\section{Camera Calibration and 3d Reconstruction} \cvclass{gpu::StereoBM\_GPU} The class for computing stereo correspondence using block matching algorithm. \begin{lstlisting} class StereoBM_GPU { public: enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 }; enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 }; StereoBM_GPU(); StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ); void operator() (const GpuMat& left, const GpuMat& right, GpuMat& disparity); void operator() (const GpuMat& left, const GpuMat& right, GpuMat& disparity, const Stream & stream); static bool checkIfGpuCallReasonable(); int preset; int ndisp; int winSize; float avergeTexThreshold; ... }; \end{lstlisting} This class computes the disparity map using block matching algorithm. The class also performs pre- and post- filtering steps: sobel prefiltering (if PREFILTER\_XSOBEL flag is set) and low textureness filtering (if averageTexThreshols $>$ 0). If \texttt{avergeTexThreshold = 0} low textureness filtering is disabled, otherwise disparity is set to 0 in each point \texttt{(x, y)} where for left image $\sum HorizontalGradiensInWindow(x, y, winSize) < (winSize \cdot winSize) \cdot avergeTexThreshold$ i.e. input left image is low textured. \cvfunc{cv::gpu::StereoBM\_GPU::StereoBM\_GPU}\label{cppfunc.gpu.StereoBM.StereoBM} StereoBM\_GPU constructors. \cvdefCpp{ StereoBM\_GPU::StereoBM\_GPU();\newline StereoBM\_GPU::StereoBM\_GPU(int preset, \par int ndisparities = DEFAULT\_NDISP, \par int winSize = DEFAULT\_WINSZ); } \begin{description} \cvarg{preset}{Preset:} \begin{description} \cvarg{BASIC\_PRESET}{Without preprocessing.} \cvarg{PREFILTER\_XSOBEL}{Sobel prefilter.} \end{description} \cvarg{ndisparities}{Number of disparities. Must be a multiple of 8 and less or equal then 256.} \cvarg{winSize}{Block size.} \end{description} \cvfunc{cv::gpu::StereoBM\_GPU::operator ()}\label{cppfunc.gpu.StereoBM.operator()} The stereo correspondence operator. Finds the disparity for the specified rectified stereo pair. \cvdefCpp{ void StereoBM\_GPU::operator() (const GpuMat\& left, const GpuMat\& right, \par GpuMat\& disparity);\newline void StereoBM\_GPU::operator() (const GpuMat\& left, const GpuMat\& right, \par GpuMat\& disparity, const Stream\& stream); } \begin{description} \cvarg{left}{Left image; supports only \texttt{CV\_8UC1} type.} \cvarg{right}{Right image with the same size and the same type as the left one.} \cvarg{disparity}{Output disparity map. It will be \texttt{CV\_8UC1} image with the same size as the input images.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} \cvfunc{cv::gpu::StereoBM\_GPU::checkIfGpuCallReasonable}\label{cppfunc.gpu.StereoBM.checkIfGpuCallReasonable} Some heuristics that tries to estmate if the current GPU will be faster then CPU in this algorithm. It queries current active device. \cvdefCpp{ bool StereoBM\_GPU::checkIfGpuCallReasonable(); } \cvclass{gpu::StereoBeliefPropagation} The class for computing stereo correspondence using belief propagation algorithm. \begin{lstlisting} class StereoBeliefPropagation { public: enum { DEFAULT_NDISP = 64 }; enum { DEFAULT_ITERS = 5 }; enum { DEFAULT_LEVELS = 5 }; static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels); explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int msg_type = CV_32F); StereoBeliefPropagation(int ndisp, int iters, int levels, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int msg_type = CV_32F); void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity); void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream); void operator()(const GpuMat& data, GpuMat& disparity); void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream); int ndisp; int iters; int levels; float max_data_term; float data_weight; float max_disc_term; float disc_single_jump; int msg_type; ... }; \end{lstlisting} The class implements Pedro F. Felzenszwalb algorithm \cite{felzenszwalb_bp}. It can compute own data cost (using truncated linear model) or use user-provided data cost. \textbf{Please note:} \texttt{StereoBeliefPropagation} requires a lot of memory: \[ width\_step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25) \] for message storage and \[ width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}} \] for data cost storage. \texttt{width\_step} is the number of bytes in a line including the padding. \cvCppFunc{gpu::StereoBeliefPropagation::StereoBeliefPropagation} StereoBeliefPropagation constructors. \cvdefCpp{ StereoBeliefPropagation::StereoBeliefPropagation(\par int ndisp = DEFAULT\_NDISP, int iters = DEFAULT\_ITERS, \par int levels = DEFAULT\_LEVELS, int msg\_type = CV\_32F);\newline StereoBeliefPropagation::StereoBeliefPropagation(\par int ndisp, int iters, int levels, \par float max\_data\_term, float data\_weight, \par float max\_disc\_term, float disc\_single\_jump, \par int msg\_type = CV\_32F); } \begin{description} \cvarg{ndisp}{Number of disparities.} \cvarg{iters}{Number of BP iterations on each level.} \cvarg{levels}{Number of levels.} \cvarg{max\_data\_term}{Threshold for data cost truncation.} \cvarg{data\_weight}{Data weight.} \cvarg{max\_disc\_term}{Threshold for discontinuity truncation.} \cvarg{disc\_single\_jump}{Discontinuity single jump.} \cvarg{msg\_type}{Type for messages. Supports \texttt{CV\_16SC1} and \texttt{CV\_32FC1}.} \end{description} \texttt{StereoBeliefPropagation} uses truncated linear model for the data cost and discontinuity term: \[ DataCost = data\_weight \cdot \min(\lvert I_2-I_1 \rvert, max\_data\_term) \] \[ DiscTerm = \min(disc\_single\_jump \cdot \lvert f_1-f_2 \rvert, max\_disc\_term) \] For more details please see \cite{felzenszwalb_bp}. By default \texttt{StereoBeliefPropagation} uses floating-point arithmetics and \texttt{CV\_32FC1} type for messages. But also it can use fixed-point arithmetics and \texttt{CV\_16SC1} type for messages for better perfomance. To avoid overflow in this case, the parameters must satisfy \[ 10 \cdot 2^{levels-1} \cdot max\_data\_term < SHRT\_MAX \] \cvCppFunc{gpu::StereoBeliefPropagation::estimateRecommendedParams} Some heuristics that tries to compute recommended parameters (\texttt{ndisp}, \texttt{iters} and \texttt{levels}) for specified image size (\texttt{width} and \texttt{height}). \cvdefCpp{ void StereoBeliefPropagation::estimateRecommendedParams(\par int width, int height, int\& ndisp, int\& iters, int\& levels); } \cvCppFunc{gpu::StereoBeliefPropagation::operator ()} The stereo correspondence operator. Finds the disparity for the specified rectified stereo pair or data cost. \cvdefCpp{ void StereoBeliefPropagation::operator()(\par const GpuMat\& left, const GpuMat\& right, \par GpuMat\& disparity);\newline void StereoBeliefPropagation::operator()(\par const GpuMat\& left, const GpuMat\& right, \par GpuMat\& disparity, Stream\& stream); } \begin{description} \cvarg{left}{Left image; supports \texttt{CV\_8UC1}, \texttt{CV\_8UC3} and \texttt{CV\_8UC4} types.} \cvarg{right}{Right image with the same size and the same type as the left one.} \cvarg{disparity}{Output disparity map. If \texttt{disparity} is empty output type will be \texttt{CV\_16SC1}, otherwise output type will be \texttt{disparity.type()}.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} \cvdefCpp{ void StereoBeliefPropagation::operator()(\par const GpuMat\& data, GpuMat\& disparity);\newline void StereoBeliefPropagation::operator()(\par const GpuMat\& data, GpuMat\& disparity, Stream\& stream); } \begin{description} \cvarg{data}{The user specified data cost. It must have \texttt{msg\_type} type and $\texttt{imgRows} \cdot \texttt{ndisp} \times \texttt{imgCols}$ size.} \cvarg{disparity}{Output disparity map. If \texttt{disparity} is empty output type will be \texttt{CV\_16SC1}, otherwise output type will be \texttt{disparity.type()}.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} \cvclass{gpu::StereoConstantSpaceBP} The class for computing stereo correspondence using constant space belief propagation algorithm. \begin{lstlisting} class StereoConstantSpaceBP { public: enum { DEFAULT_NDISP = 128 }; enum { DEFAULT_ITERS = 8 }; enum { DEFAULT_LEVELS = 4 }; enum { DEFAULT_NR_PLANE = 4 }; static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane); explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int nr_plane = DEFAULT_NR_PLANE, int msg_type = CV_32F); StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th = 0, int msg_type = CV_32F); void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity); void operator()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream); int ndisp; int iters; int levels; int nr_plane; float max_data_term; float data_weight; float max_disc_term; float disc_single_jump; int min_disp_th; int msg_type; bool use_local_init_data_cost; ... }; \end{lstlisting} The class implements Q. Yang algorithm \cite{qx_csbp}. \texttt{StereoConstantSpaceBP} supports both local minimum and global minimum data cost initialization algortihms. For more details please see the paper. By default local algorithm is used, and to enable global algorithm set \texttt{use\_local\_init\_data\_cost} to false. \cvCppFunc{gpu::StereoConstantSpaceBP::StereoConstantSpaceBP} StereoConstantSpaceBP constructors. \cvdefCpp{ StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp = DEFAULT\_NDISP, \par int iters = DEFAULT\_ITERS, int levels = DEFAULT\_LEVELS, \par int nr\_plane = DEFAULT\_NR\_PLANE, int msg\_type = CV\_32F);\newline StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp, int iters, \par int levels, int nr\_plane, \par float max\_data\_term, float data\_weight, \par float max\_disc\_term, float disc\_single\_jump, \par int min\_disp\_th = 0, int msg\_type = CV\_32F); } \begin{description} \cvarg{ndisp}{Number of disparities.} \cvarg{iters}{Number of BP iterations on each level.} \cvarg{levels}{Number of levels.} \cvarg{nr\_plane}{Number of disparity levels on the first level} \cvarg{max\_data\_term}{Truncation of data cost.} \cvarg{data\_weight}{Data weight.} \cvarg{max\_disc\_term}{Truncation of discontinuity.} \cvarg{disc\_single\_jump}{Discontinuity single jump.} \cvarg{min\_disp\_th}{Minimal disparity threshold.} \cvarg{msg\_type}{Type for messages. Supports \texttt{CV\_16SC1} and \texttt{CV\_32FC1}.} \end{description} \texttt{StereoConstantSpaceBP} uses truncated linear model for the data cost and discontinuity term: \[ DataCost = data\_weight \cdot \min(\lvert I_2-I_1 \rvert, max\_data\_term) \] \[ DiscTerm = \min(disc\_single\_jump \cdot \lvert f_1-f_2 \rvert, max\_disc\_term) \] For more details please see \cite{qx_csbp}. By default \texttt{StereoConstantSpaceBP} uses floating-point arithmetics and \texttt{CV\_32FC1} type for messages. But also it can use fixed-point arithmetics and \texttt{CV\_16SC1} type for messages for better perfomance. To avoid overflow in this case, the parameters must satisfy \[ 10 \cdot 2^{levels-1} \cdot max\_data\_term < SHRT\_MAX \] \cvCppFunc{gpu::StereoConstantSpaceBP::estimateRecommendedParams} Some heuristics that tries to compute parameters (\texttt{ndisp}, \texttt{iters}, \texttt{levels} and \texttt{nr\_plane}) for specified image size (\texttt{width} and \texttt{height}). \cvdefCpp{ void StereoConstantSpaceBP::estimateRecommendedParams(\par int width, int height, \par int\& ndisp, int\& iters, int\& levels, int\& nr\_plane); } \cvCppFunc{gpu::StereoConstantSpaceBP::operator ()} The stereo correspondence operator. Finds the disparity for the specified rectified stereo pair. \cvdefCpp{ void StereoConstantSpaceBP::operator()(\par const GpuMat\& left, const GpuMat\& right, \par GpuMat\& disparity);\newline void StereoConstantSpaceBP::operator()(\par const GpuMat\& left, const GpuMat\& right, \par GpuMat\& disparity, Stream\& stream); } \begin{description} \cvarg{left}{Left image; supports \texttt{CV\_8UC1}, \texttt{CV\_8UC3} and \texttt{CV\_8UC4} types.} \cvarg{right}{Right image with the same size and the same type as the left one.} \cvarg{disparity}{Output disparity map. If \texttt{disparity} is empty output type will be \texttt{CV\_16SC1}, otherwise output type will be \texttt{disparity.type()}.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} \cvclass{gpu::DisparityBilateralFilter} The class for disparity map refinement using joint bilateral filtering. \begin{lstlisting} class CV_EXPORTS DisparityBilateralFilter { public: enum { DEFAULT_NDISP = 64 }; enum { DEFAULT_RADIUS = 3 }; enum { DEFAULT_ITERS = 1 }; explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS); DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range); void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst); void operator()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream); ... }; \end{lstlisting} The class implements Q. Yang algorithm \cite{qx_csbp}. \cvCppFunc{gpu::DisparityBilateralFilter::DisparityBilateralFilter} DisparityBilateralFilter constructors. \cvdefCpp{ DisparityBilateralFilter::DisparityBilateralFilter(\par int ndisp = DEFAULT\_NDISP, int radius = DEFAULT\_RADIUS, \par int iters = DEFAULT\_ITERS);\newline DisparityBilateralFilter::DisparityBilateralFilter(\par int ndisp, int radius, int iters, \par float edge\_threshold, float max\_disc\_threshold, \par float sigma\_range); } \begin{description} \cvarg{ndisp}{Number of disparities.} \cvarg{radius}{Filter radius.} \cvarg{iters}{Number of iterations.} \cvarg{edge\_threshold}{Threshold for edges.} \cvarg{max\_disc\_threshold}{Constant to reject outliers.} \cvarg{sigma\_range}{Filter range.} \end{description} \cvCppFunc{gpu::DisparityBilateralFilter::operator ()} Refines disparity map using joint bilateral filtering. \cvdefCpp{ void DisparityBilateralFilter::operator()(\par const GpuMat\& disparity, const GpuMat\& image, GpuMat\& dst);\newline void DisparityBilateralFilter::operator()(\par const GpuMat\& disparity, const GpuMat\& image, GpuMat\& dst, \par Stream\& stream); } \begin{description} \cvarg{disparity}{Input disparity map; supports \texttt{CV\_8UC1} and \texttt{CV\_16SC1} types.} \cvarg{image}{Input image; supports \texttt{CV\_8UC1} and \texttt{CV\_8UC3} types.} \cvarg{dst}{Destination disparity map; will have the same size and type as \texttt{disparity}.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} \cvCppFunc{gpu::drawColorDisp} Does coloring of disparity image. \cvdefCpp{ void drawColorDisp(const GpuMat\& src\_disp, GpuMat\& dst\_disp, int ndisp);\newline void drawColorDisp(const GpuMat\& src\_disp, GpuMat\& dst\_disp, int ndisp, \par const Stream\& stream); } \begin{description} \cvarg{src\_disp}{Source disparity image. Supports \texttt{CV\_8UC1} and \texttt{CV\_16SC1} types.} \cvarg{dst\_disp}{Output disparity image. Will have the same size as \texttt{src\_disp} and \texttt{CV\_8UC4} type in \texttt{BGRA} format (alpha = 255).} \cvarg{ndisp}{Number of disparities.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} This function converts $[0..ndisp)$ interval to $[0..240, 1, 1]$ in \texttt{HSV} color space, than convert \texttt{HSV} color space to \texttt{RGB}. \cvCppFunc{gpu::reprojectImageTo3D} Reprojects disparity image to 3D space. \cvdefCpp{ void reprojectImageTo3D(const GpuMat\& disp, GpuMat\& xyzw, \par const Mat\& Q);\newline void reprojectImageTo3D(const GpuMat\& disp, GpuMat\& xyzw, \par const Mat\& Q, const Stream\& stream); } \begin{description} \cvarg{disp}{Input disparity image; supports \texttt{CV\_8U} and \texttt{CV\_16S} types.} \cvarg{xyzw}{Output 4-channel floating-point image of the same size as \texttt{disp}. Each element of \texttt{xyzw(x,y)} will contain the 3D coordinates \texttt{(x,y,z,1)} of the point \texttt{(x,y)}, computed from the disparity map.} \cvarg{Q}{$4 \times 4$ perspective transformation matrix that can be obtained via \cvCross{StereoRectify}{stereoRectify}.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} See also: \cvCppCross{reprojectImageTo3D}. \cvCppFunc{gpu::transformPoints} Rotates and translates points. \cvdefCpp{ void transformPoints(const GpuMat\& src, const Mat\& rvec, \par const Mat\& tvec, GpuMat\& dst);\newline void transformPoints(const GpuMat\& src, const Mat\& rvec, \par const Mat\& tvec, GpuMat\& dst, const Stream\& stream); } \begin{description} \cvarg{src}{Source points. Single-row \texttt{CV\_32FC3} matrix.} \cvarg{rvec}{\texttt{CV\_32F} 3D rotation vector.} \cvarg{tvec}{\texttt{CV\_32F} 3D translation vector.} \cvarg{dst}{Transformed points. Single-row \texttt{CV\_32FC3} matrix.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} \cvCppFunc{gpu::projectPoints} Projects points. \cvdefCpp{ void projectPoints(const GpuMat\& src, const Mat\& rvec, \par const Mat\& tvec, const Mat\& camera\_mat, \par const Mat\& dist\_coef, GpuMat\& dst);\newline void projectPoints(const GpuMat\& src, const Mat\& rvec, \par const Mat\& tvec, const Mat\& camera\_mat, \par const Mat\& dist\_coef, GpuMat\& dst, const Stream\& stream); } \begin{description} \cvarg{src}{Source points. Single-row \texttt{CV\_32FC3} matrix.} \cvarg{rvec}{\texttt{CV\_32F} 3D rotation vector.} \cvarg{tvec}{\texttt{CV\_32F} 3D translation vector.} \cvarg{camera\_mat}{\texttt{CV\_32F} 3x3 camera matrix.} \cvarg{dist\_coef}{Distortion coefficients. This parameter isn't supported for now, must be empty matrix.} \cvarg{dst}{Projected points. Single-row \texttt{CV\_32FC2} matrix.} \cvarg{stream}{Stream for the asynchronous version.} \end{description} See also: \cvCppCross{projectPoints}.