/////////////////////////////////////////////////////////////////////////////////////// // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // This is a implementation of the Logistic Regression algorithm in C++ in OpenCV. // AUTHOR: // Rahul Kavi rahulkavi[at]live[at]com // // contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris") // # You are free to use, change, or redistribute the code in any way you wish for // # non-commercial purposes, but please maintain the name of the original author. // # This code comes with no warranty of any kind. // # // # You are free to use, change, or redistribute the code in any way you wish for // # non-commercial purposes, but please maintain the name of the original author. // # This code comes with no warranty of any kind. // # Logistic Regression ALGORITHM // License Agreement // For Open Source Computer Vision Library // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. #include <iostream> #include <opencv2/core/core.hpp> #include <opencv2/ml/ml.hpp> #include <opencv2/highgui/highgui.hpp> using namespace std; using namespace cv; int main() { Mat data_temp, labels_temp; Mat data, labels; Mat data_train, data_test; Mat labels_train, labels_test; Mat responses, result; FileStorage fs1, fs2; FileStorage f; cout<<"*****************************************************************************************"<<endl; cout<<"\"data01.xml\" contains digits 0 and 1 of 20 samples each, collected on an Android device"<<endl; cout<<"Each of the collected images are of size 28 x 28 re-arranged to 1 x 784 matrix"<<endl; cout<<"*****************************************************************************************\n\n"<<endl; cout<<"loading the dataset\n"<<endl; f.open("data01.xml", FileStorage::READ); f["datamat"] >> data_temp; f["labelsmat"] >> labels_temp; data_temp.convertTo(data, CV_32F); labels_temp.convertTo(labels, CV_32F); for(int i =0;i<data.rows;i++) { if(i%2 ==0) { data_train.push_back(data.row(i)); labels_train.push_back(labels.row(i)); } else { data_test.push_back(data.row(i)); labels_test.push_back(labels.row(i)); } } cout<<"training samples per class: "<<data_train.rows/2<<endl; cout<<"testing samples per class: "<<data_test.rows/2<<endl; // display sample image Mat img_disp1 = data_train.row(2).reshape(0,28).t(); Mat img_disp2 = data_train.row(18).reshape(0,28).t(); imshow("digit 0", img_disp1); imshow("digit 1", img_disp2); cout<<"initializing Logisitc Regression Parameters\n"<<endl; // LogisticRegressionParams params1 = LogisticRegressionParams(0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1); // params1 (above) with batch gradient performs better than mini batch gradient below with same parameters LogisticRegressionParams params1 = LogisticRegressionParams(0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1); // however mini batch gradient descent parameters with slower learning rate(below) can be used to get higher accuracy than with parameters mentioned above // LogisticRegressionParams params1 = LogisticRegressionParams(0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1); cout<<"training Logisitc Regression classifier\n"<<endl; LogisticRegression lr1(data_train, labels_train, params1); lr1.predict(data_test, responses); labels_test.convertTo(labels_test, CV_32S); cout<<"Original Label :: Predicted Label"<<endl; result = (labels_test == responses)/255; for(int i=0;i<labels_test.rows;i++) { cout<<labels_test.at<int>(i,0)<<" :: "<< responses.at<int>(i,0)<<endl; } // calculate accuracy cout<<"accuracy: "<<((double)cv::sum(result)[0]/result.rows)*100<<"%\n"; cout<<"saving the classifier"<<endl; // save the classfier fs1.open("NewLR_Trained.xml",FileStorage::WRITE); lr1.write(fs1); fs1.release(); // load the classifier onto new object LogisticRegressionParams params2 = LogisticRegressionParams(); LogisticRegression lr2(params2); cout<<"loading a new classifier"<<endl; fs2.open("NewLR_Trained.xml",FileStorage::READ); FileNode fn2 = fs2.root(); lr2.read(fn2); fs2.release(); Mat responses2; // predict using loaded classifier cout<<"predicting the dataset using the loaded classfier\n"<<endl; lr2.predict(data_test, responses2); // calculate accuracy cout<<"accuracy using loaded classifier: "<<100 * (float)cv::countNonZero(labels_test == responses2)/responses2.rows<<"%"<<endl; waitKey(0); return 0; }