import cv2 as cv import argparse parser = argparse.ArgumentParser( description='This sample shows how to define custom OpenCV deep learning layers in Python. ' 'Holistically-Nested Edge Detection (https://arxiv.org/abs/1504.06375) neural network ' 'is used as an example model. Find a pre-trained model at https://github.com/s9xie/hed.') parser.add_argument('--input', help='Path to image or video. Skip to capture frames from camera') parser.add_argument('--prototxt', help='Path to deploy.prototxt', required=True) parser.add_argument('--caffemodel', help='Path to hed_pretrained_bsds.caffemodel', required=True) parser.add_argument('--width', help='Resize input image to a specific width', default=500, type=int) parser.add_argument('--height', help='Resize input image to a specific height', default=500, type=int) args = parser.parse_args() #! [CropLayer] class CropLayer(object): def __init__(self, params, blobs): self.xstart = 0 self.xend = 0 self.ystart = 0 self.yend = 0 # Our layer receives two inputs. We need to crop the first input blob # to match a shape of the second one (keeping batch size and number of channels) def getMemoryShapes(self, inputs): inputShape, targetShape = inputs[0], inputs[1] batchSize, numChannels = inputShape[0], inputShape[1] height, width = targetShape[2], targetShape[3] self.ystart = (inputShape[2] - targetShape[2]) // 2 self.xstart = (inputShape[3] - targetShape[3]) // 2 self.yend = self.ystart + height self.xend = self.xstart + width return [[batchSize, numChannels, height, width]] def forward(self, inputs): return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]] #! [CropLayer] #! [Register] cv.dnn_registerLayer('Crop', CropLayer) #! [Register] # Load the model. net = cv.dnn.readNet(cv.samples.findFile(args.prototxt), cv.samples.findFile(args.caffemodel)) kWinName = 'Holistically-Nested Edge Detection' cv.namedWindow('Input', cv.WINDOW_NORMAL) cv.namedWindow(kWinName, cv.WINDOW_NORMAL) cap = cv.VideoCapture(args.input if args.input else 0) while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break cv.imshow('Input', frame) inp = cv.dnn.blobFromImage(frame, scalefactor=1.0, size=(args.width, args.height), mean=(104.00698793, 116.66876762, 122.67891434), swapRB=False, crop=False) net.setInput(inp) out = net.forward() out = out[0, 0] out = cv.resize(out, (frame.shape[1], frame.shape[0])) cv.imshow(kWinName, out)