for each intensity value considered.

What is Histogram Equalization?

• It is a method that improves the contrast in an image, in order to stretch out the intensity range.

• To make it clearer, from the image above, you can see that the pixels seem clustered around the middle of the
available range of intensities. What Histogram Equalization does is to stretch out this range. Take a look at the
figure below: The green circles indicate the underpopulated intensities. After applying the equalization, we get
an histogram like the figure in the center. The resulting image is shown in the picture at right.

How does it work?

• Equalization implies mapping one distribution (the given histogram) to another distribution (a wider and more
uniform distribution of intensity values) so the intensity values are spreaded over the whole range.

• To accomplish the equalization effect, the remapping should be the cumulative distribution function (cdf) (more

3.15. Histogram Equalization 205

The OpenCV Tutorials, Release 2.4.0

details, refer to Learning OpenCV). For the histogram H(i), its cumulative distribution H
′
(i) is:

H
′
(i) =

∑
0≤j<i

H(j)

To use this as a remapping function, we have to normalize H
′
(i) such that the maximum value is 255 (or the

maximum value for the intensity of the image). From the example above, the cumulative function is:

• Finally, we use a simple remapping procedure to obtain the intensity values of the equalized image:

equalized(x, y) = H
′
(src(x, y))

Code

• What does this program do?

– Loads an image

– Convert the original image to grayscale

– Equalize the Histogram by using the OpenCV function EqualizeHist

– Display the source and equalized images in a window.

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace cv;
using namespace std;

/** @function main */
int main(int argc, char** argv)
{

Mat src, dst;

206 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=equalizehist#equalizehist
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/EqualizeHist_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

char* source_window = "Source image";
char* equalized_window = "Equalized Image";

/// Load image
src = imread(argv[1], 1);

if(!src.data)
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;

return -1;}

/// Convert to grayscale
cvtColor(src, src, CV_BGR2GRAY);

/// Apply Histogram Equalization
equalizeHist(src, dst);

/// Display results
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
namedWindow(equalized_window, CV_WINDOW_AUTOSIZE);

imshow(source_window, src);
imshow(equalized_window, dst);

/// Wait until user exits the program
waitKey(0);

return 0;
}

Explanation

1. Declare the source and destination images as well as the windows names:

Mat src, dst;

char* source_window = "Source image";
char* equalized_window = "Equalized Image";

2. Load the source image:

src = imread(argv[1], 1);

if(!src.data)
{ cout<<"Usage: ./Histogram_Demo <path_to_image>"<<endl;

return -1;}

3. Convert it to grayscale:

cvtColor(src, src, CV_BGR2GRAY);

4. Apply histogram equalization with the function equalizeHist :

equalizeHist(src, dst);

As it can be easily seen, the only arguments are the original image and the output (equalized) image.

5. Display both images (original and equalized) :

3.15. Histogram Equalization 207

http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=equalizehist#equalizehist

The OpenCV Tutorials, Release 2.4.0

namedWindow(source_window, CV_WINDOW_AUTOSIZE);
namedWindow(equalized_window, CV_WINDOW_AUTOSIZE);

imshow(source_window, src);
imshow(equalized_window, dst);

6. Wait until user exists the program

waitKey(0);
return 0;

Results

1. To appreciate better the results of equalization, let’s introduce an image with not much contrast, such as:

which, by the way, has this histogram:

208 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

notice that the pixels are clustered around the center of the histogram.

2. After applying the equalization with our program, we get this result:

this image has certainly more contrast. Check out its new histogram like this:

3.15. Histogram Equalization 209

The OpenCV Tutorials, Release 2.4.0

Notice how the number of pixels is more distributed through the intensity range.

Note: Are you wondering how did we draw the Histogram figures shown above? Check out the following tutorial!

3.16 Histogram Calculation

Goal

In this tutorial you will learn how to:

• Use the OpenCV function split to divide an image into its correspondent planes.

• To calculate histograms of arrays of images by using the OpenCV function calcHist

• To normalize an array by using the function normalize

Note: In the last tutorial (Histogram Equalization) we talked about a particular kind of histogram called Image
histogram. Now we will considerate it in its more general concept. Read on!

What are histograms?

• Histograms are collected counts of data organized into a set of predefined bins

• When we say data we are not restricting it to be intensity values (as we saw in the previous Tutorial). The data
collected can be whatever feature you find useful to describe your image.

• Let’s see an example. Imagine that a Matrix contains information of an image (i.e. intensity in the range 0−255):

210 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=split#split
http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=calchist#calchist
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=normalize#normalize

The OpenCV Tutorials, Release 2.4.0

• What happens if we want to count this data in an organized way? Since we know that the range of information
value for this case is 256 values, we can segment our range in subparts (called bins) like:

[0, 255] = [0, 15] ∪ [16, 31] ∪ ∪ [240, 255]
range = bin1 ∪ bin2 ∪ ∪ binn=15

and we can keep count of the number of pixels that fall in the range of each bini. Applying this to the example
above we get the image below (axis x represents the bins and axis y the number of pixels in each of them).

3.16. Histogram Calculation 211

The OpenCV Tutorials, Release 2.4.0

• This was just a simple example of how an histogram works and why it is useful. An histogram can keep count
not only of color intensities, but of whatever image features that we want to measure (i.e. gradients, directions,
etc).

• Let’s identify some parts of the histogram:

1. dims: The number of parameters you want to collect data of. In our example, dims = 1 because we are
only counting the intensity values of each pixel (in a greyscale image).

2. bins: It is the number of subdivisions in each dim. In our example, bins = 16

3. range: The limits for the values to be measured. In this case: range = [0,255]

• What if you want to count two features? In this case your resulting histogram would be a 3D plot (in which x
and y would be binx and biny for each feature and z would be the number of counts for each combination of
(binx, biny). The same would apply for more features (of course it gets trickier).

What OpenCV offers you

For simple purposes, OpenCV implements the function calcHist, which calculates the histogram of a set of arrays
(usually images or image planes). It can operate with up to 32 dimensions. We will see it in the code below!

Code

• What does this program do?

– Loads an image

– Splits the image into its R, G and B planes using the function split

– Calculate the Histogram of each 1-channel plane by calling the function calcHist

– Plot the three histograms in a window

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

212 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=calchist#calchist
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=split#split
http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=calchist#calchist
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/calcHist_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

/**
* @function main

*/
int main(int argc, char** argv)
{

Mat src, dst;

/// Load image
src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

/// Separate the image in 3 places (B, G and R)
vector<Mat> bgr_planes;
split(src, bgr_planes);

/// Establish the number of bins
int histSize = 256;

/// Set the ranges (for B,G,R))
float range[] = { 0, 256 } ;
const float* histRange = { range };

bool uniform = true; bool accumulate = false;

Mat b_hist, g_hist, r_hist;

/// Compute the histograms:
calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate);

// Draw the histograms for B, G and R
int hist_w = 512; int hist_h = 400;
int bin_w = cvRound((double) hist_w/histSize);

Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0,0,0));

/// Normalize the result to [0, histImage.rows]
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());

/// Draw for each channel
for(int i = 1; i < histSize; i++)
{

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
Scalar(255, 0, 0), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
Scalar(0, 255, 0), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),
Scalar(0, 0, 255), 2, 8, 0);

}

3.16. Histogram Calculation 213

The OpenCV Tutorials, Release 2.4.0

/// Display
namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE);
imshow("calcHist Demo", histImage);

waitKey(0);

return 0;
}

Explanation

1. Create the necessary matrices:

Mat src, dst;

2. Load the source image

src = imread(argv[1], 1);

if(!src.data)
{ return -1; }

3. Separate the source image in its three R,G and B planes. For this we use the OpenCV function split:

vector<Mat> bgr_planes;
split(src, bgr_planes);

our input is the image to be divided (this case with three channels) and the output is a vector of Mat)

4. Now we are ready to start configuring the histograms for each plane. Since we are working with the B, G and
R planes, we know that our values will range in the interval [0, 255]

(a) Establish number of bins (5, 10...):

int histSize = 256; //from 0 to 255

(b) Set the range of values (as we said, between 0 and 255)

/// Set the ranges (for B,G,R))
float range[] = { 0, 256 } ; //the upper boundary is exclusive
const float* histRange = { range };

(c) We want our bins to have the same size (uniform) and to clear the histograms in the beginning, so:

bool uniform = true; bool accumulate = false;

(d) Finally, we create the Mat objects to save our histograms. Creating 3 (one for each plane):

Mat b_hist, g_hist, r_hist;

(e) We proceed to calculate the histograms by using the OpenCV function calcHist:

/// Compute the histograms:
calcHist(&bgr_planes[0], 1, 0, Mat(), b_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&bgr_planes[1], 1, 0, Mat(), g_hist, 1, &histSize, &histRange, uniform, accumulate);
calcHist(&bgr_planes[2], 1, 0, Mat(), r_hist, 1, &histSize, &histRange, uniform, accumulate);

where the arguments are:

• &bgr_planes[0]: The source array(s)

214 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=split#split
http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=calchist#calchist

The OpenCV Tutorials, Release 2.4.0

• 1: The number of source arrays (in this case we are using 1. We can enter here also a list of arrays)

• 0: The channel (dim) to be measured. In this case it is just the intensity (each array is single-channel)
so we just write 0.

• Mat(): A mask to be used on the source array (zeros indicating pixels to be ignored). If not defined
it is not used

• b_hist: The Mat object where the histogram will be stored

• 1: The histogram dimensionality.

• histSize: The number of bins per each used dimension

• histRange: The range of values to be measured per each dimension

• uniform and accumulate: The bin sizes are the same and the histogram is cleared at the beginning.

5. Create an image to display the histograms:

// Draw the histograms for R, G and B
int hist_w = 512; int hist_h = 400;
int bin_w = cvRound((double) hist_w/histSize);

Mat histImage(hist_h, hist_w, CV_8UC3, Scalar(0,0,0));

6. Notice that before drawing, we first normalize the histogram so its values fall in the range indicated by the
parameters entered:

/// Normalize the result to [0, histImage.rows]
normalize(b_hist, b_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(g_hist, g_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());
normalize(r_hist, r_hist, 0, histImage.rows, NORM_MINMAX, -1, Mat());

this function receives these arguments:

• b_hist: Input array

• b_hist: Output normalized array (can be the same)

• 0 and**histImage.rows**: For this example, they are the lower and upper limits to normalize the values
of r_hist

• NORM_MINMAX: Argument that indicates the type of normalization (as described above, it adjusts the
values between the two limits set before)

• -1: Implies that the output normalized array will be the same type as the input

• Mat(): Optional mask

7. Finally, observe that to access the bin (in this case in this 1D-Histogram):

/// Draw for each channel
for(int i = 1; i < histSize; i++)
{

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(b_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(b_hist.at<float>(i))),
Scalar(255, 0, 0), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(g_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(g_hist.at<float>(i))),
Scalar(0, 255, 0), 2, 8, 0);

line(histImage, Point(bin_w*(i-1), hist_h - cvRound(r_hist.at<float>(i-1))) ,
Point(bin_w*(i), hist_h - cvRound(r_hist.at<float>(i))),

3.16. Histogram Calculation 215

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=normalize#normalize

The OpenCV Tutorials, Release 2.4.0

Scalar(0, 0, 255), 2, 8, 0);
}

we use the expression:

b_hist.at<float>(i)

where i indicates the dimension. If it were a 2D-histogram we would use something like:

b_hist.at<float>(i, j)

8. Finally we display our histograms and wait for the user to exit:

namedWindow("calcHist Demo", CV_WINDOW_AUTOSIZE);
imshow("calcHist Demo", histImage);

waitKey(0);

return 0;

Result

1. Using as input argument an image like the shown below:

2. Produces the following histogram:

216 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

3.17 Histogram Comparison

Goal

In this tutorial you will learn how to:

• Use the function compareHist to get a numerical parameter that express how well two histograms match with
each other.

• Use different metrics to compare histograms

Theory

• To compare two histograms (H1 and H2), first we have to choose a metric (d(H1, H2)) to express how well
both histograms match.

• OpenCV implements the function compareHist to perform a comparison. It also offers 4 different metrics to
compute the matching:

1. Correlation (CV_COMP_CORREL)

d(H1, H2) =

∑
I(H1(I) − H̄1)(H2(I) − H̄2)√∑

I(H1(I) − H̄1)
2
∑
I(H2(I) − H̄2)

2

3.17. Histogram Comparison 217

http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=comparehist#comparehist
http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=comparehist#comparehist

The OpenCV Tutorials, Release 2.4.0

where

H̄k =
1

N

∑
J

Hk(J)

and N is the total number of histogram bins.

2. Chi-Square (CV_COMP_CHISQR)

d(H1, H2) =
∑
I

(H1(I) −H2(I))
2

H1(I)

3. Intersection (method=CV_COMP_INTERSECT)

d(H1, H2) =
∑
I

min(H1(I), H2(I))

4. Bhattacharyya distance (CV_COMP_BHATTACHARYYA)

d(H1, H2) =

√
1−

1√
H̄1H̄2N2

∑
I

√
H1(I) ·H2(I)

Code

• What does this program do?

– Loads a base image and 2 test images to be compared with it.

– Generate 1 image that is the lower half of the base image

– Convert the images to HSV format

– Calculate the H-S histogram for all the images and normalize them in order to compare them.

– Compare the histogram of the base image with respect to the 2 test histograms, the histogram of the lower
half base image and with the same base image histogram.

– Display the numerical matching parameters obtained.

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/** @function main */
int main(int argc, char** argv)
{

Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;

218 Chapter 3. imgproc module. Image Processing

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/compareHist_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Load three images with different environment settings
if(argc < 4)

{ printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");
return -1;

}

src_base = imread(argv[1], 1);
src_test1 = imread(argv[2], 1);
src_test2 = imread(argv[3], 1);

/// Convert to HSV
cvtColor(src_base, hsv_base, CV_BGR2HSV);
cvtColor(src_test1, hsv_test1, CV_BGR2HSV);
cvtColor(src_test2, hsv_test2, CV_BGR2HSV);

hsv_half_down = hsv_base(Range(hsv_base.rows/2, hsv_base.rows - 1), Range(0, hsv_base.cols - 1));

/// Using 30 bins for hue and 32 for saturation
int h_bins = 50; int s_bins = 60;
int histSize[] = { h_bins, s_bins };

// hue varies from 0 to 256, saturation from 0 to 180
float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };

const float* ranges[] = { h_ranges, s_ranges };

// Use the o-th and 1-st channels
int channels[] = { 0, 1 };

/// Histograms
MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;

/// Calculate the histograms for the HSV images
calcHist(&hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false);
normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false);
normalize(hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());

/// Apply the histogram comparison methods
for(int i = 0; i < 4; i++)

{ int compare_method = i;
double base_base = compareHist(hist_base, hist_base, compare_method);
double base_half = compareHist(hist_base, hist_half_down, compare_method);
double base_test1 = compareHist(hist_base, hist_test1, compare_method);
double base_test2 = compareHist(hist_base, hist_test2, compare_method);

printf(" Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2);

3.17. Histogram Comparison 219

The OpenCV Tutorials, Release 2.4.0

}

printf("Done \n");

return 0;
}

Explanation

1. Declare variables such as the matrices to store the base image and the two other images to compare (RGB and
HSV)

Mat src_base, hsv_base;
Mat src_test1, hsv_test1;
Mat src_test2, hsv_test2;
Mat hsv_half_down;

2. Load the base image (src_base) and the other two test images:

if(argc < 4)
{ printf("** Error. Usage: ./compareHist_Demo <image_settings0> <image_setting1> <image_settings2>\n");

return -1;
}

src_base = imread(argv[1], 1);
src_test1 = imread(argv[2], 1);
src_test2 = imread(argv[3], 1);

3. Convert them to HSV format:

cvtColor(src_base, hsv_base, CV_BGR2HSV);
cvtColor(src_test1, hsv_test1, CV_BGR2HSV);
cvtColor(src_test2, hsv_test2, CV_BGR2HSV);

4. Also, create an image of half the base image (in HSV format):

hsv_half_down = hsv_base(Range(hsv_base.rows/2, hsv_base.rows - 1), Range(0, hsv_base.cols - 1));

5. Initialize the arguments to calculate the histograms (bins, ranges and channels H and S).

int h_bins = 50; int s_bins = 32;
int histSize[] = { h_bins, s_bins };

float h_ranges[] = { 0, 256 };
float s_ranges[] = { 0, 180 };

const float* ranges[] = { h_ranges, s_ranges };

int channels[] = { 0, 1 };

6. Create the MatND objects to store the histograms:

MatND hist_base;
MatND hist_half_down;
MatND hist_test1;
MatND hist_test2;

7. Calculate the Histograms for the base image, the 2 test images and the half-down base image:

220 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

calcHist(&hsv_base, 1, channels, Mat(), hist_base, 2, histSize, ranges, true, false);
normalize(hist_base, hist_base, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_half_down, 1, channels, Mat(), hist_half_down, 2, histSize, ranges, true, false);
normalize(hist_half_down, hist_half_down, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_test1, 1, channels, Mat(), hist_test1, 2, histSize, ranges, true, false);
normalize(hist_test1, hist_test1, 0, 1, NORM_MINMAX, -1, Mat());

calcHist(&hsv_test2, 1, channels, Mat(), hist_test2, 2, histSize, ranges, true, false);
normalize(hist_test2, hist_test2, 0, 1, NORM_MINMAX, -1, Mat());

8. Apply sequentially the 4 comparison methods between the histogram of the base image (hist_base) and the other
histograms:

for(int i = 0; i < 4; i++)
{ int compare_method = i;

double base_base = compareHist(hist_base, hist_base, compare_method);
double base_half = compareHist(hist_base, hist_half_down, compare_method);
double base_test1 = compareHist(hist_base, hist_test1, compare_method);
double base_test2 = compareHist(hist_base, hist_test2, compare_method);

printf(" Method [%d] Perfect, Base-Half, Base-Test(1), Base-Test(2) : %f, %f, %f, %f \n", i, base_base, base_half , base_test1, base_test2);
}

Results

1. We use as input the following images:

where the first one is the base (to be compared to the others), the other 2 are the test images. We will also
compare the first image with respect to itself and with respect of half the base image.

2. We should expect a perfect match when we compare the base image histogram with itself. Also, compared with
the histogram of half the base image, it should present a high match since both are from the same source. For the
other two test images, we can observe that they have very different lighting conditions, so the matching should
not be very good:

3. Here the numeric results:

Method Base - Base Base - Half Base - Test 1 Base - Test 2
Correlation 1.000000 0.930766 0.182073 0.120447
Chi-square 0.000000 4.940466 21.184536 49.273437
Intersection 24.391548 14.959809 3.889029 5.775088
Bhattacharyya 0.000000 0.222609 0.646576 0.801869

3.17. Histogram Comparison 221

The OpenCV Tutorials, Release 2.4.0

For the Correlation and Intersection methods, the higher the metric, the more accurate the match. As
we can see, the match base-base is the highest of all as expected. Also we can observe that the match
base-half is the second best match (as we predicted). For the other two metrics, the less the result, the
better the match. We can observe that the matches between the test 1 and test 2 with respect to the base
are worse, which again, was expected.

3.18 Back Projection

Goal

In this tutorial you will learn:

• What is Back Projection and why it is useful

• How to use the OpenCV function calcBackProject to calculate Back Projection

• How to mix different channels of an image by using the OpenCV function mixChannels

Theory

What is Back Projection?

• Back Projection is a way of recording how well the pixels of a given image fit the distribution of pixels in a
histogram model.

• To make it simpler: For Back Projection, you calculate the histogram model of a feature and then use it to find
this feature in an image.

• Application example: If you have a histogram of flesh color (say, a Hue-Saturation histogram), then you can
use it to find flesh color areas in an image:

How does it work?

• We explain this by using the skin example:

• Let’s say you have gotten a skin histogram (Hue-Saturation) based on the image below. The histogram besides
is going to be our model histogram (which we know represents a sample of skin tonality). You applied some
mask to capture only the histogram of the skin area:

222 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=calcbackproject#calcbackproject
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=mixchannels#mixchannels

The OpenCV Tutorials, Release 2.4.0

• Now, let’s imagine that you get another hand image (Test Image) like the one below: (with its respective his-
togram):

• What we want to do is to use our model histogram (that we know represents a skin tonality) to detect skin areas
in our Test Image. Here are the steps

1. In each pixel of our Test Image (i.e. p(i, j)), collect the data and find the correspondent bin location for
that pixel (i.e. (hi,j, si,j)).

2. Lookup the model histogram in the correspondent bin - (hi,j, si,j) - and read the bin value.

3. Store this bin value in a new image (BackProjection). Also, you may consider to normalize the model
histogram first, so the output for the Test Image can be visible for you.

4. Applying the steps above, we get the following BackProjection image for our Test Image:

3.18. Back Projection 223

The OpenCV Tutorials, Release 2.4.0

5. In terms of statistics, the values stored in BackProjection represent the probability that a pixel in Test
Image belongs to a skin area, based on the model histogram that we use. For instance in our Test image,
the brighter areas are more probable to be skin area (as they actually are), whereas the darker areas have
less probability (notice that these “dark” areas belong to surfaces that have some shadow on it, which in
turns affects the detection).

Code

• What does this program do?

– Loads an image

– Convert the original to HSV format and separate only Hue channel to be used for the Histogram (using the
OpenCV function mixChannels)

– Let the user to enter the number of bins to be used in the calculation of the histogram.

– Calculate the histogram (and update it if the bins change) and the backprojection of the same image.

– Display the backprojection and the histogram in windows.

• Downloadable code:

1. Click here for the basic version (explained in this tutorial).

2. For stuff slightly fancier (using H-S histograms and floodFill to define a mask for the skin area) you can
check the improved demo

3. ...or you can always check out the classical camshiftdemo in samples.

• Code at glance:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <iostream>

using namespace cv;
using namespace std;

/// Global Variables
Mat src; Mat hsv; Mat hue;
int bins = 25;

224 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=mixchannels#mixchannels
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/calcBackProject_Demo1.cpp
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/calcBackProject_Demo2.cpp
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/camshiftdemo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Function Headers
void Hist_and_Backproj(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Read the image
src = imread(argv[1], 1);
/// Transform it to HSV
cvtColor(src, hsv, CV_BGR2HSV);

/// Use only the Hue value
hue.create(hsv.size(), hsv.depth());
int ch[] = { 0, 0 };
mixChannels(&hsv, 1, &hue, 1, ch, 1);

/// Create Trackbar to enter the number of bins
char* window_image = "Source image";
namedWindow(window_image, CV_WINDOW_AUTOSIZE);
createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj);
Hist_and_Backproj(0, 0);

/// Show the image
imshow(window_image, src);

/// Wait until user exits the program
waitKey(0);
return 0;

}

/**
* @function Hist_and_Backproj

* @brief Callback to Trackbar

*/
void Hist_and_Backproj(int, void*)
{

MatND hist;
int histSize = MAX(bins, 2);
float hue_range[] = { 0, 180 };
const float* ranges = { hue_range };

/// Get the Histogram and normalize it
calcHist(&hue, 1, 0, Mat(), hist, 1, &histSize, &ranges, true, false);
normalize(hist, hist, 0, 255, NORM_MINMAX, -1, Mat());

/// Get Backprojection
MatND backproj;
calcBackProject(&hue, 1, 0, hist, backproj, &ranges, 1, true);

/// Draw the backproj
imshow("BackProj", backproj);

/// Draw the histogram
int w = 400; int h = 400;
int bin_w = cvRound((double) w / histSize);
Mat histImg = Mat::zeros(w, h, CV_8UC3);

3.18. Back Projection 225

The OpenCV Tutorials, Release 2.4.0

for(int i = 0; i < bins; i ++)
{ rectangle(histImg, Point(i*bin_w, h), Point((i+1)*bin_w, h - cvRound(hist.at<float>(i)*h/255.0)), Scalar(0, 0, 255), -1); }

imshow("Histogram", histImg);
}

Explanation

1. Declare the matrices to store our images and initialize the number of bins to be used by our histogram:

Mat src; Mat hsv; Mat hue;
int bins = 25;

2. Read the input image and transform it to HSV format:

src = imread(argv[1], 1);
cvtColor(src, hsv, CV_BGR2HSV);

3. For this tutorial, we will use only the Hue value for our 1-D histogram (check out the fancier code in the links
above if you want to use the more standard H-S histogram, which yields better results):

hue.create(hsv.size(), hsv.depth());
int ch[] = { 0, 0 };
mixChannels(&hsv, 1, &hue, 1, ch, 1);

as you see, we use the function http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=mixchannels#mixchannelsmixChannels
to get only the channel 0 (Hue) from the hsv image. It gets the following parameters:

• &hsv: The source array from which the channels will be copied

• 1: The number of source arrays

• &hue: The destination array of the copied channels

• 1: The number of destination arrays

• ch[] = {0,0}: The array of index pairs indicating how the channels are copied. In this case, the Hue(0)
channel of &hsv is being copied to the 0 channel of &hue (1-channel)

• 1: Number of index pairs

4. Create a Trackbar for the user to enter the bin values. Any change on the Trackbar means a call to the
Hist_and_Backproj callback function.

char* window_image = "Source image";
namedWindow(window_image, CV_WINDOW_AUTOSIZE);
createTrackbar("* Hue bins: ", window_image, &bins, 180, Hist_and_Backproj);
Hist_and_Backproj(0, 0);

5. Show the image and wait for the user to exit the program:

imshow(window_image, src);

waitKey(0);
return 0;

6. Hist_and_Backproj function: Initialize the arguments needed for calcHist. The number of bins comes from
the Trackbar:

226 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=mixchannels#mixchannelsmixChannels
http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=calchist#calchist

The OpenCV Tutorials, Release 2.4.0

void Hist_and_Backproj(int, void*)
{

MatND hist;
int histSize = MAX(bins, 2);
float hue_range[] = { 0, 180 };
const float* ranges = { hue_range };

7. Calculate the Histogram and normalize it to the range [0, 255]

calcHist(&hue, 1, 0, Mat(), hist, 1, &histSize, &ranges, true, false);
normalize(hist, hist, 0, 255, NORM_MINMAX, -1, Mat());

8. Get the Backprojection of the same image by calling the function calcBackProject

MatND backproj;
calcBackProject(&hue, 1, 0, hist, backproj, &ranges, 1, true);

all the arguments are known (the same as used to calculate the histogram), only we add the backproj matrix,
which will store the backprojection of the source image (&hue)

9. Display backproj:

imshow("BackProj", backproj);

10. Draw the 1-D Hue histogram of the image:

int w = 400; int h = 400;
int bin_w = cvRound((double) w / histSize);
Mat histImg = Mat::zeros(w, h, CV_8UC3);

for(int i = 0; i < bins; i ++)
{ rectangle(histImg, Point(i*bin_w, h), Point((i+1)*bin_w, h - cvRound(hist.at<float>(i)*h/255.0)), Scalar(0, 0, 255), -1); }

imshow("Histogram", histImg);

Results

1. Here are the output by using a sample image (guess what? Another hand). You can play with the bin values
and you will observe how it affects the results:

3.18. Back Projection 227

http://opencv.itseez.com/modules/imgproc/doc/histograms.html?highlight=calcbackproject#calcbackproject

The OpenCV Tutorials, Release 2.4.0

3.19 Template Matching

Goal

In this tutorial you will learn how to:

• Use the OpenCV function matchTemplate to search for matches between an image patch and an input image

• Use the OpenCV function minMaxLoc to find the maximum and minimum values (as well as their positions) in
a given array.

Theory

What is template matching?

Template matching is a technique for finding areas of an image that match (are similar) to a template image (patch).

How does it work?

• We need two primary components:

1. Source image (I): The image in which we expect to find a match to the template image

2. Template image (T): The patch image which will be compared to the template image

our goal is to detect the highest matching area:

• To identify the matching area, we have to compare the template image against the source image by sliding it:

228 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/object_detection.html?highlight=matchtemplate#matchtemplate
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=minmaxloc#minmaxloc

The OpenCV Tutorials, Release 2.4.0

• By sliding, we mean moving the patch one pixel at a time (left to right, up to down). At each location, a metric
is calculated so it represents how “good” or “bad” the match at that location is (or how similar the patch is to
that particular area of the source image).

• For each location of T over I, you store the metric in the result matrix (R). Each location (x, y) in R contains
the match metric:

the image above is the result R of sliding the patch with a metric TM_CCORR_NORMED. The brightest
locations indicate the highest matches. As you can see, the location marked by the red circle is probably the
one with the highest value, so that location (the rectangle formed by that point as a corner and width and height
equal to the patch image) is considered the match.

3.19. Template Matching 229

The OpenCV Tutorials, Release 2.4.0

• In practice, we use the function minMaxLoc to locate the highest value (or lower, depending of the type of
matching method) in the R matrix.

Which are the matching methods available in OpenCV?

Good question. OpenCV implements Template matching in the function matchTemplate. The available methods are
6:

1. method=CV_TM_SQDIFF

R(x, y) =
∑
x ′,y ′

(T(x ′, y ′) − I(x+ x ′, y+ y ′))2

2. method=CV_TM_SQDIFF_NORMED

R(x, y) =

∑
x ′,y ′(T(x ′, y ′) − I(x+ x ′, y+ y ′))2√∑

x ′,y ′ T(x ′, y ′)2 ·
∑
x ′,y ′ I(x+ x ′, y+ y ′)2

3. method=CV_TM_CCORR

R(x, y) =
∑
x ′,y ′

(T(x ′, y ′) · I(x+ x ′, y+ y ′))

4. method=CV_TM_CCORR_NORMED

R(x, y) =

∑
x ′,y ′(T(x ′, y ′) · I ′(x+ x ′, y+ y ′))√∑

x ′,y ′ T(x ′, y ′)2 ·
∑
x ′,y ′ I(x+ x ′, y+ y ′)2

5. method=CV_TM_CCOEFF

R(x, y) =
∑
x ′,y ′

(T ′(x ′, y ′) · I(x+ x ′, y+ y ′))

where

T ′(x ′, y ′) = T(x ′, y ′) − 1/(w · h) ·
∑
x ′′,y ′′ T(x ′′, y ′′)

I ′(x+ x ′, y+ y ′) = I(x+ x ′, y+ y ′) − 1/(w · h) ·
∑
x ′′,y ′′ I(x+ x ′′, y+ y ′′)

6. method=CV_TM_CCOEFF_NORMED

R(x, y) =

∑
x ′,y ′(T ′(x ′, y ′) · I ′(x+ x ′, y+ y ′))√∑

x ′,y ′ T ′(x ′, y ′)2 ·
∑
x ′,y ′ I ′(x+ x ′, y+ y ′)2

Code

• What does this program do?

– Loads an input image and a image patch (template)

– Perform a template matching procedure by using the OpenCV function matchTemplate with any of the
6 matching methods described before. The user can choose the method by entering its selection in the
Trackbar.

230 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=minmaxloc#minmaxloc
http://opencv.itseez.com/modules/imgproc/doc/object_detection.html?highlight=matchtemplate#matchtemplate
http://opencv.itseez.com/modules/imgproc/doc/object_detection.html?highlight=matchtemplate#matchtemplate

The OpenCV Tutorials, Release 2.4.0

– Normalize the output of the matching procedure

– Localize the location with higher matching probability

– Draw a rectangle around the area corresponding to the highest match

• Downloadable code: Click here

• Code at glance:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/// Global Variables
Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";

int match_method;
int max_Trackbar = 5;

/// Function Headers
void MatchingMethod(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load image and template
img = imread(argv[1], 1);
templ = imread(argv[2], 1);

/// Create windows
namedWindow(image_window, CV_WINDOW_AUTOSIZE);
namedWindow(result_window, CV_WINDOW_AUTOSIZE);

/// Create Trackbar
char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar(trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod);

MatchingMethod(0, 0);

waitKey(0);
return 0;

}

/**
* @function MatchingMethod

* @brief Trackbar callback

*/
void MatchingMethod(int, void*)
{

/// Source image to display
Mat img_display;
img.copyTo(img_display);

3.19. Template Matching 231

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/Histograms_Matching/MatchTemplate_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Create the result matrix
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;

result.create(result_cols, result_rows, CV_32FC1);

/// Do the Matching and Normalize
matchTemplate(img, templ, result, match_method);
normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());

/// Localizing the best match with minMaxLoc
double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;

minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat());

/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values. For all the other methods, the higher the better
if(match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
{ matchLoc = minLoc; }

else
{ matchLoc = maxLoc; }

/// Show me what you got
rectangle(img_display, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);
rectangle(result, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);

imshow(image_window, img_display);
imshow(result_window, result);

return;
}

Explanation

1. Declare some global variables, such as the image, template and result matrices, as well as the match method and
the window names:

Mat img; Mat templ; Mat result;
char* image_window = "Source Image";
char* result_window = "Result window";

int match_method;
int max_Trackbar = 5;

2. Load the source image and template:

img = imread(argv[1], 1);
templ = imread(argv[2], 1);

3. Create the windows to show the results:

namedWindow(image_window, CV_WINDOW_AUTOSIZE);
namedWindow(result_window, CV_WINDOW_AUTOSIZE);

4. Create the Trackbar to enter the kind of matching method to be used. When a change is detected the callback
function MatchingMethod is called.

232 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar(trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod);

5. Wait until user exits the program.

waitKey(0);
return 0;

6. Let’s check out the callback function. First, it makes a copy of the source image:

Mat img_display;
img.copyTo(img_display);

7. Next, it creates the result matrix that will store the matching results for each template location. Observe in detail
the size of the result matrix (which matches all possible locations for it)

int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;

result.create(result_cols, result_rows, CV_32FC1);

8. Perform the template matching operation:

matchTemplate(img, templ, result, match_method);

the arguments are naturally the input image I, the template T, the result R and the match_method (given by the
Trackbar)

9. We normalize the results:

normalize(result, result, 0, 1, NORM_MINMAX, -1, Mat());

10. We localize the minimum and maximum values in the result matrix R by using minMaxLoc.

double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;

minMaxLoc(result, &minVal, &maxVal, &minLoc, &maxLoc, Mat());

the function calls as arguments:

• result: The source array

• &minVal and &maxVal: Variables to save the minimum and maximum values in result

• &minLoc and &maxLoc: The Point locations of the minimum and maximum values in the array.

• Mat(): Optional mask

11. For the first two methods (CV_SQDIFF and CV_SQDIFF_NORMED) the best match are the lowest values.
For all the others, higher values represent better matches. So, we save the corresponding value in the matchLoc
variable:

if(match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED)
{ matchLoc = minLoc; }

else
{ matchLoc = maxLoc; }

12. Display the source image and the result matrix. Draw a rectangle around the highest possible matching area:

3.19. Template Matching 233

http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=minmaxloc#minmaxloc

The OpenCV Tutorials, Release 2.4.0

rectangle(img_display, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);
rectangle(result, matchLoc, Point(matchLoc.x + templ.cols , matchLoc.y + templ.rows), Scalar::all(0), 2, 8, 0);

imshow(image_window, img_display);
imshow(result_window, result);

Results

1. Testing our program with an input image such as:

and a template image:

2. Generate the following result matrices (first row are the standard methods SQDIFF, CCORR and CCOEFF,
second row are the same methods in its normalized version). In the first column, the darkest is the better match,
for the other two columns, the brighter a location, the higher the match.

234 Chapter 3. imgproc module. Image Processing

The OpenCV Tutorials, Release 2.4.0

3. The right match is shown below (black rectangle around the face of the guy at the right). Notice that CCORR
and CCDEFF gave erroneous best matches, however their normalized version did it right, this may be due to the
fact that we are only considering the “highest match” and not the other possible high matches.

3.19. Template Matching 235

The OpenCV Tutorials, Release 2.4.0

3.20 Finding contours in your image

Goal

In this tutorial you will learn how to:

• Use the OpenCV function findContours

• Use the OpenCV function drawContours

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */

236 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=findcontours#findcontours
http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=drawcontours#drawcontours
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/findContours_demo.cpp

The OpenCV Tutorials, Release 2.4.0

void thresh_callback(int, void*)
{

Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using canny
Canny(src_gray, canny_output, thresh, thresh*2, 3);
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Draw contours
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());

}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

}

Explanation

Result

1. Here it is:

3.21 Convex Hull

Goal

In this tutorial you will learn how to:

3.21. Convex Hull 237

The OpenCV Tutorials, Release 2.4.0

• Use the OpenCV function convexHull

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Threshold:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat src_copy = src.clone();
Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using Threshold
threshold(src_gray, threshold_output, thresh, 255, THRESH_BINARY);

238 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=convexhull#convexhull
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/hull_demo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Find contours
findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Find the convex hull object for each contour
vector<vector<Point> >hull(contours.size());
for(int i = 0; i < contours.size(); i++)

{ convexHull(Mat(contours[i]), hull[i], false); }

/// Draw contours + hull results
Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point());
drawContours(drawing, hull, i, color, 1, 8, vector<Vec4i>(), 0, Point());

}

/// Show in a window
namedWindow("Hull demo", CV_WINDOW_AUTOSIZE);
imshow("Hull demo", drawing);

}

Explanation

Result

1. Here it is:

3.22 Creating Bounding boxes and circles for contours

Goal

In this tutorial you will learn how to:

• Use the OpenCV function boundingRect

3.22. Creating Bounding boxes and circles for contours 239

http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=boundingrect#boundingrect

The OpenCV Tutorials, Release 2.4.0

• Use the OpenCV function minEnclosingCircle

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Threshold:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using Threshold
threshold(src_gray, threshold_output, thresh, 255, THRESH_BINARY);
/// Find contours

240 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=minenclosingcircle#minenclosingcircle
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/generalContours_demo1.cpp

The OpenCV Tutorials, Release 2.4.0

findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Approximate contours to polygons + get bounding rects and circles
vector<vector<Point> > contours_poly(contours.size());
vector<Rect> boundRect(contours.size());
vector<Point2f>center(contours.size());
vector<float>radius(contours.size());

for(int i = 0; i < contours.size(); i++)
{ approxPolyDP(Mat(contours[i]), contours_poly[i], 3, true);
boundRect[i] = boundingRect(Mat(contours_poly[i]));
minEnclosingCircle(contours_poly[i], center[i], radius[i]);

}

/// Draw polygonal contour + bonding rects + circles
Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours_poly, i, color, 1, 8, vector<Vec4i>(), 0, Point());
rectangle(drawing, boundRect[i].tl(), boundRect[i].br(), color, 2, 8, 0);
circle(drawing, center[i], (int)radius[i], color, 2, 8, 0);

}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

}

Explanation

Result

1. Here it is:

3.22. Creating Bounding boxes and circles for contours 241

The OpenCV Tutorials, Release 2.4.0

3.23 Creating Bounding rotated boxes and ellipses for contours

Goal

In this tutorial you will learn how to:

• Use the OpenCV function minAreaRect

• Use the OpenCV function fitEllipse

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Threshold:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */

242 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=minarearect#minarearect
http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=fitellipse#fitellipse
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/generalContours_demo2.cpp

The OpenCV Tutorials, Release 2.4.0

void thresh_callback(int, void*)
{

Mat threshold_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using Threshold
threshold(src_gray, threshold_output, thresh, 255, THRESH_BINARY);
/// Find contours
findContours(threshold_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Find the rotated rectangles and ellipses for each contour
vector<RotatedRect> minRect(contours.size());
vector<RotatedRect> minEllipse(contours.size());

for(int i = 0; i < contours.size(); i++)
{ minRect[i] = minAreaRect(Mat(contours[i]));

if(contours[i].size() > 5)
{ minEllipse[i] = fitEllipse(Mat(contours[i])); }

}

/// Draw contours + rotated rects + ellipses
Mat drawing = Mat::zeros(threshold_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
// contour
drawContours(drawing, contours, i, color, 1, 8, vector<Vec4i>(), 0, Point());
// ellipse
ellipse(drawing, minEllipse[i], color, 2, 8);
// rotated rectangle
Point2f rect_points[4]; minRect[i].points(rect_points);
for(int j = 0; j < 4; j++)

line(drawing, rect_points[j], rect_points[(j+1)%4], color, 1, 8);
}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

}

Explanation

Result

1. Here it is:

3.23. Creating Bounding rotated boxes and ellipses for contours 243

The OpenCV Tutorials, Release 2.4.0

3.24 Image Moments

Goal

In this tutorial you will learn how to:

• Use the OpenCV function moments

• Use the OpenCV function contourArea

• Use the OpenCV function arcLength

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);

/// Function header
void thresh_callback(int, void*);

/** @function main */
int main(int argc, char** argv)
{

244 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=moments#moments
http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=contourarea#contourarea
http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=arclength#arclength
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/moments_demo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Load source image and convert it to gray
src = imread(argv[1], 1);

/// Convert image to gray and blur it
cvtColor(src, src_gray, CV_BGR2GRAY);
blur(src_gray, src_gray, Size(3,3));

/// Create Window
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);

createTrackbar(" Canny thresh:", "Source", &thresh, max_thresh, thresh_callback);
thresh_callback(0, 0);

waitKey(0);
return(0);

}

/** @function thresh_callback */
void thresh_callback(int, void*)
{

Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;

/// Detect edges using canny
Canny(src_gray, canny_output, thresh, thresh*2, 3);
/// Find contours
findContours(canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));

/// Get the moments
vector<Moments> mu(contours.size());
for(int i = 0; i < contours.size(); i++)

{ mu[i] = moments(contours[i], false); }

/// Get the mass centers:
vector<Point2f> mc(contours.size());
for(int i = 0; i < contours.size(); i++)

{ mc[i] = Point2f(mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00); }

/// Draw contours
Mat drawing = Mat::zeros(canny_output.size(), CV_8UC3);
for(int i = 0; i< contours.size(); i++)

{
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
circle(drawing, mc[i], 4, color, -1, 8, 0);

}

/// Show in a window
namedWindow("Contours", CV_WINDOW_AUTOSIZE);
imshow("Contours", drawing);

/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
printf("\t Info: Area and Contour Length \n");
for(int i = 0; i< contours.size(); i++)

{

3.24. Image Moments 245

The OpenCV Tutorials, Release 2.4.0

printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(contours[i]), arcLength(contours[i], true));
Scalar color = Scalar(rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255));
drawContours(drawing, contours, i, color, 2, 8, hierarchy, 0, Point());
circle(drawing, mc[i], 4, color, -1, 8, 0);

}
}

Explanation

Result

1. Here it is:

3.25 Point Polygon Test

Goal

In this tutorial you will learn how to:

• Use the OpenCV function pointPolygonTest

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/** @function main */
int main(int argc, char** argv)
{

/// Create an image
const int r = 100;

246 Chapter 3. imgproc module. Image Processing

http://opencv.itseez.com/modules/imgproc/doc/structural_analysis_and_shape_descriptors.html?highlight=pointpolygontest#pointpolygontest
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/ShapeDescriptors/pointPolygonTest_demo.cpp

The OpenCV Tutorials, Release 2.4.0

Mat src = Mat::zeros(Size(4*r, 4*r), CV_8UC1);

/// Create a sequence of points to make a contour:
vector<Point2f> vert(6);

vert[0] = Point(1.5*r, 1.34*r);
vert[1] = Point(1*r, 2*r);
vert[2] = Point(1.5*r, 2.866*r);
vert[3] = Point(2.5*r, 2.866*r);
vert[4] = Point(3*r, 2*r);
vert[5] = Point(2.5*r, 1.34*r);

/// Draw it in src
for(int j = 0; j < 6; j++)

{ line(src, vert[j], vert[(j+1)%6], Scalar(255), 3, 8); }

/// Get the contours
vector<vector<Point> > contours; vector<Vec4i> hierarchy;
Mat src_copy = src.clone();

findContours(src_copy, contours, hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE);

/// Calculate the distances to the contour
Mat raw_dist(src.size(), CV_32FC1);

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{ raw_dist.at<float>(j,i) = pointPolygonTest(contours[0], Point2f(i,j), true); }
}

double minVal; double maxVal;
minMaxLoc(raw_dist, &minVal, &maxVal, 0, 0, Mat());
minVal = abs(minVal); maxVal = abs(maxVal);

/// Depicting the distances graphically
Mat drawing = Mat::zeros(src.size(), CV_8UC3);

for(int j = 0; j < src.rows; j++)
{ for(int i = 0; i < src.cols; i++)

{
if(raw_dist.at<float>(j,i) < 0)

{ drawing.at<Vec3b>(j,i)[0] = 255 - (int) abs(raw_dist.at<float>(j,i))*255/minVal; }
else if(raw_dist.at<float>(j,i) > 0)
{ drawing.at<Vec3b>(j,i)[2] = 255 - (int) raw_dist.at<float>(j,i)*255/maxVal; }

else
{ drawing.at<Vec3b>(j,i)[0] = 255; drawing.at<Vec3b>(j,i)[1] = 255; drawing.at<Vec3b>(j,i)[2] = 255; }

}
}

/// Create Window and show your results
char* source_window = "Source";
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, src);
namedWindow("Distance", CV_WINDOW_AUTOSIZE);
imshow("Distance", drawing);

waitKey(0);
return(0);

3.25. Point Polygon Test 247

The OpenCV Tutorials, Release 2.4.0

}

Explanation

Result

1. Here it is:

248 Chapter 3. imgproc module. Image Processing

CHAPTER

FOUR

HIGHGUI MODULE. HIGH LEVEL GUI
AND MEDIA

This section contains valuable tutorials about how to read/save your image/video files and how to use the built-in
graphical user interface of the library.

•

Title: Adding a Trackbar to our applications!
Compatibility: > OpenCV 2.0
Author: Ana Huamán
We will learn how to add a Trackbar to our applications

•

Title: Video Input with OpenCV and similarity measurement
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
You will learn how to read video streams, and how to calculate similarity
values such as PSNR or SSIM.

•

Title: Creating a video with OpenCV
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
Whenever you work with video feeds you may eventually want to save your
image processing result in a form of a new video file. Here’s how to do it.

249

The OpenCV Tutorials, Release 2.4.0

4.1 Adding a Trackbar to our applications!

• In the previous tutorials (about linear blending and the brightness and contrast adjustments) you might have
noted that we needed to give some input to our programs, such as α and beta. We accomplished that by
entering this data using the Terminal

• Well, it is time to use some fancy GUI tools. OpenCV provides some GUI utilities (highgui.h) for you. An
example of this is a Trackbar

• In this tutorial we will just modify our two previous programs so that they get the input information from the
trackbar.

Goals

In this tutorial you will learn how to:

• Add a Trackbar in an OpenCV window by using createTrackbar

Code

Let’s modify the program made in the tutorial Adding (blending) two images using OpenCV . We will let the user enter
the α value by using the Trackbar.

#include <cv.h>
#include <highgui.h>

using namespace cv;

/// Global Variables
const int alpha_slider_max = 100;
int alpha_slider;
double alpha;
double beta;

/// Matrices to store images
Mat src1;
Mat src2;
Mat dst;

/**
* @function on_trackbar

* @brief Callback for trackbar

*/
void on_trackbar(int, void*)
{
alpha = (double) alpha_slider/alpha_slider_max ;
beta = (1.0 - alpha);

addWeighted(src1, alpha, src2, beta, 0.0, dst);

imshow("Linear Blend", dst);

250 Chapter 4. highgui module. High Level GUI and Media

http://opencv.itseez.com/modules/highgui/doc/user_interface.html?highlight=createtrackbar#createtrackbar

The OpenCV Tutorials, Release 2.4.0

}

int main(int argc, char** argv)
{
/// Read image (same size, same type)
src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

if(!src1.data) { printf("Error loading src1 \n"); return -1; }
if(!src2.data) { printf("Error loading src2 \n"); return -1; }

/// Initialize values
alpha_slider = 0;

/// Create Windows
namedWindow("Linear Blend", 1);

/// Create Trackbars
char TrackbarName[50];
sprintf(TrackbarName, "Alpha x %d", alpha_slider_max);

createTrackbar(TrackbarName, "Linear Blend", &alpha_slider, alpha_slider_max, on_trackbar);

/// Show some stuff
on_trackbar(alpha_slider, 0);

/// Wait until user press some key
waitKey(0);
return 0;
}

Explanation

We only analyze the code that is related to Trackbar:

1. First, we load 02 images, which are going to be blended.

src1 = imread("../../images/LinuxLogo.jpg");
src2 = imread("../../images/WindowsLogo.jpg");

2. To create a trackbar, first we have to create the window in which it is going to be located. So:

namedWindow("Linear Blend", 1);

3. Now we can create the Trackbar:

createTrackbar(TrackbarName, "Linear Blend", &alpha_slider, alpha_slider_max, on_trackbar);

Note the following:

• Our Trackbar has a label TrackbarName

• The Trackbar is located in the window named “Linear Blend”

• The Trackbar values will be in the range from 0 to alpha_slider_max (the minimum limit is always zero).

• The numerical value of Trackbar is stored in alpha_slider

• Whenever the user moves the Trackbar, the callback function on_trackbar is called

4.1. Adding a Trackbar to our applications! 251

The OpenCV Tutorials, Release 2.4.0

4. Finally, we have to define the callback function on_trackbar

void on_trackbar(int, void*)
{
alpha = (double) alpha_slider/alpha_slider_max ;
beta = (1.0 - alpha);

addWeighted(src1, alpha, src2, beta, 0.0, dst);

imshow("Linear Blend", dst);
}

Note that:

• We use the value of alpha_slider (integer) to get a double value for alpha.

• alpha_slider is updated each time the trackbar is displaced by the user.

• We define src1, src2, dist, alpha, alpha_slider and beta as global variables, so they can be used everywhere.

Result

• Our program produces the following output:

• As a manner of practice, you can also add 02 trackbars for the program made in Changing the contrast and
brightness of an image!. One trackbar to set α and another for β. The output might look like:

252 Chapter 4. highgui module. High Level GUI and Media

The OpenCV Tutorials, Release 2.4.0

4.2 Video Input with OpenCV and similarity measurement

Goal

Today it is common to have a digital video recording system at your disposal. Therefore, you will eventually come to
the situation that you no longer process a batch of images, but video streams. These may be of two kinds: real-time
image feed (in the case of a webcam) or prerecorded and hard disk drive stored files. Luckily OpenCV threats these
two in the same manner, with the same C++ class. So here’s what you’ll learn in this tutorial:

• How to open and read video streams

• Two ways for checking image similarity: PSNR and SSIM

The source code

As a test case where to show off these using OpenCV I’ve created a small program that reads in two video
files and performs a similarity check between them. This is something you could use to check just how well a
new video compressing algorithms works. Let there be a reference (original) video like this small Megamind
clip and a compressed version of it. You may also find the source code and these video file in the
samples/cpp/tutorial_code/highgui/video-input-psnr-ssim/ folder of the OpenCV source library.

1 #include <iostream> // for standard I/O
2 #include <string> // for strings
3 #include <iomanip> // for controlling float print precision
4 #include <sstream> // string to number conversion
5

6 #include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
7 #include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
8 #include <opencv2/highgui/highgui.hpp> // OpenCV window I/O
9

10 using namespace std;

4.2. Video Input with OpenCV and similarity measurement 253

The OpenCV Tutorials, Release 2.4.0

11 using namespace cv;
12

13 double getPSNR (const Mat& I1, const Mat& I2);
14 Scalar getMSSIM(const Mat& I1, const Mat& I2);
15 int main(int argc, char *argv[], char *window_name)
16 {
17 if (argc != 5)
18 {
19 cout << "Not enough parameters" << endl;
20 return -1;
21 }
22 stringstream conv;
23

24 const string sourceReference = argv[1],sourceCompareWith = argv[2];
25 int psnrTriggerValue, delay;
26 conv << argv[3] << endl << argv[4]; // put in the strings
27 conv >> psnrTriggerValue >> delay;// take out the numbers
28

29 char c;
30 int frameNum = -1; // Frame counter
31

32 VideoCapture captRefrnc(sourceReference),
33 captUndTst(sourceCompareWith);
34

35 if (!captRefrnc.isOpened())
36 {
37 cout << "Could not open reference " << sourceReference << endl;
38 return -1;
39 }
40

41 if(!captUndTst.isOpened())
42 {
43 cout << "Could not open case test " << sourceCompareWith << endl;
44 return -1;
45 }
46

47 Size refS = Size((int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH),
48 (int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)),
49 uTSi = Size((int) captUndTst.get(CV_CAP_PROP_FRAME_WIDTH),
50 (int) captUndTst.get(CV_CAP_PROP_FRAME_HEIGHT));
51

52 if (refS != uTSi)
53 {
54 cout << "Inputs have different size!!! Closing." << endl;
55 return -1;
56 }
57

58 const char* WIN_UT = "Under Test";
59 const char* WIN_RF = "Reference";
60

61 // Windows
62 namedWindow(WIN_RF, CV_WINDOW_AUTOSIZE);
63 namedWindow(WIN_UT, CV_WINDOW_AUTOSIZE);
64 cvMoveWindow(WIN_RF, 400 , 0); //750, 2 (bernat =0)
65 cvMoveWindow(WIN_UT, refS.width, 0); //1500, 2
66

67 cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height
68 << " of nr#: " << captRefrnc.get(CV_CAP_PROP_FRAME_COUNT) << endl;

254 Chapter 4. highgui module. High Level GUI and Media

The OpenCV Tutorials, Release 2.4.0

69

70 cout << "PSNR trigger value " <<
71 setiosflags(ios::fixed) << setprecision(3) << psnrTriggerValue << endl;
72

73 Mat frameReference, frameUnderTest;
74 double psnrV;
75 Scalar mssimV;
76

77 while(true) //Show the image captured in the window and repeat
78 {
79 captRefrnc >> frameReference;
80 captUndTst >> frameUnderTest;
81

82 if(frameReference.empty() || frameUnderTest.empty())
83 {
84 cout << " < < < Game over! > > > ";
85 break;
86 }
87

88 ++frameNum;
89 cout <<"Frame:" << frameNum <<"# ";
90

91 ///////////////////////////////// PSNR //
92 psnrV = getPSNR(frameReference,frameUnderTest); //get PSNR
93 cout << setiosflags(ios::fixed) << setprecision(3) << psnrV << "dB";
94

95 //////////////////////////////////// MSSIM ///
96 if (psnrV < psnrTriggerValue && psnrV)
97 {
98 mssimV = getMSSIM(frameReference,frameUnderTest);
99

100 cout << " MSSIM: "
101 << " R " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[2] * 100 << "%"
102 << " G " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[1] * 100 << "%"
103 << " B " << setiosflags(ios::fixed) << setprecision(2) << mssimV.val[0] * 100 << "%";
104 }
105

106 cout << endl;
107

108 ////////////////////////////////// Show Image ///
109 imshow(WIN_RF, frameReference);
110 imshow(WIN_UT, frameUnderTest);
111

112 c = cvWaitKey(delay);
113 if (c == 27) break;
114 }
115

116 return 0;
117 }
118

119 double getPSNR(const Mat& I1, const Mat& I2)
120 {
121 Mat s1;
122 absdiff(I1, I2, s1); // |I1 - I2|
123 s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
124 s1 = s1.mul(s1); // |I1 - I2|^2
125

126 Scalar s = sum(s1); // sum elements per channel

4.2. Video Input with OpenCV and similarity measurement 255

The OpenCV Tutorials, Release 2.4.0

127

128 double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
129

130 if(sse <= 1e-10) // for small values return zero
131 return 0;
132 else
133 {
134 double mse =sse /(double)(I1.channels() * I1.total());
135 double psnr = 10.0*log10((255*255)/mse);
136 return psnr;
137 }
138 }
139

140 Scalar getMSSIM(const Mat& i1, const Mat& i2)
141 {
142 const double C1 = 6.5025, C2 = 58.5225;
143 /***************************** INITS **********************************/
144 int d = CV_32F;
145

146 Mat I1, I2;
147 i1.convertTo(I1, d); // cannot calculate on one byte large values
148 i2.convertTo(I2, d);
149

150 Mat I2_2 = I2.mul(I2); // I2^2
151 Mat I1_2 = I1.mul(I1); // I1^2
152 Mat I1_I2 = I1.mul(I2); // I1 * I2
153

154 /*************************** END INITS **********************************/
155

156 Mat mu1, mu2; // PRELIMINARY COMPUTING
157 GaussianBlur(I1, mu1, Size(11, 11), 1.5);
158 GaussianBlur(I2, mu2, Size(11, 11), 1.5);
159

160 Mat mu1_2 = mu1.mul(mu1);
161 Mat mu2_2 = mu2.mul(mu2);
162 Mat mu1_mu2 = mu1.mul(mu2);
163

164 Mat sigma1_2, sigma2_2, sigma12;
165

166 GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
167 sigma1_2 -= mu1_2;
168

169 GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
170 sigma2_2 -= mu2_2;
171

172 GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
173 sigma12 -= mu1_mu2;
174

175 ///////////////////////////////// FORMULA ////////////////////////////////
176 Mat t1, t2, t3;
177

178 t1 = 2 * mu1_mu2 + C1;
179 t2 = 2 * sigma12 + C2;
180 t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
181

182 t1 = mu1_2 + mu2_2 + C1;
183 t2 = sigma1_2 + sigma2_2 + C2;
184 t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

256 Chapter 4. highgui module. High Level GUI and Media

The OpenCV Tutorials, Release 2.4.0

185

186 Mat ssim_map;
187 divide(t3, t1, ssim_map); // ssim_map = t3./t1;
188

189 Scalar mssim = mean(ssim_map); // mssim = average of ssim map
190 return mssim;
191 }

How to read a video stream (online-camera or offline-file)?

Essentially, all the functionalities required for video manipulation is integrated in the VideoCapture C++ class. This
on itself builds on the FFmpeg open source library. This is a basic dependency of OpenCV so you shouldn’t need
to worry about this. A video is composed of a succession of images, we refer to these in the literature as frames. In
case of a video file there is a frame rate specifying just how long is between two frames. While for the video cameras
usually there is a limit of just how many frames they can digitalize per second, this property is less important as at any
time the camera sees the current snapshot of the world.

The first task you need to do is to assign to a VideoCapture class its source. You can do this either via the constructor
or its open function. If this argument is an integer then you will bind the class to a camera, a device. The number
passed here is the ID of the device, assigned by the operating system. If you have a single camera attached to your
system its ID will probably be zero and further ones increasing from there. If the parameter passed to these is a string
it will refer to a video file, and the string points to the location and name of the file. For example, to the upper source
code a valid command line is:

video/Megamind.avi video/Megamind_bug.avi 35 10

We do a similarity check. This requires a reference and a test case video file. The first two arguments refer to this.
Here we use a relative address. This means that the application will look into its current working directory and open
the video folder and try to find inside this the Megamind.avi and the Megamind_bug.avi.

const string sourceReference = argv[1],sourceCompareWith = argv[2];

VideoCapture captRefrnc(sourceReference);
// or
VideoCapture captUndTst;
captUndTst.open(sourceCompareWith);

To check if the binding of the class to a video source was successful or not use the isOpened function:

if (!captRefrnc.isOpened())
{
cout << "Could not open reference " << sourceReference << endl;
return -1;
}

Closing the video is automatic when the objects destructor is called. However, if you want to close it before this you
need to call its release function. The frames of the video are just simple images. Therefore, we just need to extract
them from the VideoCapture object and put them inside a Mat one. The video streams are sequential. You may get the
frames one after another by the read or the overloaded >> operator:

Mat frameReference, frameUnderTest;
captRefrnc >> frameReference;
captUndTst.open(frameUnderTest);

The upper read operations will leave empty the Mat objects if no frame could be acquired (either cause the video
stream was closed or you got to the end of the video file). We can check this with a simple if:

4.2. Video Input with OpenCV and similarity measurement 257

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-videocapture
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-open
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#video-isopened
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-release
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-read

The OpenCV Tutorials, Release 2.4.0

if(frameReference.empty() || frameUnderTest.empty())
{
// exit the program
}

A read method is made of a frame grab and a decoding applied on that. You may call explicitly these two by using the
grab and then the retrieve functions.

Videos have many-many information attached to them besides the content of the frames. These are usually numbers,
however in some case it may be short character sequences (4 bytes or less). Due to this to acquire these information
there is a general function named get that returns double values containing these properties. Use bitwise operations to
decode the characters from a double type and conversions where valid values are only integers. Its single argument is
the ID of the queried property. For example, here we get the size of the frames in the reference and test case video file;
plus the number of frames inside the reference.

Size refS = Size((int) captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH),
(int) captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)),

cout << "Reference frame resolution: Width=" << refS.width << " Height=" << refS.height
<< " of nr#: " << captRefrnc.get(CV_CAP_PROP_FRAME_COUNT) << endl;

When you are working with videos you may often want to control these values yourself. To do this there is a set
function. Its first argument remains the name of the property you want to change and there is a second of double type
containing the value to be set. It will return true if it succeeds and false otherwise. Good examples for this is seeking
in a video file to a given time or frame:

captRefrnc.set(CV_CAP_PROP_POS_MSEC, 1.2); // go to the 1.2 second in the video
captRefrnc.set(CV_CAP_PROP_POS_FRAMES, 10); // go to the 10th frame of the video
// now a read operation would read the frame at the set position

For properties you can read and change look into the documentation of the get and set functions.

Image similarity - PSNR and SSIM

We want to check just how imperceptible our video converting operation went, therefore we need a system to check
frame by frame the similarity or differences. The most common algorithm used for this is the PSNR (aka Peak signal-
to-noise ratio). The simplest definition of this starts out from the mean squad error. Let there be two images: I1 and
I2; with a two dimensional size i and j, composed of c number of channels.

MSE =
1

c ∗ i ∗ j
∑

(I1 − I2)
2

Then the PSNR is expressed as:

PSNR = 10 · log10

(
MAX2I
MSE

)
Here theMAX2I is the maximum valid value for a pixel. In case of the simple single byte image per pixel per channel
this is 255. When two images are the same the MSE will give zero, resulting in an invalid divide by zero operation in
the PSNR formula. In this case the PSNR is undefined and as we’ll need to handle this case separately. The transition
to a logarithmic scale is made because the pixel values have a very wide dynamic range. All this translated to OpenCV
and a C++ function looks like:

double getPSNR(const Mat& I1, const Mat& I2)
{
Mat s1;
absdiff(I1, I2, s1); // |I1 - I2|

258 Chapter 4. highgui module. High Level GUI and Media

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-grab
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-retrieve
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-set
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-get
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videocapture-set

The OpenCV Tutorials, Release 2.4.0

s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
s1 = s1.mul(s1); // |I1 - I2|^2

Scalar s = sum(s1); // sum elements per channel

double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels

if(sse <= 1e-10) // for small values return zero
return 0;

else
{

double mse =sse /(double)(I1.channels() * I1.total());
double psnr = 10.0*log10((255*255)/mse);
return psnr;

}
}

Typically result values are anywhere between 30 and 50 for video compression, where higher is better. If the images
significantly differ you’ll get much lower ones like 15 and so. This similarity check is easy and fast to calculate,
however in practice it may turn out somewhat inconsistent with human eye perception. The structural similarity
algorithm aims to correct this.

Describing the methods goes well beyond the purpose of this tutorial. For that I invite you to read the article introducing
it. Nevertheless, you can get a good image of it by looking at the OpenCV implementation below.

See Also:

SSIM is described more in-depth in the: “Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp.
600-612, Apr. 2004.” article.

Scalar getMSSIM(const Mat& i1, const Mat& i2)
{
const double C1 = 6.5025, C2 = 58.5225;
/***************************** INITS **********************************/
int d = CV_32F;

Mat I1, I2;
i1.convertTo(I1, d); // cannot calculate on one byte large values
i2.convertTo(I2, d);

Mat I2_2 = I2.mul(I2); // I2^2
Mat I1_2 = I1.mul(I1); // I1^2
Mat I1_I2 = I1.mul(I2); // I1 * I2

/***********************PRELIMINARY COMPUTING ******************************/

Mat mu1, mu2; //
GaussianBlur(I1, mu1, Size(11, 11), 1.5);
GaussianBlur(I2, mu2, Size(11, 11), 1.5);

Mat mu1_2 = mu1.mul(mu1);
Mat mu2_2 = mu2.mul(mu2);
Mat mu1_mu2 = mu1.mul(mu2);

Mat sigma1_2, sigma2_2, sigma12;

GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
sigma1_2 -= mu1_2;

4.2. Video Input with OpenCV and similarity measurement 259

The OpenCV Tutorials, Release 2.4.0

GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
sigma2_2 -= mu2_2;

GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
sigma12 -= mu1_mu2;

///////////////////////////////// FORMULA ////////////////////////////////
Mat t1, t2, t3;

t1 = 2 * mu1_mu2 + C1;
t2 = 2 * sigma12 + C2;
t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))

t1 = mu1_2 + mu2_2 + C1;
t2 = sigma1_2 + sigma2_2 + C2;
t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))

Mat ssim_map;
divide(t3, t1, ssim_map); // ssim_map = t3./t1;

Scalar mssim = mean(ssim_map); // mssim = average of ssim map
return mssim;
}

This will return a similarity index for each channel of the image. This value is between zero and one, where one
corresponds to perfect fit. Unfortunately, the many Gaussian blurring is quite costly, so while the PSNR may work
in a real time like environment (24 frame per second) this will take significantly more than to accomplish similar
performance results.

Therefore, the source code presented at the start of the tutorial will perform the PSNR measurement for each frame,
and the SSIM only for the frames where the PSNR falls below an input value. For visualization purpose we show both
images in an OpenCV window and print the PSNR and MSSIM values to the console. Expect to see something like:

260 Chapter 4. highgui module. High Level GUI and Media

The OpenCV Tutorials, Release 2.4.0

You may observe a runtime instance of this on the YouTube here.

4.3 Creating a video with OpenCV

Goal

Whenever you work with video feeds you may eventually want to save your image processing result in a form of a
new video file. For simple video outputs you can use the OpenCV built-in VideoWriter class, designed for this.

• How to create a video file with OpenCV

• What type of video files you can create with OpenCV

• How to extract a given color channel from a video

As a simple demonstration I’ll just extract one of the RGB color channels of an input video file into a new video. You
can control the flow of the application from its console line arguments:

• The first argument points to the video file to work on

• The second argument may be one of the characters: R G B. This will specify which of the channels to extract.

• The last argument is the character Y (Yes) or N (No). If this is no, the codec used for the input video file will be
the same as for the output. Otherwise, a window will pop up and allow you to select yourself the codec to use.

For example, a valid command line would look like:

video-write.exe video/Megamind.avi R Y

The source code

You may also find the source code and these video file in the samples/cpp/tutorial_code/highgui/video-write/
folder of the OpenCV source library or download it from here.

1 #include <iostream> // for standard I/O
2 #include <string> // for strings
3

4 #include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat)
5 #include <opencv2/highgui/highgui.hpp> // Video write
6

7 using namespace std;
8 using namespace cv;
9 int main(int argc, char *argv[], char *window_name)

10 {
11 if (argc != 4)
12 {
13 cout << "Not enough parameters" << endl;
14 return -1;
15 }
16

17 const string source = argv[1]; // the source file name
18 const bool askOutputType = argv[3][0] ==’Y’; // If false it will use the inputs codec type
19

20 VideoCapture inputVideo(source); // Open input
21 if (!inputVideo.isOpened())
22 {
23 cout << "Could not open the input video." << source << endl;

4.3. Creating a video with OpenCV 261

https://www.youtube.com/watch?v=iOcNljutOgg
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videowriter-videowriter

The OpenCV Tutorials, Release 2.4.0

24 return -1;
25 }
26

27 string::size_type pAt = source.find_last_of(’.’); // Find extension point
28 const string NAME = source.substr(0, pAt) + argv[2][0] + ".avi"; // Form the new name with container
29 int ex = static_cast<int>(inputVideo.get(CV_CAP_PROP_FOURCC)); // Get Codec Type- Int form
30

31 // Transform from int to char via Bitwise operators
32 char EXT[] = {ex & 0XFF , (ex & 0XFF00) >> 8,(ex & 0XFF0000) >> 16,(ex & 0XFF000000) >> 24, 0};
33

34 Size S = Size((int) inputVideo.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size
35 (int) inputVideo.get(CV_CAP_PROP_FRAME_HEIGHT));
36

37 VideoWriter outputVideo; // Open the output
38 if (askOutputType)
39 outputVideo.open(NAME , ex=-1, inputVideo.get(CV_CAP_PROP_FPS),S, true);
40 else
41 outputVideo.open(NAME , ex, inputVideo.get(CV_CAP_PROP_FPS),S, true);
42

43 if (!outputVideo.isOpened())
44 {
45 cout << "Could not open the output video for write: " << source << endl;
46 return -1;
47 }
48

49 union { int v; char c[5];} uEx ;
50 uEx.v = ex; // From Int to char via union
51 uEx.c[4]=’\0’;
52

53 cout << "Input frame resolution: Width=" << S.width << " Height=" << S.height
54 << " of nr#: " << inputVideo.get(CV_CAP_PROP_FRAME_COUNT) << endl;
55 cout << "Input codec type: " << EXT << endl;
56

57 int channel = 2; // Select the channel to save
58 switch(argv[2][0])
59 {
60 case ’R’ : {channel = 2; break;}
61 case ’G’ : {channel = 1; break;}
62 case ’B’ : {channel = 0; break;}
63 }
64 Mat src,res;
65 vector<Mat> spl;
66

67 while(true) //Show the image captured in the window and repeat
68 {
69 inputVideo >> src; // read
70 if(src.empty()) break; // check if at end
71

72 split(src, spl); // process - extract only the correct channel
73 for(int i =0; i < 3; ++i)
74 if (i != channel)
75 spl[i] = Mat::zeros(S, spl[0].type());
76 merge(spl, res);
77

78 //outputVideo.write(res); //save or
79 outputVideo << res;
80 }
81

262 Chapter 4. highgui module. High Level GUI and Media

The OpenCV Tutorials, Release 2.4.0

82 cout << "Finished writing" << endl;
83 return 0;
84 }

The structure of a video

For start, you should have an idea of just how a video file looks. Every video file in itself is a container. The type of
the container is expressed in the files extension (for example avi, mov or mkv). This contains multiple elements like:
video feeds, audio feeds or other tracks (like for example subtitles). How these feeds are stored is determined by the
codec used for each one of them. In case of the audio tracks commonly used codecs are mp3 or aac. For the video
files the list is somehow longer and includes names such as XVID, DIVX, H264 or LAGS (Lagarith Lossless Codec).
The full list of codecs you may use on a system depends on just what one you have installed.

As you can see things can get really complicated with videos. However, OpenCV is mainly a computer vision library,
not a video stream, codec and write one. Therefore, the developers tried to keep this part as simple as possible. Due
to this OpenCV for video containers supports only the avi extension, its first version. A direct limitation of this is that
you cannot save a video file larger than 2 GB. Furthermore you can only create and expand a single video track inside
the container. No audio or other track editing support here. Nevertheless, any video codec present on your system
might work. If you encounter some of these limitations you will need to look into more specialized video writing
libraries such as FFMpeg or codecs as HuffYUV, CorePNG and LCL. As an alternative, create the video track with
OpenCV and expand it with sound tracks or convert it to other formats by using video manipulation programs such as
VirtualDub or AviSynth.

The VideoWriter class

The content written here builds on the assumption you already read the Video Input with OpenCV and similarity
measurement tutorial and you know how to read video files.

To create a video file you just need to create an instance of the VideoWriter class. You can specify its properties either
via parameters in the constructor or later on via the open function. Either way, the parameters are the same:

1. The name of the output that contains the container type in its extension. At the moment only avi is supported.
We construct this from the input file, add to this the name of the channel to use, and finish it off with the container
extension.

const string source = argv[1]; // the source file name
string::size_type pAt = source.find_last_of(’.’); // Find extension point
const string NAME = source.substr(0, pAt) + argv[2][0] + ".avi"; // Form the new name with container

2. The codec to use for the video track. Now all the video codecs have a unique short name of maximum four
characters. Hence, the XVID, DIVX or H264 names. This is called a four character code. You may also ask this

4.3. Creating a video with OpenCV 263

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videowriter-videowriter
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videowriter-open

The OpenCV Tutorials, Release 2.4.0

from an input video by using its get function. Because the get function is a general function it always returns
double values. A double value is stored on 64 bits. Four characters are four bytes, meaning 32 bits. These four
characters are coded in the lower 32 bits of the double. A simple way to throw away the upper 32 bits would be
to just convert this value to int:

VideoCapture inputVideo(source); // Open input
int ex = static_cast<int>(inputVideo.get(CV_CAP_PROP_FOURCC)); // Get Codec Type- Int form

OpenCV internally works with this integer type and expect this as its second parameter. Now to convert from the
integer form to string we may use two methods: a bitwise operator and a union method. The first one extracting
from an int the characters looks like (an “and” operation, some shifting and adding a 0 at the end to close the
string):

char EXT[] = {ex & 0XFF , (ex & 0XFF00) >> 8,(ex & 0XFF0000) >> 16,(ex & 0XFF000000) >> 24, 0};

You can do the same thing with the union as:

union { int v; char c[5];} uEx ;
uEx.v = ex; // From Int to char via union
uEx.c[4]=’\0’;

The advantage of this is that the conversion is done automatically after assigning, while for the bitwise operator
you need to do the operations whenever you change the codec type. In case you know the codecs four character
code beforehand, you can use the CV_FOURCC macro to build the integer:

If you pass for this argument minus one than a window will pop up at runtime that contains all the codec installed
on your system and ask you to select the one to use:

3. The frame per second for the output video. Again, here I keep the input videos frame per second by using the
get function.

4. The size of the frames for the output video. Here too I keep the input videos frame size per second by using the
get function.

5. The final argument is an optional one. By default is true and says that the output will be a colorful one (so for
write you will send three channel images). To create a gray scale video pass a false parameter here.

Here it is, how I use it in the sample:

VideoWriter outputVideo;
Size S = Size((int) inputVideo.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size

(int) inputVideo.get(CV_CAP_PROP_FRAME_HEIGHT));

outputVideo.open(NAME , ex, inputVideo.get(CV_CAP_PROP_FPS),S, true);

Afterwards, you use the isOpened() function to find out if the open operation succeeded or not. The video file au-
tomatically closes when the VideoWriter object is destroyed. After you open the object with success you can send
the frames of the video in a sequential order by using the write function of the class. Alternatively, you can use its
overloaded operator << :

264 Chapter 4. highgui module. High Level GUI and Media

http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videowriter-isopened
http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#videowriter-write

The OpenCV Tutorials, Release 2.4.0

outputVideo.write(res); //or
outputVideo << res;

Extracting a color channel from an RGB image means to set to zero the RGB values of the other channels. You can
either do this with image scanning operations or by using the split and merge operations. You first split the channels
up into different images, set the other channels to zero images of the same size and type and finally merge them back:

split(src, spl); // process - extract only the correct channel
for(int i =0; i < 3; ++i)

if (i != channel)
spl[i] = Mat::zeros(S, spl[0].type());

merge(spl, res);

Put all this together and you’ll get the upper source code, whose runtime result will show something around the idea:

You may observe a runtime instance of this on the YouTube here.

4.3. Creating a video with OpenCV 265

https://www.youtube.com/watch?v=jpBwHxsl1_0

The OpenCV Tutorials, Release 2.4.0

266 Chapter 4. highgui module. High Level GUI and Media

CHAPTER

FIVE

CALIB3D MODULE. CAMERA
CALIBRATION AND 3D

RECONSTRUCTION

Although we got most of our images in a 2D format they do come from a 3D world. Here you will learn how to find
out from the 2D images information about the 3D world.

•

Title: Camera calibration with square chessboard
Compatibility: > OpenCV 2.0
Author: Victor Eruhimov
You will use some chessboard images to calibrate your camera.

•

Title: Camera calibration With OpenCV
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
Camera calibration by using either the chessboard, circle or the asymmet-
rical circle pattern. Get the images either from a camera attached, a video
file or from an image collection.

267

The OpenCV Tutorials, Release 2.4.0

5.1 Camera calibration with square chessboard

The goal of this tutorial is to learn how to calibrate a camera given a set of chessboard images.

Test data: use images in your data/chess folder.

1. Compile opencv with samples by setting BUILD_EXAMPLES to ON in cmake configuration.

2. Go to bin folder and use imagelist_creator to create an XML/YAML list of your images.

3. Then, run calibration sample to get camera parameters. Use square size equal to 3cm.

Pose estimation

Now, let us write a code that detects a chessboard in a new image and finds its distance from the camera. You can
apply the same method to any object with known 3D geometry that you can detect in an image.

Test data: use chess_test*.jpg images from your data folder.

1. Create an empty console project. Load a test image:

Mat img = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);

2. Detect a chessboard in this image using findChessboard function.

bool found = findChessboardCorners(img, boardSize, ptvec, CV_CALIB_CB_ADAPTIVE_THRESH);

3. Now, write a function that generates a vector<Point3f> array of 3d coordinates of a chessboard in any coor-
dinate system. For simplicity, let us choose a system such that one of the chessboard corners is in the origin and
the board is in the plane z = 0.

4. Read camera parameters from XML/YAML file:

FileStorage fs(filename, FileStorage::READ);
Mat intrinsics, distortion;
fs["camera_matrix"] >> intrinsics;
fs["distortion_coefficients"] >> distortion;

5. Now we are ready to find chessboard pose by running solvePnP:

vector<Point3f> boardPoints;
// fill the array
...

solvePnP(Mat(boardPoints), Mat(foundBoardCorners), cameraMatrix,
distCoeffs, rvec, tvec, false);

6. Calculate reprojection error like it is done in calibration sample (see
opencv/samples/cpp/calibration.cpp, function computeReprojectionErrors).

Question: how to calculate the distance from the camera origin to any of the corners?

5.2 Camera calibration With OpenCV

Cameras have been around for a long-long time. However, with the introduction of the cheap pinhole cameras in the
late 20th century, they became a common occurrence in our everyday life. Unfortunately, this cheapness comes with
its price: significant distortion. Luckily, these are constants and with a calibration and some remapping we can correct

268 Chapter 5. calib3d module. Camera calibration and 3D reconstruction

The OpenCV Tutorials, Release 2.4.0

this. Furthermore, with calibration you may also determinate the relation between the camera’s natural units (pixels)
and the real world units (for example millimeters).

Theory

For the distortion OpenCV takes into account the radial and tangential factors. For the radial one uses the following
formula:

xcorrected = x(1+ k1r
2 + k2r

4 + k3r6

ycorrected = y(1+ k1r
2 + k2r

4 + k3r6

So for an old pixel point at (x, y) coordinate in the input image, for a corrected output image its position will be
(xcorrectedycorrected) . The presence of the radial distortion manifests in form of the “barrel” or “fish-eye” effect.

Tangential distortion occurs because the image taking lenses are not perfectly parallel to the imaging plane. Correcting
this is made via the formulas:

xcorrected = x+ [2p1y+ p2(r
2 + 2x2)]

ycorrected = y+ [2p1(r
2 + 2y2) + 2p2x]

So we have five distortion parameters, which in OpenCV are organized in a 5 column one row matrix:

Distortioncoefficients = (k1 k2 p1 p2 k3)

Now for the unit conversion, we use the following formula:xy
w

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z

Here the presence of the w is cause we use a homography coordinate system (and w = Z). The unknown parameters
are fx and fy (camera focal lengths) and (cx, cy) what are the optical centers expressed in pixels coordinates. If for
both axes a common focal length is used with a given a aspect ratio (usually 1), then fy = fx ∗ a and in the upper
formula we will have a single f focal length. The matrix containing these four parameters is referred to as the camera
matrix. While the distortion coefficients are the same regardless of the camera resolutions used, these should be scaled
along with the current resolution from the calibrated resolution.

The process of determining these two matrices is the calibration. Calculating these parameters is done by some basic
geometrical equations. The equations used depend on the calibrating objects used. Currently OpenCV supports three
types of object for calibration:

• Classical black-white chessboard

• Symmetrical circle pattern

• Asymmetrical circle pattern

Basically, you need to take snapshots of these patterns with your camera and let OpenCV find them. Each found
pattern equals in a new equation. To solve the equation you need at least a predetermined number of pattern snapshots
to form a well-posed equation system. This number is higher for the chessboard pattern and less for the circle ones.
For example, in theory the chessboard one requires at least two. However, in practice we have a good amount of noise
present in our input images, so for good results you will probably want at least 10 good snapshots of the input pattern
in different position.

Goal

The sample application will:

5.2. Camera calibration With OpenCV 269

The OpenCV Tutorials, Release 2.4.0

• Determinate the distortion matrix

• Determinate the camera matrix

• Input from Camera, Video and Image file list

• Configuration from XML/YAML file

• Save the results into XML/YAML file

• Calculate re-projection error

Source code

You may also find the source code in the samples/cpp/tutorial_code/calib3d/camera_calibration/ folder
of the OpenCV source library or download it from here. The program has a single argument. The name of its
configuration file. If none given it will try to open the one named “default.xml”. Here’s a sample configuration
file in XML format. In the configuration file you may choose to use as input a camera, a video file or an image list.
If you opt for the later one, you need to create a configuration file where you enumerate the images to use. Here’s
an example of this. The important part to remember is that the images needs to be specified using the absolute
path or the relative one from your applications working directory. You may find all this in the beforehand mentioned
directory.

The application starts up with reading the settings from the configuration file. Although, this is an important part of it,
it has nothing to do with the subject of this tutorial: camera calibration. Therefore, I’ve chosen to do not post here the
code part for that. The technical background on how to do this you can find in the File Input and Output using XML
and YAML files tutorial.

Explanation

1. Read the settings.

Settings s;
const string inputSettingsFile = argc > 1 ? argv[1] : "default.xml";
FileStorage fs(inputSettingsFile, FileStorage::READ); // Read the settings
if (!fs.isOpened())
{

cout << "Could not open the configuration file: \"" << inputSettingsFile << "\"" << endl;
return -1;

}
fs["Settings"] >> s;
fs.release(); // close Settings file

if (!s.goodInput)
{

cout << "Invalid input detected. Application stopping. " << endl;
return -1;

}

For this I’ve used simple OpenCV class input operation. After reading the file I’ve an additional post-process
function that checks for the validity of the input. Only if all of them are good will be the goodInput variable
true.

2. Get next input, if it fails or we have enough of them calibrate. After this we have a big loop where we do the
following operations: get the next image from the image list, camera or video file. If this fails or we have enough
images we run the calibration process. In case of image we step out of the loop and otherwise the remaining
frames will be undistorted (if the option is set) via changing from DETECTION mode to CALIBRATED one.

270 Chapter 5. calib3d module. Camera calibration and 3D reconstruction

The OpenCV Tutorials, Release 2.4.0

for(int i = 0;;++i)
{

Mat view;
bool blinkOutput = false;

view = s.nextImage();

//----- If no more image, or got enough, then stop calibration and show result -------------
if(mode == CAPTURING && imagePoints.size() >= (unsigned)s.nrFrames)
{

if(runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints))
mode = CALIBRATED;

else
mode = DETECTION;

}
if(view.empty()) // If no more images then run calibration, save and stop loop.
{

if(imagePoints.size() > 0)
runCalibrationAndSave(s, imageSize, cameraMatrix, distCoeffs, imagePoints);

break;
imageSize = view.size(); // Format input image.
if(s.flipVertical) flip(view, view, 0);
}

For some cameras we may need to flip the input image. Here we do this too.

3. Find the pattern in the current input. The formation of the equations I mentioned above consists of finding
the major patterns in the input: in case of the chessboard this is their corners of the squares and for the circles,
well, the circles itself. The position of these will form the result and is collected into the pointBuf vector.

vector<Point2f> pointBuf;

bool found;
switch(s.calibrationPattern) // Find feature points on the input format
{
case Settings::CHESSBOARD:

found = findChessboardCorners(view, s.boardSize, pointBuf,
CV_CALIB_CB_ADAPTIVE_THRESH | CV_CALIB_CB_FAST_CHECK | CV_CALIB_CB_NORMALIZE_IMAGE);
break;

case Settings::CIRCLES_GRID:
found = findCirclesGrid(view, s.boardSize, pointBuf);
break;

case Settings::ASYMMETRIC_CIRCLES_GRID:
found = findCirclesGrid(view, s.boardSize, pointBuf, CALIB_CB_ASYMMETRIC_GRID);
break;

}

Depending on the type of the input pattern you use either the findChessboardCorners or the findCirclesGrid
function. For both of them you pass on the current image, the size of the board and you’ll get back the positions
of the patterns. Furthermore, they return a boolean variable that states if in the input we could find or not the
pattern (we only need to take into account images where this is true!).

Then again in case of cameras we only take camera images after an input delay time passed. This is in or-
der to allow for the user to move the chessboard around and as getting different images. Same images mean
same equations, and same equations at the calibration will form an ill-posed problem, so the calibration will
fail. For square images the position of the corners are only approximate. We may improve this by calling the
cornerSubPix function. This way will get a better calibration result. After this we add a valid inputs result to
the imagePoints vector to collect all of the equations into a single container. Finally, for visualization feedback

5.2. Camera calibration With OpenCV 271

http://opencv.itseez.com/trunk/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findchessboardcorners
http://opencv.itseez.com/trunk/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findcirclesgrid
http://opencv.itseez.com/trunk/modules/imgproc/doc/feature_detection.html#cornersubpix

The OpenCV Tutorials, Release 2.4.0

purposes we will draw the found points on the input image with the findChessboardCorners function.

if (found) // If done with success,
{

// improve the found corners’ coordinate accuracy for chessboard
if(s.calibrationPattern == Settings::CHESSBOARD)
{

Mat viewGray;
cvtColor(view, viewGray, CV_BGR2GRAY);
cornerSubPix(viewGray, pointBuf, Size(11,11),
Size(-1,-1), TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1));

}

if(mode == CAPTURING && // For camera only take new samples after delay time
(!s.inputCapture.isOpened() || clock() - prevTimestamp > s.delay*1e-3*CLOCKS_PER_SEC))

{
imagePoints.push_back(pointBuf);
prevTimestamp = clock();
blinkOutput = s.inputCapture.isOpened();

}

// Draw the corners.
drawChessboardCorners(view, s.boardSize, Mat(pointBuf), found);

}

4. Show state and result for the user, plus command line control of the application. The showing part consists
of a text output on the live feed, and for video or camera input to show the “capturing” frame we simply bitwise
negate the input image.

//----------------------------- Output Text --
string msg = (mode == CAPTURING) ? "100/100" :

mode == CALIBRATED ? "Calibrated" : "Press ’g’ to start";
int baseLine = 0;
Size textSize = getTextSize(msg, 1, 1, 1, &baseLine);
Point textOrigin(view.cols - 2*textSize.width - 10, view.rows - 2*baseLine - 10);

if(mode == CAPTURING)
{

if(s.showUndistorsed)
msg = format("%d/%d Undist", (int)imagePoints.size(), s.nrFrames);

else
msg = format("%d/%d", (int)imagePoints.size(), s.nrFrames);

}

putText(view, msg, textOrigin, 1, 1, mode == CALIBRATED ? GREEN : RED);

if(blinkOutput)
bitwise_not(view, view);

If we only ran the calibration and got the camera matrix plus the distortion coefficients we may just as correct
the image with the undistort function:

//------------------------- Video capture output undistorted ------------------------------
if(mode == CALIBRATED && s.showUndistorsed)
{

Mat temp = view.clone();
undistort(temp, view, cameraMatrix, distCoeffs);

}
//------------------------------ Show image and check for input commands -------------------

272 Chapter 5. calib3d module. Camera calibration and 3D reconstruction

http://opencv.itseez.com/trunk/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#drawchessboardcorners
http://opencv.itseez.com/trunk/modules/imgproc/doc/geometric_transformations.html#undistort

The OpenCV Tutorials, Release 2.4.0

imshow("Image View", view);

Then we wait for an input key and if this is u we toggle the distortion removal, if it is g we start all over the
detection process (or simply start it), and finally for the ESC key quit the application:

char key = waitKey(s.inputCapture.isOpened() ? 50 : s.delay);
if(key == ESC_KEY)

break;

if(key == ’u’ && mode == CALIBRATED)
s.showUndistorsed = !s.showUndistorsed;

if(s.inputCapture.isOpened() && key == ’g’)
{

mode = CAPTURING;
imagePoints.clear();

}

5. Show the distortion removal for the images too. When you work with an image list it is not possible to
remove the distortion inside the loop. Therefore, you must append this after the loop. Taking advantage of this
now I’ll expand the undistort function, which is in fact first a call of the initUndistortRectifyMap to find out the
transformation matrices and then doing the transformation with the remap function. Because, after a successful
calibration the map calculation needs to be done only once, by using this expanded form you may speed up your
application:

if(s.inputType == Settings::IMAGE_LIST && s.showUndistorsed)
{

Mat view, rview, map1, map2;
initUndistortRectifyMap(cameraMatrix, distCoeffs, Mat(),

getOptimalNewCameraMatrix(cameraMatrix, distCoeffs, imageSize, 1, imageSize, 0),
imageSize, CV_16SC2, map1, map2);

for(int i = 0; i < (int)s.imageList.size(); i++)
{

view = imread(s.imageList[i], 1);
if(view.empty())

continue;
remap(view, rview, map1, map2, INTER_LINEAR);
imshow("Image View", rview);
char c = waitKey();
if(c == ESC_KEY || c == ’q’ || c == ’Q’)

break;
}

}

The calibration and save

Because the calibration needs to be only once per camera it makes sense to save them after a successful calibration.
This way later on you can just load these values into your program. Due to this we first make the calibration, and if
it succeeds we save the result into an OpenCV style XML or YAML file, depending on the extension you give in the
configuration file.

Therefore in the first function we just split up these two processes. Because we want to save many of the calibration
variables we’ll create these variables here and pass on both of them to the calibration and saving function. Again, I’ll
not show the saving part as that has little in common with the calibration. Explore the source file in order to find out
how and what:

5.2. Camera calibration With OpenCV 273

http://opencv.itseez.com/trunk/modules/imgproc/doc/geometric_transformations.html#undistort
http://opencv.itseez.com/trunk/modules/imgproc/doc/geometric_transformations.html#initundistortrectifymap
http://opencv.itseez.com/trunk/modules/imgproc/doc/geometric_transformations.html#remap

The OpenCV Tutorials, Release 2.4.0

bool runCalibrationAndSave(Settings& s, Size imageSize, Mat& cameraMatrix, Mat& distCoeffs,vector<vector<Point2f> > imagePoints)
{
vector<Mat> rvecs, tvecs;
vector<float> reprojErrs;
double totalAvgErr = 0;

bool ok = runCalibration(s,imageSize, cameraMatrix, distCoeffs, imagePoints, rvecs, tvecs,
reprojErrs, totalAvgErr);

cout << (ok ? "Calibration succeeded" : "Calibration failed")
<< ". avg re projection error = " << totalAvgErr ;

if(ok) // save only if the calibration was done with success
saveCameraParams(s, imageSize, cameraMatrix, distCoeffs, rvecs ,tvecs, reprojErrs,

imagePoints, totalAvgErr);
return ok;
}

We do the calibration with the help of the calibrateCamera function. This has the following parameters:

• The object points. This is a vector of Point3f vector that for each input image describes how should the pattern
look. If we have a planar pattern (like a chessboard) then we can simply set all Z coordinates to zero. This is
a collection of the points where these important points are present. Because, we use a single pattern for all the
input images we can calculate this just once and multiply it for all the other input views. We calculate the corner
points with the calcBoardCornerPositions function as:

void calcBoardCornerPositions(Size boardSize, float squareSize, vector<Point3f>& corners,
Settings::Pattern patternType /*= Settings::CHESSBOARD*/)

{
corners.clear();

switch(patternType)
{
case Settings::CHESSBOARD:
case Settings::CIRCLES_GRID:

for(int i = 0; i < boardSize.height; ++i)
for(int j = 0; j < boardSize.width; ++j)

corners.push_back(Point3f(float(j*squareSize), float(i*squareSize), 0));
break;

case Settings::ASYMMETRIC_CIRCLES_GRID:
for(int i = 0; i < boardSize.height; i++)

for(int j = 0; j < boardSize.width; j++)
corners.push_back(Point3f(float((2*j + i % 2)*squareSize), float(i*squareSize), 0));

break;
}
}

And then multiply it as:

vector<vector<Point3f> > objectPoints(1);
calcBoardCornerPositions(s.boardSize, s.squareSize, objectPoints[0], s.calibrationPattern);
objectPoints.resize(imagePoints.size(),objectPoints[0]);

• The image points. This is a vector of Point2f vector that for each input image contains where the important
points (corners for chessboard, and center of circles for the circle patterns) were found. We already collected
this from what the findChessboardCorners or the findCirclesGrid function returned. We just need to pass it on.

• The size of the image acquired from the camera, video file or the images.

• The camera matrix. If we used the fix aspect ratio option we need to set the fx to zero:

274 Chapter 5. calib3d module. Camera calibration and 3D reconstruction

http://opencv.itseez.com/trunk/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#calibratecamera
http://opencv.itseez.com/trunk/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findchessboardcorners
http://opencv.itseez.com/trunk/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#findcirclesgrid

The OpenCV Tutorials, Release 2.4.0

cameraMatrix = Mat::eye(3, 3, CV_64F);
if(s.flag & CV_CALIB_FIX_ASPECT_RATIO)

cameraMatrix.at<double>(0,0) = 1.0;

• The distortion coefficient matrix. Initialize with zero.

distCoeffs = Mat::zeros(8, 1, CV_64F);

• The function will calculate for all the views the rotation and translation vector that transform the object points
(given in the model coordinate space) to the image points (given in the world coordinate space). The 7th and
8th parameters are an output vector of matrices containing in the ith position the rotation and translation vector
for the ith object point to the ith image point.

• The final argument is a flag. You need to specify here options like fix the aspect ratio for the focal length, assume
zero tangential distortion or to fix the principal point.

double rms = calibrateCamera(objectPoints, imagePoints, imageSize, cameraMatrix,
distCoeffs, rvecs, tvecs, s.flag|CV_CALIB_FIX_K4|CV_CALIB_FIX_K5);

• The function returns the average re-projection error. This number gives a good estimation of just how exact is
the found parameters. This should be as close to zero as possible. Given the intrinsic, distortion, rotation and
translation matrices we may calculate the error for one view by using the projectPoints to first transform the
object point to image point. Then we calculate the absolute norm between what we got with our transformation
and the corner/circle finding algorithm. To find the average error we calculate the arithmetical mean of the errors
calculate for all the calibration images.

double computeReprojectionErrors(const vector<vector<Point3f> >& objectPoints,
const vector<vector<Point2f> >& imagePoints,
const vector<Mat>& rvecs, const vector<Mat>& tvecs,
const Mat& cameraMatrix , const Mat& distCoeffs,
vector<float>& perViewErrors)

{
vector<Point2f> imagePoints2;
int i, totalPoints = 0;
double totalErr = 0, err;
perViewErrors.resize(objectPoints.size());

for(i = 0; i < (int)objectPoints.size(); ++i)
{

projectPoints(Mat(objectPoints[i]), rvecs[i], tvecs[i], cameraMatrix, // project
distCoeffs, imagePoints2);

err = norm(Mat(imagePoints[i]), Mat(imagePoints2), CV_L2); // difference

int n = (int)objectPoints[i].size();
perViewErrors[i] = (float) std::sqrt(err*err/n); // save for this view
totalErr += err*err; // sum it up
totalPoints += n;

}

return std::sqrt(totalErr/totalPoints); // calculate the arithmetical mean
}

Results

Let there be this input chessboard pattern that has a size of 9 X 6. I’ve used an AXIS IP camera to create a cou-
ple of snapshots of the board and saved it into a VID5 directory. I’ve put this inside the images/CameraCalibraation
folder of my working directory and created the following VID5.XML file that describes which images to use:

5.2. Camera calibration With OpenCV 275

http://opencv.itseez.com/trunk/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#projectpoints

The OpenCV Tutorials, Release 2.4.0

<?xml version="1.0"?>
<opencv_storage>
<images>
images/CameraCalibraation/VID5/xx1.jpg
images/CameraCalibraation/VID5/xx2.jpg
images/CameraCalibraation/VID5/xx3.jpg
images/CameraCalibraation/VID5/xx4.jpg
images/CameraCalibraation/VID5/xx5.jpg
images/CameraCalibraation/VID5/xx6.jpg
images/CameraCalibraation/VID5/xx7.jpg
images/CameraCalibraation/VID5/xx8.jpg
</images>
</opencv_storage>

Then specified the images/CameraCalibraation/VID5/VID5.XML as input in the configuration file. Here’s a chess-
board pattern found during the runtime of the application:

After applying the distortion removal we get:

276 Chapter 5. calib3d module. Camera calibration and 3D reconstruction

The OpenCV Tutorials, Release 2.4.0

The same works for this asymmetrical circle pattern by setting the input width to 4 and height to 11. This
time I’ve used a live camera feed by specifying its ID (“1”) for the input. Here’s, how a detected pattern should look:

In both cases in the specified output XML/YAML file you’ll find the camera and distortion coefficients matrices:

<Camera_Matrix type_id="opencv-matrix">
<rows>3</rows>
<cols>3</cols>
<dt>d</dt>

5.2. Camera calibration With OpenCV 277

The OpenCV Tutorials, Release 2.4.0

<data>
6.5746697944293521e+002 0. 3.1950000000000000e+002 0.
6.5746697944293521e+002 2.3950000000000000e+002 0. 0. 1.</data></Camera_Matrix>
<Distortion_Coefficients type_id="opencv-matrix">
<rows>5</rows>
<cols>1</cols>
<dt>d</dt>
<data>
-4.1802327176423804e-001 5.0715244063187526e-001 0. 0.
-5.7843597214487474e-001</data></Distortion_Coefficients>

Add these values as constants to your program, call the initUndistortRectifyMap and the remap function to remove
distortion and enjoy distortion free inputs with cheap and low quality cameras.

You may observe a runtime instance of this on the YouTube here.

278 Chapter 5. calib3d module. Camera calibration and 3D reconstruction

http://opencv.itseez.com/trunk/modules/imgproc/doc/geometric_transformations.html#initundistortrectifymap
http://opencv.itseez.com/trunk/modules/imgproc/doc/geometric_transformations.html#remap
https://www.youtube.com/watch?v=ViPN810E0SU

CHAPTER

SIX

FEATURE2D MODULE. 2D FEATURES
FRAMEWORK

Learn about how to use the feature points detectors, descriptors and matching framework found inside OpenCV.

•

Title: Harris corner detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Why is it a good idea to track corners? We learn to use the Harris method
to detect corners

•

Title: Shi-Tomasi corner detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Where we use an improved method to detect corners more accuratelyI

•

Title: Creating yor own corner detector
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Here you will learn how to use OpenCV functions to make your personal-
ized corner detector!

•

Title: Detecting corners location in subpixeles
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Is pixel resolution enough? Here we learn a simple method to improve our
accuracy.

279

The OpenCV Tutorials, Release 2.4.0

•

Title: Feature Detection
Compatibility: > OpenCV 2.0
Author: Ana Huamán
In this tutorial, you will use features2d to detect interest points.

•

Title: Feature Description
Compatibility: > OpenCV 2.0
Author: Ana Huamán
In this tutorial, you will use features2d to calculate feature vectors.

•

Title: Feature Matching with FLANN
Compatibility: > OpenCV 2.0
Author: Ana Huamán
In this tutorial, you will use the FLANN library to make a fast matching.

•

Title: Features2D + Homography to find a known object
Compatibility: > OpenCV 2.0
Author: Ana Huamán
In this tutorial, you will use features2d and calib3d to detect an object in a
scene.

•

Title: Detection of planar objects
Compatibility: > OpenCV 2.0
Author: Victor Eruhimov
You will use features2d and calib3d modules for detecting known planar
objects in scenes.

280 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

6.1 Feature Description

Goal

In this tutorial you will learn how to:

• Use the DescriptorExtractor interface in order to find the feature vector correspondent to the keypoints. Specifi-
cally:

– Use SurfDescriptorExtractor and its function compute to perform the required calculations.

– Use a BruteForceMatcher to match the features vector

– Use the function drawMatches to draw the detected matches.

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

void readme();

/** @function main */
int main(int argc, char** argv)
{

if(argc != 3)
{ return -1; }

Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);

if(!img_1.data || !img_2.data)
{ return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;

SurfFeatureDetector detector(minHessian);

std::vector<KeyPoint> keypoints_1, keypoints_2;

detector.detect(img_1, keypoints_1);
detector.detect(img_2, keypoints_2);

//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;

Mat descriptors_1, descriptors_2;

6.1. Feature Description 281

http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_descriptor_extractors.html?highlight=descriptorextractor#descriptorextractor
http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_descriptor_extractors.html?highlight=surfdescriptorextractor#surfdescriptorextractor
http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_descriptor_extractors.html?highlight=descriptorextractor#descriptorextractor
http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html?highlight=bruteforcematcher#bruteforcematcher
http://opencv.itseez.com/modules/features2d/doc/drawing_function_of_keypoints_and_matches.html?highlight=drawmatches#drawmatches
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_descriptor.cpp

The OpenCV Tutorials, Release 2.4.0

extractor.compute(img_1, keypoints_1, descriptors_1);
extractor.compute(img_2, keypoints_2, descriptors_2);

//-- Step 3: Matching descriptor vectors with a brute force matcher
BruteForceMatcher< L2<float> > matcher;
std::vector< DMatch > matches;
matcher.match(descriptors_1, descriptors_2, matches);

//-- Draw matches
Mat img_matches;
drawMatches(img_1, keypoints_1, img_2, keypoints_2, matches, img_matches);

//-- Show detected matches
imshow("Matches", img_matches);

waitKey(0);

return 0;
}

/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

Explanation

Result

1. Here is the result after applying the BruteForce matcher between the two original images:

282 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

6.2 Harris corner detector

Goal

In this tutorial you will learn:

• What features are and why they are important

• Use the function cornerHarris to detect corners using the Harris-Stephens method.

Theory

What is a feature?

• In computer vision, usually we need to find matching points between different frames of an environment. Why?
If we know how two images relate to each other, we can use both images to extract information of them.

• When we say matching points we are referring, in a general sense, to characteristics in the scene that we can
recognize easily. We call these characteristics features.

• So, what characteristics should a feature have?

– It must be uniquely recognizable

Types of Image Features

To mention a few:

• Edges

• Corners (also known as interest points)

• Blobs (also known as regions of interest)

In this tutorial we will study the corner features, specifically.

Why is a corner so special?

• Because, since it is the intersection of two edges, it represents a point in which the directions of these two edges
change. Hence, the gradient of the image (in both directions) have a high variation, which can be used to detect
it.

How does it work?

• Let’s look for corners. Since corners represents a variation in the gradient in the image, we will look for this
“variation”.

• Consider a grayscale image I. We are going to sweep a windoww(x, y) (with displacements u in the x direction
and v in the right direction) I and will calculate the variation of intensity.

E(u, v) =
∑
x,y

w(x, y)[I(x+ u, y+ v) − I(x, y)]2

where:

– w(x, y) is the window at position (x, y)

6.2. Harris corner detector 283

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=cornerharris#cornerharris

The OpenCV Tutorials, Release 2.4.0

– I(x, y) is the intensity at (x, y)

– I(x+ u, y+ v) is the intensity at the moved window (x+ u, y+ v)

• Since we are looking for windows with corners, we are looking for windows with a large variation in intensity.
Hence, we have to maximize the equation above, specifically the term:∑

x,y

[I(x+ u, y+ v) − I(x, y)]2

• Using Taylor expansion:

E(u, v) ≈
∑
x,y

[I(x, y) + uIx + vIy − I(x, y)]
2

• Expanding the equation and cancelling properly:

E(u, v) ≈
∑
x,y

u2I2x + 2uvIxIy + v
2I2y

• Which can be expressed in a matrix form as:

E(u, v) ≈
[
u v

](∑
x,y

w(x, y)

[
I2x IxIy
IxIy I2y

])[
u
v

]

• Let’s denote:

M =
∑
x,y

w(x, y)

[
I2x IxIy
IxIy I2y

]

• So, our equation now is:

E(u, v) ≈
[
u v

]
M

[
u
v

]

• A score is calculated for each window, to determine if it can possibly contain a corner:

R = det(M) − k(trace(M))2

where:

– det(M) = λ1λ2

– trace(M) = λ1 + λ2

a window with a score R greater than a certain value is considered a “corner”

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

284 Chapter 6. feature2d module. 2D Features framework

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/cornerHarris_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;
int thresh = 200;
int max_thresh = 255;

char* source_window = "Source image";
char* corners_window = "Corners detected";

/// Function header
void cornerHarris_demo(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create a window and a trackbar
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
createTrackbar("Threshold: ", source_window, &thresh, max_thresh, cornerHarris_demo);
imshow(source_window, src);

cornerHarris_demo(0, 0);

waitKey(0);
return(0);

}

/** @function cornerHarris_demo */
void cornerHarris_demo(int, void*)
{

Mat dst, dst_norm, dst_norm_scaled;
dst = Mat::zeros(src.size(), CV_32FC1);

/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;

/// Detecting corners
cornerHarris(src_gray, dst, blockSize, apertureSize, k, BORDER_DEFAULT);

/// Normalizing
normalize(dst, dst_norm, 0, 255, NORM_MINMAX, CV_32FC1, Mat());
convertScaleAbs(dst_norm, dst_norm_scaled);

/// Drawing a circle around corners
for(int j = 0; j < dst_norm.rows ; j++)

{ for(int i = 0; i < dst_norm.cols; i++)
{

if((int) dst_norm.at<float>(j,i) > thresh)
{
circle(dst_norm_scaled, Point(i, j), 5, Scalar(0), 2, 8, 0);

6.2. Harris corner detector 285

The OpenCV Tutorials, Release 2.4.0

}
}

}
/// Showing the result
namedWindow(corners_window, CV_WINDOW_AUTOSIZE);
imshow(corners_window, dst_norm_scaled);

}

Explanation

Result

The original image:

The detected corners are surrounded by a small black circle

286 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

6.3 Feature Matching with FLANN

Goal

In this tutorial you will learn how to:

• Use the FlannBasedMatcher interface in order to perform a quick and efficient matching by using the FLANN (
Fast Approximate Nearest Neighbor Search Library)

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

void readme();

/** @function main */
int main(int argc, char** argv)
{

if(argc != 3)
{ readme(); return -1; }

Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);

6.3. Feature Matching with FLANN 287

http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html?highlight=flannbasedmatcher#flannbasedmatcher
http://opencv.itseez.com/modules/flann/doc/flann_fast_approximate_nearest_neighbor_search.html
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_FlannMatcher.cpp

The OpenCV Tutorials, Release 2.4.0

Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);

if(!img_1.data || !img_2.data)
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;

SurfFeatureDetector detector(minHessian);

std::vector<KeyPoint> keypoints_1, keypoints_2;

detector.detect(img_1, keypoints_1);
detector.detect(img_2, keypoints_2);

//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;

Mat descriptors_1, descriptors_2;

extractor.compute(img_1, keypoints_1, descriptors_1);
extractor.compute(img_2, keypoints_2, descriptors_2);

//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match(descriptors_1, descriptors_2, matches);

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
for(int i = 0; i < descriptors_1.rows; i++)
{ double dist = matches[i].distance;
if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;

}

printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);

//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist)
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;

for(int i = 0; i < descriptors_1.rows; i++)
{ if(matches[i].distance < 2*min_dist)
{ good_matches.push_back(matches[i]); }

}

//-- Draw only "good" matches
Mat img_matches;
drawMatches(img_1, keypoints_1, img_2, keypoints_2,

good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

//-- Show detected matches
imshow("Good Matches", img_matches);

288 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

for(int i = 0; i < good_matches.size(); i++)
{ printf("-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx); }

waitKey(0);

return 0;
}

/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }

Explanation

Result

1. Here is the result of the feature detection applied to the first image:

2. Additionally, we get as console output the keypoints filtered:

6.3. Feature Matching with FLANN 289

The OpenCV Tutorials, Release 2.4.0

6.4 Features2D + Homography to find a known object

Goal

In this tutorial you will learn how to:

• Use the function findHomography to find the transform between matched keypoints.

• Use the function perspectiveTransform to map the points.

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"

using namespace cv;

void readme();

/** @function main */
int main(int argc, char** argv)
{

if(argc != 3)

290 Chapter 6. feature2d module. 2D Features framework

http://opencv.itseez.com/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=findhomography#findhomography
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=perspectivetransform#perspectivetransform
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_Homography.cpp

The OpenCV Tutorials, Release 2.4.0

{ readme(); return -1; }

Mat img_object = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img_scene = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);

if(!img_object.data || !img_scene.data)
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;

SurfFeatureDetector detector(minHessian);

std::vector<KeyPoint> keypoints_object, keypoints_scene;

detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene);

//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;

Mat descriptors_object, descriptors_scene;

extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene);

//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match(descriptors_object, descriptors_scene, matches);

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
for(int i = 0; i < descriptors_object.rows; i++)
{ double dist = matches[i].distance;
if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;

}

printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);

//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist)
std::vector< DMatch > good_matches;

for(int i = 0; i < descriptors_object.rows; i++)
{ if(matches[i].distance < 3*min_dist)

{ good_matches.push_back(matches[i]); }
}

Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,

good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

//-- Localize the object
std::vector<Point2f> obj;

6.4. Features2D + Homography to find a known object 291

The OpenCV Tutorials, Release 2.4.0

std::vector<Point2f> scene;

for(int i = 0; i < good_matches.size(); i++)
{

//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);

}

Mat H = findHomography(obj, scene, CV_RANSAC);

//-- Get the corners from the image_1 (the object to be "detected")
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint(img_object.cols, 0);
obj_corners[2] = cvPoint(img_object.cols, img_object.rows); obj_corners[3] = cvPoint(0, img_object.rows);
std::vector<Point2f> scene_corners(4);

perspectiveTransform(obj_corners, scene_corners, H);

//-- Draw lines between the corners (the mapped object in the scene - image_2)
line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0), scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0), scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0), scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0), scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);

//-- Show detected matches
imshow("Good Matches & Object detection", img_matches);

waitKey(0);
return 0;
}

/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

Explanation

Result

1. And here is the result for the detected object (highlighted in green)

292 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

6.5 Shi-Tomasi corner detector

Goal

In this tutorial you will learn how to:

• Use the function goodFeaturesToTrack to detect corners using the Shi-Tomasi method.

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;

int maxCorners = 23;
int maxTrackbar = 100;

RNG rng(12345);
char* source_window = "Image";

/// Function header
void goodFeaturesToTrack_Demo(int, void*);

/**

6.5. Shi-Tomasi corner detector 293

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=goodfeaturestotrack#goodfeaturestotrack
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/goodFeaturesToTrack_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

* @function main

*/
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create Window
namedWindow(source_window, CV_WINDOW_AUTOSIZE);

/// Create Trackbar to set the number of corners
createTrackbar("Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);

imshow(source_window, src);

goodFeaturesToTrack_Demo(0, 0);

waitKey(0);
return(0);

}

/**
* @function goodFeaturesToTrack_Demo.cpp

* @brief Apply Shi-Tomasi corner detector

*/
void goodFeaturesToTrack_Demo(int, void*)
{

if(maxCorners < 1) { maxCorners = 1; }

/// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;

/// Copy the source image
Mat copy;
copy = src.clone();

/// Apply corner detection
goodFeaturesToTrack(src_gray,

corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k);

/// Draw corners detected
cout<<"** Number of corners detected: "<<corners.size()<<endl;
int r = 4;
for(int i = 0; i < corners.size(); i++)

294 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

{ circle(copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),
rng.uniform(0,255)), -1, 8, 0); }

/// Show what you got
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, copy);

}

Explanation

Result

6.6 Creating yor own corner detector

Goal

In this tutorial you will learn how to:

• Use the OpenCV function cornerEigenValsAndVecs to find the eigenvalues and eigenvectors to determine if a
pixel is a corner.

• Use the OpenCV function cornerMinEigenVal to find the minimum eigenvalues for corner detection.

• To implement our own version of the Harris detector as well as the Shi-Tomasi detector, by using the two
functions above.

6.6. Creating yor own corner detector 295

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=cornereigenvalsandvecs#cornereigenvalsandvecs
http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=cornermineigenval#cornermineigenval

The OpenCV Tutorials, Release 2.4.0

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;
Mat myHarris_dst; Mat myHarris_copy; Mat Mc;
Mat myShiTomasi_dst; Mat myShiTomasi_copy;

int myShiTomasi_qualityLevel = 50;
int myHarris_qualityLevel = 50;
int max_qualityLevel = 100;

double myHarris_minVal; double myHarris_maxVal;
double myShiTomasi_minVal; double myShiTomasi_maxVal;

RNG rng(12345);

char* myHarris_window = "My Harris corner detector";
char* myShiTomasi_window = "My Shi Tomasi corner detector";

/// Function headers
void myShiTomasi_function(int, void*);
void myHarris_function(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Set some parameters
int blockSize = 3; int apertureSize = 3;

/// My Harris matrix -- Using cornerEigenValsAndVecs
myHarris_dst = Mat::zeros(src_gray.size(), CV_32FC(6));
Mc = Mat::zeros(src_gray.size(), CV_32FC1);

cornerEigenValsAndVecs(src_gray, myHarris_dst, blockSize, apertureSize, BORDER_DEFAULT);

/* calculate Mc */
for(int j = 0; j < src_gray.rows; j++)

{ for(int i = 0; i < src_gray.cols; i++)
{

float lambda_1 = myHarris_dst.at<float>(j, i, 0);
float lambda_2 = myHarris_dst.at<float>(j, i, 1);

296 Chapter 6. feature2d module. 2D Features framework

http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/cornerDetector_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

Mc.at<float>(j,i) = lambda_1*lambda_2 - 0.04*pow((lambda_1 + lambda_2), 2);
}

}

minMaxLoc(Mc, &myHarris_minVal, &myHarris_maxVal, 0, 0, Mat());

/* Create Window and Trackbar */
namedWindow(myHarris_window, CV_WINDOW_AUTOSIZE);
createTrackbar(" Quality Level:", myHarris_window, &myHarris_qualityLevel, max_qualityLevel,

myHarris_function);
myHarris_function(0, 0);

/// My Shi-Tomasi -- Using cornerMinEigenVal
myShiTomasi_dst = Mat::zeros(src_gray.size(), CV_32FC1);
cornerMinEigenVal(src_gray, myShiTomasi_dst, blockSize, apertureSize, BORDER_DEFAULT);

minMaxLoc(myShiTomasi_dst, &myShiTomasi_minVal, &myShiTomasi_maxVal, 0, 0, Mat());

/* Create Window and Trackbar */
namedWindow(myShiTomasi_window, CV_WINDOW_AUTOSIZE);
createTrackbar(" Quality Level:", myShiTomasi_window, &myShiTomasi_qualityLevel, max_qualityLevel,

myShiTomasi_function);
myShiTomasi_function(0, 0);

waitKey(0);
return(0);

}

/** @function myShiTomasi_function */
void myShiTomasi_function(int, void*)
{

myShiTomasi_copy = src.clone();

if(myShiTomasi_qualityLevel < 1) { myShiTomasi_qualityLevel = 1; }

for(int j = 0; j < src_gray.rows; j++)
{ for(int i = 0; i < src_gray.cols; i++)

{
if(myShiTomasi_dst.at<float>(j,i) > myShiTomasi_minVal + (myShiTomasi_maxVal -

myShiTomasi_minVal)*myShiTomasi_qualityLevel/max_qualityLevel)
{ circle(myShiTomasi_copy, Point(i,j), 4, Scalar(rng.uniform(0,255),

rng.uniform(0,255), rng.uniform(0,255)), -1, 8, 0); }
}

}
imshow(myShiTomasi_window, myShiTomasi_copy);

}

/** @function myHarris_function */
void myHarris_function(int, void*)
{

myHarris_copy = src.clone();

if(myHarris_qualityLevel < 1) { myHarris_qualityLevel = 1; }

for(int j = 0; j < src_gray.rows; j++)
{ for(int i = 0; i < src_gray.cols; i++)

{
if(Mc.at<float>(j,i) > myHarris_minVal + (myHarris_maxVal - myHarris_minVal)

6.6. Creating yor own corner detector 297

The OpenCV Tutorials, Release 2.4.0

*myHarris_qualityLevel/max_qualityLevel)
{ circle(myHarris_copy, Point(i,j), 4, Scalar(rng.uniform(0,255), rng.uniform(0,255),

rng.uniform(0,255)), -1, 8, 0); }
}

}
imshow(myHarris_window, myHarris_copy);

}

Explanation

Result

298 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

6.7 Detecting corners location in subpixeles

Goal

In this tutorial you will learn how to:

• Use the OpenCV function cornerSubPix to find more exact corner positions (more exact than integer pixels).

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>

using namespace cv;
using namespace std;

/// Global variables
Mat src, src_gray;

int maxCorners = 10;
int maxTrackbar = 25;

RNG rng(12345);
char* source_window = "Image";

6.7. Detecting corners location in subpixeles 299

http://opencv.itseez.com/modules/imgproc/doc/feature_detection.html?highlight=cornersubpix#cornersubpix
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/TrackingMotion/cornerSubPix_Demo.cpp

The OpenCV Tutorials, Release 2.4.0

/// Function header
void goodFeaturesToTrack_Demo(int, void*);

/** @function main */
int main(int argc, char** argv)
{

/// Load source image and convert it to gray
src = imread(argv[1], 1);
cvtColor(src, src_gray, CV_BGR2GRAY);

/// Create Window
namedWindow(source_window, CV_WINDOW_AUTOSIZE);

/// Create Trackbar to set the number of corners
createTrackbar("Max corners:", source_window, &maxCorners, maxTrackbar, goodFeaturesToTrack_Demo);

imshow(source_window, src);

goodFeaturesToTrack_Demo(0, 0);

waitKey(0);
return(0);

}

/**
* @function goodFeaturesToTrack_Demo.cpp

* @brief Apply Shi-Tomasi corner detector

*/
void goodFeaturesToTrack_Demo(int, void*)
{

if(maxCorners < 1) { maxCorners = 1; }

/// Parameters for Shi-Tomasi algorithm
vector<Point2f> corners;
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3;
bool useHarrisDetector = false;
double k = 0.04;

/// Copy the source image
Mat copy;
copy = src.clone();

/// Apply corner detection
goodFeaturesToTrack(src_gray,

corners,
maxCorners,
qualityLevel,
minDistance,
Mat(),
blockSize,
useHarrisDetector,
k);

/// Draw corners detected
cout<<"** Number of corners detected: "<<corners.size()<<endl;

300 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

int r = 4;
for(int i = 0; i < corners.size(); i++)

{ circle(copy, corners[i], r, Scalar(rng.uniform(0,255), rng.uniform(0,255),
rng.uniform(0,255)), -1, 8, 0); }

/// Show what you got
namedWindow(source_window, CV_WINDOW_AUTOSIZE);
imshow(source_window, copy);

/// Set the neeed parameters to find the refined corners
Size winSize = Size(5, 5);
Size zeroZone = Size(-1, -1);
TermCriteria criteria = TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 40, 0.001);

/// Calculate the refined corner locations
cornerSubPix(src_gray, corners, winSize, zeroZone, criteria);

/// Write them down
for(int i = 0; i < corners.size(); i++)

{ cout<<" -- Refined Corner ["<<i<<"] ("<<corners[i].x<<","<<corners[i].y<<")"<<endl; }
}

Explanation

Result

Here is the result:

6.7. Detecting corners location in subpixeles 301

The OpenCV Tutorials, Release 2.4.0

6.8 Feature Detection

Goal

In this tutorial you will learn how to:

• Use the FeatureDetector interface in order to find interest points. Specifically:

– Use the SurfFeatureDetector and its function detect to perform the detection process

– Use the function drawKeypoints to draw the detected keypoints

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

void readme();

/** @function main */
int main(int argc, char** argv)
{

if(argc != 3)
{ readme(); return -1; }

Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);

if(!img_1.data || !img_2.data)
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;

302 Chapter 6. feature2d module. 2D Features framework

http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_feature_detectors.html?highlight=featuredetector#FeatureDetector
http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_feature_detectors.html?highlight=surffeaturedetector#surffeaturedetector
http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_feature_detectors.html?highlight=detect#featuredetector-detect
http://opencv.itseez.com/modules/features2d/doc/drawing_function_of_keypoints_and_matches.html?highlight=drawkeypoints#drawkeypoints
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_detector.cpp

The OpenCV Tutorials, Release 2.4.0

SurfFeatureDetector detector(minHessian);

std::vector<KeyPoint> keypoints_1, keypoints_2;

detector.detect(img_1, keypoints_1);
detector.detect(img_2, keypoints_2);

//-- Draw keypoints
Mat img_keypoints_1; Mat img_keypoints_2;

drawKeypoints(img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
drawKeypoints(img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT);

//-- Show detected (drawn) keypoints
imshow("Keypoints 1", img_keypoints_1);
imshow("Keypoints 2", img_keypoints_2);

waitKey(0);

return 0;
}

/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; }

Explanation

Result

1. Here is the result of the feature detection applied to the first image:

2. And here is the result for the second image:

6.8. Feature Detection 303

The OpenCV Tutorials, Release 2.4.0

6.9 Feature Matching with FLANN

Goal

In this tutorial you will learn how to:

• Use the FlannBasedMatcher interface in order to perform a quick and efficient matching by using the FLANN (
Fast Approximate Nearest Neighbor Search Library)

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"

using namespace cv;

void readme();

/** @function main */
int main(int argc, char** argv)
{

if(argc != 3)
{ readme(); return -1; }

Mat img_1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img_2 = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);

if(!img_1.data || !img_2.data)

304 Chapter 6. feature2d module. 2D Features framework

http://opencv.itseez.com/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html?highlight=flannbasedmatcher#flannbasedmatcher
http://opencv.itseez.com/modules/flann/doc/flann_fast_approximate_nearest_neighbor_search.html
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_FlannMatcher.cpp

The OpenCV Tutorials, Release 2.4.0

{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;

SurfFeatureDetector detector(minHessian);

std::vector<KeyPoint> keypoints_1, keypoints_2;

detector.detect(img_1, keypoints_1);
detector.detect(img_2, keypoints_2);

//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;

Mat descriptors_1, descriptors_2;

extractor.compute(img_1, keypoints_1, descriptors_1);
extractor.compute(img_2, keypoints_2, descriptors_2);

//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match(descriptors_1, descriptors_2, matches);

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
for(int i = 0; i < descriptors_1.rows; i++)
{ double dist = matches[i].distance;

if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;

}

printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);

//-- Draw only "good" matches (i.e. whose distance is less than 2*min_dist)
//-- PS.- radiusMatch can also be used here.
std::vector< DMatch > good_matches;

for(int i = 0; i < descriptors_1.rows; i++)
{ if(matches[i].distance < 2*min_dist)

{ good_matches.push_back(matches[i]); }
}

//-- Draw only "good" matches
Mat img_matches;
drawMatches(img_1, keypoints_1, img_2, keypoints_2,

good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

//-- Show detected matches
imshow("Good Matches", img_matches);

for(int i = 0; i < good_matches.size(); i++)
{ printf("-- Good Match [%d] Keypoint 1: %d -- Keypoint 2: %d \n", i, good_matches[i].queryIdx, good_matches[i].trainIdx); }

6.9. Feature Matching with FLANN 305

The OpenCV Tutorials, Release 2.4.0

waitKey(0);

return 0;
}

/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_FlannMatcher <img1> <img2>" << std::endl; }

Explanation

Result

1. Here is the result of the feature detection applied to the first image:

2. Additionally, we get as console output the keypoints filtered:

306 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

6.10 Features2D + Homography to find a known object

Goal

In this tutorial you will learn how to:

• Use the function findHomography to find the transform between matched keypoints.

• Use the function perspectiveTransform to map the points.

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here

#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"

using namespace cv;

void readme();

/** @function main */
int main(int argc, char** argv)
{

if(argc != 3)

6.10. Features2D + Homography to find a known object 307

http://opencv.itseez.com/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html?highlight=findhomography#findhomography
http://opencv.itseez.com/modules/core/doc/operations_on_arrays.html?highlight=perspectivetransform#perspectivetransform
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_Homography.cpp

The OpenCV Tutorials, Release 2.4.0

{ readme(); return -1; }

Mat img_object = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img_scene = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);

if(!img_object.data || !img_scene.data)
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }

//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;

SurfFeatureDetector detector(minHessian);

std::vector<KeyPoint> keypoints_object, keypoints_scene;

detector.detect(img_object, keypoints_object);
detector.detect(img_scene, keypoints_scene);

//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;

Mat descriptors_object, descriptors_scene;

extractor.compute(img_object, keypoints_object, descriptors_object);
extractor.compute(img_scene, keypoints_scene, descriptors_scene);

//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match(descriptors_object, descriptors_scene, matches);

double max_dist = 0; double min_dist = 100;

//-- Quick calculation of max and min distances between keypoints
for(int i = 0; i < descriptors_object.rows; i++)
{ double dist = matches[i].distance;
if(dist < min_dist) min_dist = dist;
if(dist > max_dist) max_dist = dist;

}

printf("-- Max dist : %f \n", max_dist);
printf("-- Min dist : %f \n", min_dist);

//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist)
std::vector< DMatch > good_matches;

for(int i = 0; i < descriptors_object.rows; i++)
{ if(matches[i].distance < 3*min_dist)

{ good_matches.push_back(matches[i]); }
}

Mat img_matches;
drawMatches(img_object, keypoints_object, img_scene, keypoints_scene,

good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);

//-- Localize the object
std::vector<Point2f> obj;

308 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

std::vector<Point2f> scene;

for(int i = 0; i < good_matches.size(); i++)
{

//-- Get the keypoints from the good matches
obj.push_back(keypoints_object[good_matches[i].queryIdx].pt);
scene.push_back(keypoints_scene[good_matches[i].trainIdx].pt);

}

Mat H = findHomography(obj, scene, CV_RANSAC);

//-- Get the corners from the image_1 (the object to be "detected")
std::vector<Point2f> obj_corners(4);
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint(img_object.cols, 0);
obj_corners[2] = cvPoint(img_object.cols, img_object.rows); obj_corners[3] = cvPoint(0, img_object.rows);
std::vector<Point2f> scene_corners(4);

perspectiveTransform(obj_corners, scene_corners, H);

//-- Draw lines between the corners (the mapped object in the scene - image_2)
line(img_matches, scene_corners[0] + Point2f(img_object.cols, 0), scene_corners[1] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[1] + Point2f(img_object.cols, 0), scene_corners[2] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[2] + Point2f(img_object.cols, 0), scene_corners[3] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);
line(img_matches, scene_corners[3] + Point2f(img_object.cols, 0), scene_corners[0] + Point2f(img_object.cols, 0), Scalar(0, 255, 0), 4);

//-- Show detected matches
imshow("Good Matches & Object detection", img_matches);

waitKey(0);
return 0;
}

/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }

Explanation

Result

1. And here is the result for the detected object (highlighted in green)

6.10. Features2D + Homography to find a known object 309

The OpenCV Tutorials, Release 2.4.0

6.11 Detection of planar objects

The goal of this tutorial is to learn how to use features2d and calib3d modules for detecting known planar objects in
scenes.

Test data: use images in your data folder, for instance, box.png and box_in_scene.png.

1. Create a new console project. Read two input images.

Mat img1 = imread(argv[1], CV_LOAD_IMAGE_GRAYSCALE);
Mat img2 = imread(argv[2], CV_LOAD_IMAGE_GRAYSCALE);

2. Detect keypoints in both images.

// detecting keypoints
FastFeatureDetector detector(15);
vector<KeyPoint> keypoints1;
detector.detect(img1, keypoints1);

... // do the same for the second image

3. Compute descriptors for each of the keypoints.

// computing descriptors
SurfDescriptorExtractor extractor;
Mat descriptors1;
extractor.compute(img1, keypoints1, descriptors1);

... // process keypoints from the second image as well

4. Now, find the closest matches between descriptors from the first image to the second:

// matching descriptors
BruteForceMatcher<L2<float> > matcher;
vector<DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);

5. Visualize the results:

310 Chapter 6. feature2d module. 2D Features framework

The OpenCV Tutorials, Release 2.4.0

// drawing the results
namedWindow("matches", 1);
Mat img_matches;
drawMatches(img1, keypoints1, img2, keypoints2, matches, img_matches);
imshow("matches", img_matches);
waitKey(0);

6. Find the homography transformation between two sets of points:

vector<Point2f> points1, points2;
// fill the arrays with the points
....
Mat H = findHomography(Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold);

7. Create a set of inlier matches and draw them. Use perspectiveTransform function to map points with homogra-
phy:

Mat points1Projected; perspectiveTransform(Mat(points1), points1Projected, H);

8. Use drawMatches for drawing inliers.

6.11. Detection of planar objects 311

The OpenCV Tutorials, Release 2.4.0

312 Chapter 6. feature2d module. 2D Features framework

CHAPTER

SEVEN

VIDEO MODULE. VIDEO ANALYSIS

Look here in order to find use on your video stream algoritms like: motion extraction, feature tracking and foreground
extractions.

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

313

http://tech.groups.yahoo.com/group/OpenCV/

The OpenCV Tutorials, Release 2.4.0

314 Chapter 7. video module. Video analysis

CHAPTER

EIGHT

OBJDETECT MODULE. OBJECT
DETECTION

Ever wondered how your digital camera detects peoples and faces? Look here to find out!

•

Title: Cascade Classifier
Compatibility: > OpenCV 2.0
Author: Ana Huamán
Here we learn how to use objdetect to find objects in our images or videos

315

The OpenCV Tutorials, Release 2.4.0

8.1 Cascade Classifier

Goal

In this tutorial you will learn how to:

• Use the CascadeClassifier class to detect objects in a video stream. Particularly, we will use the functions:

– load to load a .xml classifier file. It can be either a Haar or a LBP classifer

– detectMultiScale to perform the detection.

Theory

Code

This tutorial code’s is shown lines below. You can also download it from here . The second version (using LBP for
face detection) can be found here

#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"

#include <iostream>
#include <stdio.h>

using namespace std;
using namespace cv;

/** Function Headers */
void detectAndDisplay(Mat frame);

/** Global variables */
String face_cascade_name = "haarcascade_frontalface_alt.xml";
String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml";
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
string window_name = "Capture - Face detection";
RNG rng(12345);

/** @function main */
int main(int argc, const char** argv)
{

CvCapture* capture;
Mat frame;

//-- 1. Load the cascades
if(!face_cascade.load(face_cascade_name)){ printf("--(!)Error loading\n"); return -1; };
if(!eyes_cascade.load(eyes_cascade_name)){ printf("--(!)Error loading\n"); return -1; };

//-- 2. Read the video stream
capture = cvCaptureFromCAM(-1);
if(capture)
{

while(true)
{

frame = cvQueryFrame(capture);

316 Chapter 8. objdetect module. Object Detection

http://opencv.itseez.com/modules/objdetect/doc/cascade_classification.html?highlight=cascadeclassifier#cascadeclassifier
http://opencv.itseez.com/modules/objdetect/doc/cascade_classification.html?highlight=load#cascadeclassifier-load
http://opencv.itseez.com/modules/objdetect/doc/cascade_classification.html?highlight=detectmultiscale#cascadeclassifier-detectmultiscale
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp
http://code.opencv.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp

The OpenCV Tutorials, Release 2.4.0

//-- 3. Apply the classifier to the frame
if(!frame.empty())
{ detectAndDisplay(frame); }
else
{ printf(" --(!) No captured frame -- Break!"); break; }

int c = waitKey(10);
if((char)c == ’c’) { break; }
}

}
return 0;

}

/** @function detectAndDisplay */
void detectAndDisplay(Mat frame)
{

std::vector<Rect> faces;
Mat frame_gray;

cvtColor(frame, frame_gray, CV_BGR2GRAY);
equalizeHist(frame_gray, frame_gray);

//-- Detect faces
face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30));

for(int i = 0; i < faces.size(); i++)
{

Point center(faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5);
ellipse(frame, center, Size(faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0);

Mat faceROI = frame_gray(faces[i]);
std::vector<Rect> eyes;

//-- In each face, detect eyes
eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30));

for(int j = 0; j < eyes.size(); j++)
{

Point center(faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5);
int radius = cvRound((eyes[j].width + eyes[j].height)*0.25);
circle(frame, center, radius, Scalar(255, 0, 0), 4, 8, 0);

}
}
//-- Show what you got
imshow(window_name, frame);
}

Explanation

Result

1. Here is the result of running the code above and using as input the video stream of a build-in webcam:

8.1. Cascade Classifier 317

The OpenCV Tutorials, Release 2.4.0

Remember to copy the files haarcascade_frontalface_alt.xml and haarcascade_eye_tree_eyeglasses.xml in your
current directory. They are located in opencv/data/haarcascades

2. This is the result of using the file lbpcascade_frontalface.xml (LBP trained) for the face detection. For the eyes
we keep using the file used in the tutorial.

318 Chapter 8. objdetect module. Object Detection

The OpenCV Tutorials, Release 2.4.0

8.1. Cascade Classifier 319

The OpenCV Tutorials, Release 2.4.0

320 Chapter 8. objdetect module. Object Detection

CHAPTER

NINE

ML MODULE. MACHINE LEARNING

Use the powerfull machine learning classes for statistical classification, regression and clustering of data.

•

Title: Introduction to Support Vector Machines
Compatibility: > OpenCV 2.0
Author: Fernando Iglesias García
Learn what a Suport Vector Machine is.

•

Title: Support Vector Machines for Non-Linearly Separable Data
Compatibility: > OpenCV 2.0
Author: Fernando Iglesias García
Here you will learn how to define the optimization problem for SVMs when
it is not possible to separate linearly the training data.

321

The OpenCV Tutorials, Release 2.4.0

9.1 Introduction to Support Vector Machines

Goal

In this tutorial you will learn how to:

• Use the OpenCV functions CvSVM::train to build a classifier based on SVMs and CvSVM::predict to test its
performance.

What is a SVM?

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In
other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which
categorizes new examples.

In which sense is the hyperplane obtained optimal? Let’s consider the following simple problem:

For a linearly separable set of 2D-points which belong to one of two classes, find a separating straight
line.

Note: In this example we deal with lines and points in the Cartesian plane instead of hyperplanes and vectors in a
high dimensional space. This is a simplification of the problem.It is important to understand that this is done only
because our intuition is better built from examples that are easy to imagine. However, the same concepts apply to tasks
where the examples to classify lie in a space whose dimension is higher than two.

In the above picture you can see that there exists multiple lines that offer a solution to the problem. Is any of them
better than the others? We can intuitively define a criterion to estimate the worth of the lines:

A line is bad if it passes too close to the points because it will be noise sensitive and it will not generalize
correctly. Therefore, our goal should be to find the line passing as far as possible from all points.

Then, the operation of the SVM algorithm is based on finding the hyperplane that gives the largest minimum distance
to the training examples. Twice, this distance receives the important name of margin within SVM’s theory. Therefore,
the optimal separating hyperplane maximizes the margin of the training data.

322 Chapter 9. ml module. Machine Learning

http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-train
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-predict

The OpenCV Tutorials, Release 2.4.0

How is the optimal hyperplane computed?

Let’s introduce the notation used to define formally a hyperplane:

f(x) = β0 + β
Tx,

where β is known as the weight vector and β0 as the bias.

See Also:

A more in depth description of this and hyperplanes you can find in the section 4.5 (Seperating Hyperplanes) of the
book: Elements of Statistical Learning by T. Hastie, R. Tibshirani and J. H. Friedman.

The optimal hyperplane can be represented in an infinite number of different ways by scaling of β and β0. As a matter
of convention, among all the possible representations of the hyperplane, the one chosen is

|β0 + β
Tx| = 1

where x symbolizes the training examples closest to the hyperplane. In general, the training examples that are closest
to the hyperplane are called support vectors. This representation is known as the canonical hyperplane.

Now, we use the result of geometry that gives the distance between a point x and a hyperplane (β,β0):

distance =
|β0 + β

Tx|

||β||
.

In particular, for the canonical hyperplane, the numerator is equal to one and the distance to the support vectors is

distance support vectors =
|β0 + β

Tx|

||β||
=

1

||β||
.

Recall that the margin introduced in the previous section, here denoted as M, is twice the distance to the closest
examples:

M =
2

||β||

Finally, the problem of maximizing M is equivalent to the problem of minimizing a function L(β) subject to some
constraints. The constraints model the requirement for the hyperplane to classify correctly all the training examples
xi. Formally,

min
β,β0

L(β) =
1

2
||β||2 subject to yi(βTxi + β0) ≥ 1 ∀i,

where yi represents each of the labels of the training examples.

This is a problem of Lagrangian optimization that can be solved using Lagrange multipliers to obtain the weight vector
β and the bias β0 of the optimal hyperplane.

Source Code

9.1. Introduction to Support Vector Machines 323

The OpenCV Tutorials, Release 2.4.0

1 #include <opencv2/core/core.hpp>
2 #include <opencv2/highgui/highgui.hpp>
3 #include <opencv2/ml/ml.hpp>
4

5 using namespace cv;
6

7 int main()
8 {
9 // Data for visual representation

10 int width = 512, height = 512;
11 Mat image = Mat::zeros(height, width, CV_8UC3);
12

13 // Set up training data
14 float labels[4] = {1.0, -1.0, -1.0, -1.0};
15 Mat labelsMat(3, 1, CV_32FC1, labels);
16

17 float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
18 Mat trainingDataMat(3, 2, CV_32FC1, trainingData);
19

20 // Set up SVM’s parameters
21 CvSVMParams params;
22 params.svm_type = CvSVM::C_SVC;
23 params.kernel_type = CvSVM::LINEAR;
24 params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);
25

26 // Train the SVM
27 CvSVM SVM;
28 SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
29

30 Vec3b green(0,255,0), blue (255,0,0);
31 // Show the decision regions given by the SVM
32 for (int i = 0; i < image.rows; ++i)
33 for (int j = 0; j < image.cols; ++j)
34 {
35 Mat sampleMat = (Mat_<float>(1,2) << i,j);
36 float response = SVM.predict(sampleMat);
37

38 if (response == 1)
39 image.at<Vec3b>(j, i) = green;
40 else if (response == -1)
41 image.at<Vec3b>(j, i) = blue;
42 }
43

44 // Show the training data
45 int thickness = -1;
46 int lineType = 8;
47 circle(image, Point(501, 10), 5, Scalar(0, 0, 0), thickness, lineType);
48 circle(image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType);
49 circle(image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType);
50 circle(image, Point(10, 501), 5, Scalar(255, 255, 255), thickness, lineType);
51

52 // Show support vectors
53 thickness = 2;
54 lineType = 8;
55 int c = SVM.get_support_vector_count();
56

57 for (int i = 0; i < c; ++i)
58 {

324 Chapter 9. ml module. Machine Learning

The OpenCV Tutorials, Release 2.4.0

59 const float* v = SVM.get_support_vector(i);
60 circle(image, Point((int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
61 }
62

63 imwrite("result.png", image); // save the image
64

65 imshow("SVM Simple Example", image); // show it to the user
66 waitKey(0);
67

68 }

Explanation

1. Set up the training data

The training data of this exercise is formed by a set of labeled 2D-points that belong to one of two different
classes; one of the classes consists of one point and the other of three points.

float labels[4] = {1.0, -1.0, -1.0, -1.0};
float trainingData[4][2] = {{501, 10}, {255, 10}, {501, 255}, {10, 501}};

The function CvSVM::train that will be used afterwards requires the training data to be stored as Mat
objects of floats. Therefore, we create these objects from the arrays defined above:

Mat trainingDataMat(3, 2, CV_32FC1, trainingData);
Mat labelsMat (3, 1, CV_32FC1, labels);

2. Set up SVM’s parameters

In this tutorial we have introduced the theory of SVMs in the most simple case, when the training examples are
spread into two classes that are linearly separable. However, SVMs can be used in a wide variety of problems
(e.g. problems with non-linearly separable data, a SVM using a kernel function to raise the dimensionality of the
examples, etc). As a consequence of this, we have to define some parameters before training the SVM. These
parameters are stored in an object of the class CvSVMParams .

CvSVMParams params;
params.svm_type = CvSVM::C_SVC;
params.kernel_type = CvSVM::LINEAR;
params.term_crit = cvTermCriteria(CV_TERMCRIT_ITER, 100, 1e-6);

• Type of SVM. We choose here the type CvSVM::C_SVC that can be used for n-class classification (n ≥
2). This parameter is defined in the attribute CvSVMParams.svm_type.

Note: The important feature of the type of SVM CvSVM::C_SVC deals with imperfect separation of
classes (i.e. when the training data is non-linearly separable). This feature is not important here since the
data is linearly separable and we chose this SVM type only for being the most commonly used.

• Type of SVM kernel. We have not talked about kernel functions since they are not interesting for the
training data we are dealing with. Nevertheless, let’s explain briefly now the main idea behind a kernel
function. It is a mapping done to the training data to improve its resemblance to a linearly separable set
of data. This mapping consists of increasing the dimensionality of the data and is done efficiently using a
kernel function. We choose here the type CvSVM::LINEAR which means that no mapping is done. This
parameter is defined in the attribute CvSVMParams.kernel_type.

• Termination criteria of the algorithm. The SVM training procedure is implemented solving a constrained
quadratic optimization problem in an iterative fashion. Here we specify a maximum number of iterations

9.1. Introduction to Support Vector Machines 325

http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-train
http://opencv.itseez.com/modules/core/doc/basic_structures.html#mat
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvmparams

The OpenCV Tutorials, Release 2.4.0

and a tolerance error so we allow the algorithm to finish in less number of steps even if the optimal
hyperplane has not been computed yet. This parameter is defined in a structure cvTermCriteria.

3. Train the SVM

We call the method CvSVM::train to build the SVM model.

CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);

4. Regions classified by the SVM

The method CvSVM::predict is used to classify an input sample using a trained SVM. In this example we
have used this method in order to color the space depending on the prediction done by the SVM. In other
words, an image is traversed interpreting its pixels as points of the Cartesian plane. Each of the points is
colored depending on the class predicted by the SVM; in green if it is the class with label 1 and in blue if
it is the class with label -1.

Vec3b green(0,255,0), blue (255,0,0);

for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << i,j);
float response = SVM.predict(sampleMat);

if (response == 1)
image.at<Vec3b>(j, i) = green;

else
if (response == -1)

image.at<Vec3b>(j, i) = blue;
}

5. Support vectors

We use here a couple of methods to obtain information about the support vectors. The method
CvSVM::get_support_vector_count outputs the total number of support vectors used in the problem and with
the method CvSVM::get_support_vector we obtain each of the support vectors using an index. We have used
this methods here to find the training examples that are support vectors and highlight them.

int c = SVM.get_support_vector_count();

for (int i = 0; i < c; ++i)
{
const float* v = SVM.get_support_vector(i); // get and then highlight with grayscale
circle(image, Point((int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}

Results

• The code opens an image and shows the training examples of both classes. The points of one class are repre-
sented with white circles and black ones are used for the other class.

• The SVM is trained and used to classify all the pixels of the image. This results in a division of the image in a
blue region and a green region. The boundary between both regions is the optimal separating hyperplane.

• Finally the support vectors are shown using gray rings around the training examples.

326 Chapter 9. ml module. Machine Learning

http://opencv.itseez.com/modules/core/doc/old_basic_structures.html#cvtermcriteria
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-train
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-predict
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-get-support-vector
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-get-support-vector

The OpenCV Tutorials, Release 2.4.0

9.2 Support Vector Machines for Non-Linearly Separable Data

Goal

In this tutorial you will learn how to:

• Define the optimization problem for SVMs when it is not possible to separate linearly the training data.

• How to configure the parameters in CvSVMParams to adapt your SVM for this class of problems.

Motivation

Why is it interesting to extend the SVM optimation problem in order to handle non-linearly separable training data?
Most of the applications in which SVMs are used in computer vision require a more powerful tool than a simple
linear classifier. This stems from the fact that in these tasks the training data can be rarely separated using an
hyperplane.

Consider one of these tasks, for example, face detection. The training data in this case is composed by a set of images
that are faces and another set of images that are non-faces (every other thing in the world except from faces). This
training data is too complex so as to find a representation of each sample (feature vector) that could make the whole
set of faces linearly separable from the whole set of non-faces.

Extension of the Optimization Problem

Remember that using SVMs we obtain a separating hyperplane. Therefore, since the training data is now non-linearly
separable, we must admit that the hyperplane found will misclassify some of the samples. This misclassification
is a new variable in the optimization that must be taken into account. The new model has to include both the old
requirement of finding the hyperplane that gives the biggest margin and the new one of generalizing the training data
correctly by not allowing too many classification errors.

We start here from the formulation of the optimization problem of finding the hyperplane which maximizes the margin
(this is explained in the previous tutorial):

min
β,β0

L(β) =
1

2
||β||2 subject to yi(βTxi + β0) ≥ 1 ∀i

There are multiple ways in which this model can be modified so it takes into account the misclassification errors. For
example, one could think of minimizing the same quantity plus a constant times the number of misclassification errors
in the training data, i.e.:

min ||β||2 + C(# misclassication errors)

9.2. Support Vector Machines for Non-Linearly Separable Data 327

http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvmparams

The OpenCV Tutorials, Release 2.4.0

However, this one is not a very good solution since, among some other reasons, we do not distinguish between samples
that are misclassified with a small distance to their appropriate decision region or samples that are not. Therefore, a
better solution will take into account the distance of the misclassified samples to their correct decision regions, i.e.:

min ||β||2 + C(distance of misclassified samples to their correct regions)

For each sample of the training data a new parameter ξi is defined. Each one of these parameters contains the distance
from its corresponding training sample to their correct decision region. The following picture shows non-linearly
separable training data from two classes, a separating hyperplane and the distances to their correct regions of the
samples that are misclassified.

Note: Only the distances of the samples that are misclassified are shown in the picture. The distances of the rest of
the samples are zero since they lay already in their correct decision region.

The red and blue lines that appear on the picture are the margins to each one of the decision regions. It is very
important to realize that each of the ξi goes from a misclassified training sample to the margin of its appropriate
region.

Finally, the new formulation for the optimization problem is:

min
β,β0

L(β) = ||β||2 + C
∑
i

ξi subject to yi(βTxi + β0) ≥ 1− ξi and ξi ≥ 0 ∀i

How should the parameter C be chosen? It is obvious that the answer to this question depends on how the training
data is distributed. Although there is no general answer, it is useful to take into account these rules:

• Large values of C give solutions with less misclassification errors but a smaller margin. Consider that in this
case it is expensive to make misclassification errors. Since the aim of the optimization is to minimize the
argument, few misclassifications errors are allowed.

• Small values of C give solutions with bigger margin and more classification errors. In this case the minimization
does not consider that much the term of the sum so it focuses more on finding a hyperplane with big margin.

328 Chapter 9. ml module. Machine Learning

The OpenCV Tutorials, Release 2.4.0

Source Code

You may also find the source code and these video file in the samples/cpp/tutorial_code/gpu/non_linear_svms/non_linear_svms
folder of the OpenCV source library or download it from here.

1 #include <iostream>
2 #include <opencv2/core/core.hpp>
3 #include <opencv2/highgui/highgui.hpp>
4 #include <opencv2/ml/ml.hpp>
5

6 #define NTRAINING_SAMPLES 100 // Number of training samples per class
7 #define FRAC_LINEAR_SEP 0.9f // Fraction of samples which compose the linear separable part
8

9 using namespace cv;
10 using namespace std;
11

12 int main()
13 {
14 // Data for visual representation
15 const int WIDTH = 512, HEIGHT = 512;
16 Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
17

18 //--------------------- 1. Set up training data randomly ---------------------------------------
19 Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32FC1);
20 Mat labels (2*NTRAINING_SAMPLES, 1, CV_32FC1);
21

22 RNG rng(100); // Random value generation class
23

24 // Set up the linearly separable part of the training data
25 int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
26

27 // Generate random points for the class 1
28 Mat trainClass = trainData.rowRange(0, nLinearSamples);
29 // The x coordinate of the points is in [0, 0.4)
30 Mat c = trainClass.colRange(0, 1);
31 rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
32 // The y coordinate of the points is in [0, 1)
33 c = trainClass.colRange(1,2);
34 rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
35

36 // Generate random points for the class 2
37 trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
38 // The x coordinate of the points is in [0.6, 1]
39 c = trainClass.colRange(0 , 1);
40 rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
41 // The y coordinate of the points is in [0, 1)
42 c = trainClass.colRange(1,2);
43 rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
44

45 //------------------ Set up the non-linearly separable part of the training data ---------------
46

47 // Generate random points for the classes 1 and 2
48 trainClass = trainData.rowRange(nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
49 // The x coordinate of the points is in [0.4, 0.6)
50 c = trainClass.colRange(0,1);
51 rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
52 // The y coordinate of the points is in [0, 1)
53 c = trainClass.colRange(1,2);
54 rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));

9.2. Support Vector Machines for Non-Linearly Separable Data 329

The OpenCV Tutorials, Release 2.4.0

55

56 //------------------------- Set up the labels for the classes ---------------------------------
57 labels.rowRange(0, NTRAINING_SAMPLES).setTo(1); // Class 1
58 labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
59

60 //------------------------ 2. Set up the support vector machines parameters --------------------
61 CvSVMParams params;
62 params.svm_type = SVM::C_SVC;
63 params.C = 0.1;
64 params.kernel_type = SVM::LINEAR;
65 params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);
66

67 //------------------------ 3. Train the svm --
68 cout << "Starting training process" << endl;
69 CvSVM svm;
70 svm.train(trainData, labels, Mat(), Mat(), params);
71 cout << "Finished training process" << endl;
72

73 //------------------------ 4. Show the decision regions --
74 Vec3b green(0,100,0), blue (100,0,0);
75 for (int i = 0; i < I.rows; ++i)
76 for (int j = 0; j < I.cols; ++j)
77 {
78 Mat sampleMat = (Mat_<float>(1,2) << i, j);
79 float response = svm.predict(sampleMat);
80

81 if (response == 1) I.at<Vec3b>(j, i) = green;
82 else if (response == 2) I.at<Vec3b>(j, i) = blue;
83 }
84

85 //----------------------- 5. Show the training data --
86 int thick = -1;
87 int lineType = 8;
88 float px, py;
89 // Class 1
90 for (int i = 0; i < NTRAINING_SAMPLES; ++i)
91 {
92 px = trainData.at<float>(i,0);
93 py = trainData.at<float>(i,1);
94 circle(I, Point((int) px, (int) py), 3, Scalar(0, 255, 0), thick, lineType);
95 }
96 // Class 2
97 for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i)
98 {
99 px = trainData.at<float>(i,0);

100 py = trainData.at<float>(i,1);
101 circle(I, Point((int) px, (int) py), 3, Scalar(255, 0, 0), thick, lineType);
102 }
103

104 //------------------------- 6. Show support vectors --
105 thick = 2;
106 lineType = 8;
107 int x = svm.get_support_vector_count();
108

109 for (int i = 0; i < x; ++i)
110 {
111 const float* v = svm.get_support_vector(i);
112 circle(I, Point((int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType);

330 Chapter 9. ml module. Machine Learning

The OpenCV Tutorials, Release 2.4.0

113 }
114

115 imwrite("result.png", I); // save the Image
116 imshow("SVM for Non-Linear Training Data", I); // show it to the user
117 waitKey(0);
118 }

Explanation

1. Set up the training data

The training data of this exercise is formed by a set of labeled 2D-points that belong to one of two different
classes. To make the exercise more appealing, the training data is generated randomly using a uniform
probability density functions (PDFs).

We have divided the generation of the training data into two main parts.

In the first part we generate data for both classes that is linearly separable.

// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
Mat c = trainClass.colRange(0, 1);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));

// Generate random points for the class 2
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
// The x coordinate of the points is in [0.6, 1]
c = trainClass.colRange(0 , 1);
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));

In the second part we create data for both classes that is non-linearly separable, data that overlaps.

// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange(nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
c = trainClass.colRange(0,1);
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));

2. Set up SVM’s parameters

See Also:

In the previous tutorial Introduction to Support Vector Machines there is an explanation of the atributes of
the class CvSVMParams that we configure here before training the SVM.

CvSVMParams params;
params.svm_type = SVM::C_SVC;
params.C = 0.1;

9.2. Support Vector Machines for Non-Linearly Separable Data 331

http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvmparams

The OpenCV Tutorials, Release 2.4.0

params.kernel_type = SVM::LINEAR;
params.term_crit = TermCriteria(CV_TERMCRIT_ITER, (int)1e7, 1e-6);

There are just two differences between the configuration we do here and the one that was done in the
previous tutorial that we use as reference.

• CvSVM::C_SVC. We chose here a small value of this parameter in order not to punish too much the
misclassification errors in the optimization. The idea of doing this stems from the will of obtaining
a solution close to the one intuitively expected. However, we recommend to get a better insight of
the problem by making adjustments to this parameter.

Note: Here there are just very few points in the overlapping region between classes, giving
a smaller value to FRAC_LINEAR_SEP the density of points can be incremented and the
impact of the parameter CvSVM::C_SVC explored deeply.

• Termination Criteria of the algorithm. The maximum number of iterations has to be increased
considerably in order to solve correctly a problem with non-linearly separable training data. In
particular, we have increased in five orders of magnitude this value.

3. Train the SVM

We call the method CvSVM::train to build the SVM model. Watch out that the training process may take
a quite long time. Have patiance when your run the program.

CvSVM svm;
svm.train(trainData, labels, Mat(), Mat(), params);

4. Show the Decision Regions

The method CvSVM::predict is used to classify an input sample using a trained SVM. In this example we
have used this method in order to color the space depending on the prediction done by the SVM. In other
words, an image is traversed interpreting its pixels as points of the Cartesian plane. Each of the points is
colored depending on the class predicted by the SVM; in dark green if it is the class with label 1 and in
dark blue if it is the class with label 2.

Vec3b green(0,100,0), blue (100,0,0);
for (int i = 0; i < I.rows; ++i)

for (int j = 0; j < I.cols; ++j)
{

Mat sampleMat = (Mat_<float>(1,2) << i, j);
float response = svm.predict(sampleMat);

if (response == 1) I.at<Vec3b>(j, i) = green;
else if (response == 2) I.at<Vec3b>(j, i) = blue;

}

5. Show the training data

The method circle is used to show the samples that compose the training data. The samples of the class
labeled with 1 are shown in light green and in light blue the samples of the class labeled with 2.

int thick = -1;
int lineType = 8;
float px, py;
// Class 1
for (int i = 0; i < NTRAINING_SAMPLES; ++i)
{

px = trainData.at<float>(i,0);

332 Chapter 9. ml module. Machine Learning

http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-train
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-predict
http://opencv.itseez.com/modules/core/doc/drawing_functions.html#circle

The OpenCV Tutorials, Release 2.4.0

py = trainData.at<float>(i,1);
circle(I, Point((int) px, (int) py), 3, Scalar(0, 255, 0), thick, lineType);

}
// Class 2
for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i)
{

px = trainData.at<float>(i,0);
py = trainData.at<float>(i,1);
circle(I, Point((int) px, (int) py), 3, Scalar(255, 0, 0), thick, lineType);

}

6. Support vectors

We use here a couple of methods to obtain information about the support vectors. The method
CvSVM::get_support_vector_count outputs the total number of support vectors used in the problem and
with the method CvSVM::get_support_vector we obtain each of the support vectors using an index. We
have used this methods here to find the training examples that are support vectors and highlight them.

thick = 2;
lineType = 8;
int x = svm.get_support_vector_count();

for (int i = 0; i < x; ++i)
{

const float* v = svm.get_support_vector(i);
circle(I, Point((int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType);

}

Results

• The code opens an image and shows the training examples of both classes. The points of one class are repre-
sented with light green and light blue ones are used for the other class.

• The SVM is trained and used to classify all the pixels of the image. This results in a division of the image in
a blue region and a green region. The boundary between both regions is the separating hyperplane. Since the
training data is non-linearly separable, it can be seen that some of the examples of both classes are misclassified;
some green points lay on the blue region and some blue points lay on the green one.

• Finally the support vectors are shown using gray rings around the training examples.

9.2. Support Vector Machines for Non-Linearly Separable Data 333

http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-get-support-vector
http://opencv.itseez.com/modules/ml/doc/support_vector_machines.html#cvsvm-get-support-vector

The OpenCV Tutorials, Release 2.4.0

You may observe a runtime instance of this on the YouTube here.

334 Chapter 9. ml module. Machine Learning

https://www.youtube.com/watch?v=vFv2yPcSo-Q

CHAPTER

TEN

GPU MODULE. GPU-ACCELERATED
COMPUTER VISION

Squeeze out every little computation power from your system by using the power of your video card to run the OpenCV
algorithms.

•

Title: Similarity check (PNSR and SSIM) on the GPU
Compatibility: > OpenCV 2.0
Author: Bernát Gábor
This will give a good grasp on how to approach coding on the GPU module,
once you already know how to handle the other modules. As a test case it
will port the similarity methods from the tutorial Video Input with OpenCV
and similarity measurement to the GPU.

335

The OpenCV Tutorials, Release 2.4.0

10.1 Similarity check (PNSR and SSIM) on the GPU

Goal

In the Video Input with OpenCV and similarity measurement tutorial I already presented the PSNR and SSIM methods
for checking the similarity between the two images. And as you could see there performing these takes quite some
time, especially in the case of the SSIM. However, if the performance numbers of an OpenCV implementation for the
CPU do not satisfy you and you happen to have an NVidia CUDA GPU device in your system all is not lost. You may
try to port or write your algorithm for the video card.

This tutorial will give a good grasp on how to approach coding by using the GPU module of OpenCV. As a prerequisite
you should already know how to handle the core, highgui and imgproc modules. So, our goals are:

• What’s different compared to the CPU?

• Create the GPU code for the PSNR and SSIM

• Optimize the code for maximal performance

The source code

You may also find the source code and these video file in the samples/cpp/tutorial_code/gpu/gpu-basics-similarity/gpu-basics-similarity
folder of the OpenCV source library or download it from here. The full source code is quite long (due to the
controlling of the application via the command line arguments and performance measurement). Therefore, to avoid
cluttering up these sections with those you’ll find here only the functions itself.

The PSNR returns a float number, that if the two inputs are similar between 30 and 50 (higher is better).

1 double getPSNR(const Mat& I1, const Mat& I2)
2 {
3 Mat s1;
4 absdiff(I1, I2, s1); // |I1 - I2|
5 s1.convertTo(s1, CV_32F); // cannot make a square on 8 bits
6 s1 = s1.mul(s1); // |I1 - I2|^2
7

8 Scalar s = sum(s1); // sum elements per channel
9

10 double sse = s.val[0] + s.val[1] + s.val[2]; // sum channels
11

12 if(sse <= 1e-10) // for small values return zero
13 return 0;
14 else
15 {
16 double mse =sse /(double)(I1.channels() * I1.total());
17 double psnr = 10.0*log10((255*255)/mse);
18 return psnr;
19 }
20 }
21

22

23

24 double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)
25 {
26 b.gI1.upload(I1);
27 b.gI2.upload(I2);
28

29 b.gI1.convertTo(b.t1, CV_32F);

336 Chapter 10. gpu module. GPU-Accelerated Computer Vision

The OpenCV Tutorials, Release 2.4.0

30 b.gI2.convertTo(b.t2, CV_32F);
31

32 gpu::absdiff(b.t1.reshape(1), b.t2.reshape(1), b.gs);
33 gpu::multiply(b.gs, b.gs, b.gs);
34

35 double sse = gpu::sum(b.gs, b.buf)[0];
36

37 if(sse <= 1e-10) // for small values return zero
38 return 0;
39 else
40 {
41 double mse = sse /(double)(I1.channels() * I1.total());
42 double psnr = 10.0*log10((255*255)/mse);
43 return psnr;
44 }
45 }
46

47 struct BufferPSNR // Optimized GPU versions
48 { // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
49 gpu::GpuMat gI1, gI2, gs, t1,t2;
50

51 gpu::GpuMat buf;
52 };
53

54 double getPSNR_GPU(const Mat& I1, const Mat& I2)
55 {
56 gpu::GpuMat gI1, gI2, gs, t1,t2;
57

58 gI1.upload(I1);
59 gI2.upload(I2);
60

61 gI1.convertTo(t1, CV_32F);
62 gI2.convertTo(t2, CV_32F);
63

64 gpu::absdiff(t1.reshape(1), t2.reshape(1), gs);
65 gpu::multiply(gs, gs, gs);
66

67 Scalar s = gpu::sum(gs);
68 double sse = s.val[0] + s.val[1] + s.val[2];
69

70 if(sse <= 1e-10) // for small values return zero
71 return 0;
72 else
73 {
74 double mse =sse /(double)(gI1.channels() * I1.total());
75 double psnr = 10.0*log10((255*255)/mse);
76 return psnr;
77 }
78 }

The SSIM returns the MSSIM of the images. This is too a float number between zero and one (higher is better),
however we have one for each channel. Therefore, we return a Scalar OpenCV data structure:

1 }
2

3 Scalar getMSSIM(const Mat& i1, const Mat& i2)
4 {
5 const double C1 = 6.5025, C2 = 58.5225;

10.1. Similarity check (PNSR and SSIM) on the GPU 337

The OpenCV Tutorials, Release 2.4.0

6 /***************************** INITS **********************************/
7 int d = CV_32F;
8

9 Mat I1, I2;
10 i1.convertTo(I1, d); // cannot calculate on one byte large values
11 i2.convertTo(I2, d);
12

13 Mat I2_2 = I2.mul(I2); // I2^2
14 Mat I1_2 = I1.mul(I1); // I1^2
15 Mat I1_I2 = I1.mul(I2); // I1 * I2
16

17 /*************************** END INITS **********************************/
18

19 Mat mu1, mu2; // PRELIMINARY COMPUTING
20 GaussianBlur(I1, mu1, Size(11, 11), 1.5);
21 GaussianBlur(I2, mu2, Size(11, 11), 1.5);
22

23 Mat mu1_2 = mu1.mul(mu1);
24 Mat mu2_2 = mu2.mul(mu2);
25 Mat mu1_mu2 = mu1.mul(mu2);
26

27 Mat sigma1_2, sigma2_2, sigma12;
28

29 GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
30 sigma1_2 -= mu1_2;
31

32 GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
33 sigma2_2 -= mu2_2;
34

35 GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
36 sigma12 -= mu1_mu2;
37

38 ///////////////////////////////// FORMULA ////////////////////////////////
39 Mat t1, t2, t3;
40

41 t1 = 2 * mu1_mu2 + C1;
42 t2 = 2 * sigma12 + C2;
43 t3 = t1.mul(t2); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
44

45 t1 = mu1_2 + mu2_2 + C1;
46 t2 = sigma1_2 + sigma2_2 + C2;
47 t1 = t1.mul(t2); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
48

49 Mat ssim_map;
50 divide(t3, t1, ssim_map); // ssim_map = t3./t1;
51

52 Scalar mssim = mean(ssim_map); // mssim = average of ssim map
53 return mssim;
54 }
55

56 Scalar getMSSIM_GPU(const Mat& i1, const Mat& i2)
57 {
58 const float C1 = 6.5025f, C2 = 58.5225f;
59 /***************************** INITS **********************************/
60 gpu::GpuMat gI1, gI2, gs1, t1,t2;
61

62 gI1.upload(i1);
63 gI2.upload(i2);

338 Chapter 10. gpu module. GPU-Accelerated Computer Vision

The OpenCV Tutorials, Release 2.4.0

64

65 gI1.convertTo(t1, CV_MAKE_TYPE(CV_32F, gI1.channels()));
66 gI2.convertTo(t2, CV_MAKE_TYPE(CV_32F, gI2.channels()));
67

68 vector<gpu::GpuMat> vI1, vI2;
69 gpu::split(t1, vI1);
70 gpu::split(t2, vI2);
71 Scalar mssim;
72

73 for(int i = 0; i < gI1.channels(); ++i)
74 {
75 gpu::GpuMat I2_2, I1_2, I1_I2;
76

77 gpu::multiply(vI2[i], vI2[i], I2_2); // I2^2
78 gpu::multiply(vI1[i], vI1[i], I1_2); // I1^2
79 gpu::multiply(vI1[i], vI2[i], I1_I2); // I1 * I2
80

81 /*************************** END INITS **********************************/
82 gpu::GpuMat mu1, mu2; // PRELIMINARY COMPUTING
83 gpu::GaussianBlur(vI1[i], mu1, Size(11, 11), 1.5);
84 gpu::GaussianBlur(vI2[i], mu2, Size(11, 11), 1.5);
85

86 gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
87 gpu::multiply(mu1, mu1, mu1_2);
88 gpu::multiply(mu2, mu2, mu2_2);
89 gpu::multiply(mu1, mu2, mu1_mu2);
90

91 gpu::GpuMat sigma1_2, sigma2_2, sigma12;
92

93 gpu::GaussianBlur(I1_2, sigma1_2, Size(11, 11), 1.5);
94 sigma1_2 -= mu1_2;
95

96 gpu::GaussianBlur(I2_2, sigma2_2, Size(11, 11), 1.5);
97 sigma2_2 -= mu2_2;
98

99 gpu::GaussianBlur(I1_I2, sigma12, Size(11, 11), 1.5);
100 sigma12 -= mu1_mu2;
101

102 ///////////////////////////////// FORMULA ////////////////////////////////
103 gpu::GpuMat t1, t2, t3;
104

105 t1 = 2 * mu1_mu2 + C1;
106 t2 = 2 * sigma12 + C2;
107 gpu::multiply(t1, t2, t3); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
108

109 t1 = mu1_2 + mu2_2 + C1;
110 t2 = sigma1_2 + sigma2_2 + C2;
111 gpu::multiply(t1, t2, t1); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
112

113 gpu::GpuMat ssim_map;
114 gpu::divide(t3, t1, ssim_map); // ssim_map = t3./t1;
115

116 Scalar s = gpu::sum(ssim_map);
117 mssim.val[i] = s.val[0] / (ssim_map.rows * ssim_map.cols);
118

119 }
120 return mssim;
121 }

10.1. Similarity check (PNSR and SSIM) on the GPU 339

The OpenCV Tutorials, Release 2.4.0

122 struct BufferMSSIM // Optimized GPU versions
123 { // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
124 gpu::GpuMat gI1, gI2, gs, t1,t2;
125

126 gpu::GpuMat I1_2, I2_2, I1_I2;
127 vector<gpu::GpuMat> vI1, vI2;
128

129 gpu::GpuMat mu1, mu2;
130 gpu::GpuMat mu1_2, mu2_2, mu1_mu2;
131

132 gpu::GpuMat sigma1_2, sigma2_2, sigma12;
133 gpu::GpuMat t3;
134

135 gpu::GpuMat ssim_map;
136

137 gpu::GpuMat buf;
138 };
139 Scalar getMSSIM_GPU_optimized(const Mat& i1, const Mat& i2, BufferMSSIM& b)
140 {
141 int cn = i1.channels();
142

143 const float C1 = 6.5025f, C2 = 58.5225f;
144 /***************************** INITS **********************************/
145

146 b.gI1.upload(i1);
147 b.gI2.upload(i2);
148

149 gpu::Stream stream;
150

151 stream.enqueueConvert(b.gI1, b.t1, CV_32F);
152 stream.enqueueConvert(b.gI2, b.t2, CV_32F);
153

154 gpu::split(b.t1, b.vI1, stream);
155 gpu::split(b.t2, b.vI2, stream);
156 Scalar mssim;
157

158 for(int i = 0; i < b.gI1.channels(); ++i)
159 {
160 gpu::multiply(b.vI2[i], b.vI2[i], b.I2_2, stream); // I2^2
161 gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream); // I1^2
162 gpu::multiply(b.vI1[i], b.vI2[i], b.I1_I2, stream); // I1 * I2
163

164 gpu::GaussianBlur(b.vI1[i], b.mu1, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
165 gpu::GaussianBlur(b.vI2[i], b.mu2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
166

167 gpu::multiply(b.mu1, b.mu1, b.mu1_2, stream);
168 gpu::multiply(b.mu2, b.mu2, b.mu2_2, stream);
169 gpu::multiply(b.mu1, b.mu2, b.mu1_mu2, stream);
170

171 gpu::GaussianBlur(b.I1_2, b.sigma1_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
172 gpu::subtract(b.sigma1_2, b.mu1_2, b.sigma1_2, stream);
173 //b.sigma1_2 -= b.mu1_2; - This would result in an extra data transfer operation
174

175 gpu::GaussianBlur(b.I2_2, b.sigma2_2, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);
176 gpu::subtract(b.sigma2_2, b.mu2_2, b.sigma2_2, stream);
177 //b.sigma2_2 -= b.mu2_2;
178

179 gpu::GaussianBlur(b.I1_I2, b.sigma12, Size(11, 11), 1.5, 0, BORDER_DEFAULT, -1, stream);

340 Chapter 10. gpu module. GPU-Accelerated Computer Vision

The OpenCV Tutorials, Release 2.4.0

180 gpu::subtract(b.sigma12, b.mu1_mu2, b.sigma12, stream);
181 //b.sigma12 -= b.mu1_mu2;
182

183 //here too it would be an extra data transfer due to call of operator*(Scalar, Mat)
184 gpu::multiply(b.mu1_mu2, 2, b.t1, stream); //b.t1 = 2 * b.mu1_mu2 + C1;
185 gpu::add(b.t1, C1, b.t1, stream);
186 gpu::multiply(b.sigma12, 2, b.t2, stream); //b.t2 = 2 * b.sigma12 + C2;
187 gpu::add(b.t2, C2, b.t2, stream);
188

189 gpu::multiply(b.t1, b.t2, b.t3, stream); // t3 = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))
190

191 gpu::add(b.mu1_2, b.mu2_2, b.t1, stream);
192 gpu::add(b.t1, C1, b.t1, stream);
193

194 gpu::add(b.sigma1_2, b.sigma2_2, b.t2, stream);
195 gpu::add(b.t2, C2, b.t2, stream);
196

197

198 gpu::multiply(b.t1, b.t2, b.t1, stream); // t1 =((mu1_2 + mu2_2 + C1).*(sigma1_2 + sigma2_2 + C2))
199 gpu::divide(b.t3, b.t1, b.ssim_map, stream); // ssim_map = t3./t1;
200

201 stream.waitForCompletion();
202

203 Scalar s = gpu::sum(b.ssim_map, b.buf);
204 mssim.val[i] = s.val[0] / (b.ssim_map.rows * b.ssim_map.cols);
205

206 }
207 return mssim;
208 }

How to do it? - The GPU

Now as you can see we have three types of functions for each operation. One for the CPU and two for the GPU.
The reason I made two for the GPU is too illustrate that often simple porting your CPU to GPU will actually make it
slower. If you want some performance gain you will need to remember a few rules, whose I’m going to detail later on.

The development of the GPU module was made so that it resembles as much as possible its CPU counterpart. This
is to make porting easy. The first thing you need to do before writing any code is to link the GPU module to your
project, and include the header file for the module. All the functions and data structures of the GPU are in a gpu
sub namespace of the cv namespace. You may add this to the default one via the use namespace keyword, or mark it
everywhere explicitly via the cv:: to avoid confusion. I’ll do the later.

#include <opencv2/gpu/gpu.hpp> // GPU structures and methods

GPU stands for graphics processing unit. It was originally build to render graphical scenes. These scenes somehow
build on a lot of data. Nevertheless, these aren’t all dependent one from another in a sequential way and as it is
possible a parallel processing of them. Due to this a GPU will contain multiple smaller processing units. These aren’t
the state of the art processors and on a one on one test with a CPU it will fall behind. However, its strength lies in its
numbers. In the last years there has been an increasing trend to harvest these massive parallel powers of the GPU in
non-graphical scene rendering too. This gave birth to the general-purpose computation on graphics processing units
(GPGPU).

The GPU has its own memory. When you read data from the hard drive with OpenCV into a Mat object that takes
place in your systems memory. The CPU works somehow directly on this (via its cache), however the GPU cannot.
He has too transferred the information he will use for calculations from the system memory to its own. This is done
via an upload process and takes time. In the end the result will have to be downloaded back to your system memory

10.1. Similarity check (PNSR and SSIM) on the GPU 341

The OpenCV Tutorials, Release 2.4.0

for your CPU to see it and use it. Porting small functions to GPU is not recommended as the upload/download time
will be larger than the amount you gain by a parallel execution.

Mat objects are stored only in the system memory (or the CPU cache). For getting an OpenCV matrix to the GPU
you’ll need to use its GPU counterpart GpuMat. It works similar to the Mat with a 2D only limitation and no reference
returning for its functions (cannot mix GPU references with CPU ones). To upload a Mat object to the GPU you need
to call the upload function after creating an instance of the class. To download you may use simple assignment to a
Mat object or use the download function.

Mat I1; // Main memory item - read image into with imread for example
gpu::GpuMat gI; // GPU matrix - for now empty
gI1.upload(I1); // Upload a data from the system memory to the GPU memory

I1 = gI1; // Download, gI1.download(I1) will work too

Once you have your data up in the GPU memory you may call GPU enabled functions of OpenCV. Most of the
functions keep the same name just as on the CPU, with the difference that they only accept GpuMat inputs. A full list
of these you will find in the documentation: online here or the OpenCV reference manual that comes with the source
code.

Another thing to keep in mind is that not for all channel numbers you can make efficient algorithms on the GPU.
Generally, I found that the input images for the GPU images need to be either one or four channel ones and one of the
char or float type for the item sizes. No double support on the GPU, sorry. Passing other types of objects for some
functions will result in an exception thrown, and an error message on the error output. The documentation details in
most of the places the types accepted for the inputs. If you have three channel images as an input you can do two
things: either adds a new channel (and use char elements) or split up the image and call the function for each image.
The first one isn’t really recommended as you waste memory.

For some functions, where the position of the elements (neighbor items) doesn’t matter quick solution is to just reshape
it into a single channel image. This is the case for the PSNR implementation where for the absdiff method the value
of the neighbors is not important. However, for the GaussianBlur this isn’t an option and such need to use the split
method for the SSIM. With this knowledge you can already make a GPU viable code (like mine GPU one) and run it.
You’ll be surprised to see that it might turn out slower than your CPU implementation.

Optimization

The reason for this is that you’re throwing out on the window the price for memory allocation and data transfer. And
on the GPU this is damn high. Another possibility for optimization is to introduce asynchronous OpenCV GPU calls
too with the help of the gpu::Stream.

1. Memory allocation on the GPU is considerable. Therefore, if it’s possible allocate new memory as few times as
possible. If you create a function what you intend to call multiple times it is a good idea to allocate any local
parameters for the function only once, during the first call. To do this you create a data structure containing all
the local variables you will use. For instance in case of the PSNR these are:

struct BufferPSNR // Optimized GPU versions
{ // Data allocations are very expensive on GPU. Use a buffer to solve: allocate once reuse later.
gpu::GpuMat gI1, gI2, gs, t1,t2;

gpu::GpuMat buf;
};

Then create an instance of this in the main program:

BufferPSNR bufferPSNR;

And finally pass this to the function each time you call it:

342 Chapter 10. gpu module. GPU-Accelerated Computer Vision

http://opencv.itseez.com/modules/gpu/doc/data_structures.html#gpu-gpumat
http://opencv.itseez.com/modules/gpu/doc/gpu.html
http://opencv.itseez.com/modules/gpu/doc/data_structures.html#gpu-stream

The OpenCV Tutorials, Release 2.4.0

double getPSNR_GPU_optimized(const Mat& I1, const Mat& I2, BufferPSNR& b)

Now you access these local parameters as: b.gI1, b.buf and so on. The GpuMat will only reallocate itself on a
new call if the new matrix size is different from the previous one.

2. Avoid unnecessary function data transfers. Any small data transfer will be significant one once you go to the
GPU. Therefore, if possible make all calculations in-place (in other words do not create new memory objects -
for reasons explained at the previous point). For example, although expressing arithmetical operations may be
easier to express in one line formulas, it will be slower. In case of the SSIM at one point I need to calculate:

b.t1 = 2 * b.mu1_mu2 + C1;

Although the upper call will succeed observe that there is a hidden data transfer present. Before it makes
the addition it needs to store somewhere the multiplication. Therefore, it will create a local matrix in the
background, add to that the C1 value and finally assign that to t1. To avoid this we use the gpu functions, instead
of the arithmetic operators:

gpu::multiply(b.mu1_mu2, 2, b.t1); //b.t1 = 2 * b.mu1_mu2 + C1;
gpu::add(b.t1, C1, b.t1);

3. Use asynchronous calls (the gpu::Stream). By default whenever you call a gpu function it will wait for the call
to finish and return with the result afterwards. However, it is possible to make asynchronous calls, meaning it
will call for the operation execution, make the costly data allocations for the algorithm and return back right
away. Now you can call another function if you wish to do so. For the MSSIM this is a small optimization
point. In our default implementation we split up the image into channels and call then for each channel the gpu
functions. A small degree of parallelization is possible with the stream. By using a stream we can make the
data allocation, upload operations while the GPU is already executing a given method. For example we need
to upload two images. We queue these one after another and call already the function that processes it. The
functions will wait for the upload to finish, however while that happens makes the output buffer allocations for
the function to be executed next.

gpu::Stream stream;

stream.enqueueConvert(b.gI1, b.t1, CV_32F); // Upload

gpu::split(b.t1, b.vI1, stream); // Methods (pass the stream as final parameter).
gpu::multiply(b.vI1[i], b.vI1[i], b.I1_2, stream); // I1^2

Result and conclusion

On an Intel P8700 laptop CPU paired with a low end NVidia GT220M here are the performance numbers:

Time of PSNR CPU (averaged for 10 runs): 41.4122 milliseconds. With result of: 19.2506
Time of PSNR GPU (averaged for 10 runs): 158.977 milliseconds. With result of: 19.2506
Initial call GPU optimized: 31.3418 milliseconds. With result of: 19.2506
Time of PSNR GPU OPTIMIZED (/ 10 runs): 24.8171 milliseconds. With result of: 19.2506

Time of MSSIM CPU (averaged for 10 runs): 484.343 milliseconds. With result of B0.890964 G0.903845 R0.936934
Time of MSSIM GPU (averaged for 10 runs): 745.105 milliseconds. With result of B0.89922 G0.909051 R0.968223
Time of MSSIM GPU Initial Call 357.746 milliseconds. With result of B0.890964 G0.903845 R0.936934
Time of MSSIM GPU OPTIMIZED (/ 10 runs): 203.091 milliseconds. With result of B0.890964 G0.903845 R0.936934

In both cases we managed a performance increase of almost 100% compared to the CPU implementation. It may be
just the improvement needed for your application to work. You may observe a runtime instance of this on the YouTube
here.

10.1. Similarity check (PNSR and SSIM) on the GPU 343

http://opencv.itseez.com/modules/gpu/doc/data_structures.html#gpu-stream
https://www.youtube.com/watch?v=3_ESXmFlnvY
https://www.youtube.com/watch?v=3_ESXmFlnvY

The OpenCV Tutorials, Release 2.4.0

344 Chapter 10. gpu module. GPU-Accelerated Computer Vision

CHAPTER

ELEVEN

GENERAL TUTORIALS

These tutorials are the bottom of the iceberg as they link together multiple of the modules presented above in order to
solve complex problems.

Note: Unfortunetly we have no tutorials into this section. Nevertheless, our tutorial writting team is working on it. If
you have a tutorial suggestion or you have writen yourself a tutorial (or coded a sample code) that you would like to
see here please contact us via our user group.

345

http://tech.groups.yahoo.com/group/OpenCV/

	Introduction to OpenCV
	Installation in Linux
	Using OpenCV with gcc and CMake
	Using OpenCV with Eclipse (plugin CDT)
	Installation in Windows
	How to build applications with OpenCV inside the Microsoft Visual Studio
	Using Android binary package with Eclipse
	Using C++ OpenCV code with Android binary package
	Installation in iOS
	Load and Display an Image
	Load, Modify, and Save an Image
	How to write a tutorial for OpenCV?

	core module. The Core Functionality
	Mat - The Basic Image Container
	How to scan images, lookup tables and time measurement with OpenCV
	Mask operations on matrices
	Adding (blending) two images using OpenCV
	Changing the contrast and brightness of an image!
	Basic Drawing
	Random generator and text with OpenCV
	Discrete Fourier Transform
	File Input and Output using XML and YAML files
	Interoperability with OpenCV 1

	imgproc module. Image Processing
	Smoothing Images
	Eroding and Dilating
	More Morphology Transformations
	Image Pyramids
	Basic Thresholding Operations
	Making your own linear filters!
	Adding borders to your images
	Sobel Derivatives
	Laplace Operator
	Canny Edge Detector
	Hough Line Transform
	Hough Circle Transform
	Remapping
	Affine Transformations
	Histogram Equalization
	Histogram Calculation
	Histogram Comparison
	Back Projection
	Template Matching
	Finding contours in your image
	Convex Hull
	Creating Bounding boxes and circles for contours
	Creating Bounding rotated boxes and ellipses for contours
	Image Moments
	Point Polygon Test

	highgui module. High Level GUI and Media
	Adding a Trackbar to our applications!
	Video Input with OpenCV and similarity measurement
	Creating a video with OpenCV

	calib3d module. Camera calibration and 3D reconstruction
	Camera calibration with square chessboard
	Camera calibration With OpenCV

	feature2d module. 2D Features framework
	Feature Description
	Harris corner detector
	Feature Matching with FLANN
	Features2D + Homography to find a known object
	Shi-Tomasi corner detector
	Creating yor own corner detector
	Detecting corners location in subpixeles
	Feature Detection
	Feature Matching with FLANN
	Features2D + Homography to find a known object
	Detection of planar objects

	video module. Video analysis
	objdetect module. Object Detection
	Cascade Classifier

	ml module. Machine Learning
	Introduction to Support Vector Machines
	Support Vector Machines for Non-Linearly Separable Data

	gpu module. GPU-Accelerated Computer Vision
	Similarity check (PNSR and SSIM) on the GPU

	General tutorials

