/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace cv::gpu; using namespace std; struct CV_GpuMulSpectrumsTest: cvtest::BaseTest { CV_GpuMulSpectrumsTest() {} void run(int) { test(0); testConj(0); testScaled(0); testScaledConj(0); test(DFT_ROWS); testConj(DFT_ROWS); testScaled(DFT_ROWS); testScaledConj(DFT_ROWS); } void gen(int cols, int rows, Mat& mat) { RNG rng; mat.create(rows, cols, CV_32FC2); rng.fill(mat, RNG::UNIFORM, Scalar::all(0.f), Scalar::all(10.f)); } bool cmp(const Mat& gold, const Mat& mine, float max_err=1e-3f) { if (gold.size() != mine.size()) { ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d d%, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } if (gold.type() != mine.type()) { ts->printf(cvtest::TS::CONSOLE, "bad types: gold=%d, mine=%d\n", gold.type(), mine.type()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } for (int i = 0; i < gold.rows; ++i) { for (int j = 0; j < gold.cols * 2; ++j) { float gold_ = gold.at(i, j); float mine_ = mine.at(i, j); if (fabs(gold_ - mine_) > max_err) { ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j, i, gold_, mine_); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } } } return true; } bool cmpScaled(const Mat& gold, const Mat& mine, float scale, float max_err=1e-3f) { if (gold.size() != mine.size()) { ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d d%, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } if (gold.type() != mine.type()) { ts->printf(cvtest::TS::CONSOLE, "bad types: gold=%d, mine=%d\n", gold.type(), mine.type()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } for (int i = 0; i < gold.rows; ++i) { for (int j = 0; j < gold.cols * 2; ++j) { float gold_ = gold.at(i, j) * scale; float mine_ = mine.at(i, j); if (fabs(gold_ - mine_) > max_err) { ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j, i, gold_, mine_); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } } } return true; } void test(int flags) { int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; Mat a, b; gen(cols, rows, a); gen(cols, rows, b); Mat c_gold; mulSpectrums(a, b, c_gold, flags, false); GpuMat d_c; mulSpectrums(GpuMat(a), GpuMat(b), d_c, flags, false); if (!cmp(c_gold, Mat(d_c))) ts->printf(cvtest::TS::CONSOLE, "test failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags); } void testConj(int flags) { int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; Mat a, b; gen(cols, rows, a); gen(cols, rows, b); Mat c_gold; mulSpectrums(a, b, c_gold, flags, true); GpuMat d_c; mulSpectrums(GpuMat(a), GpuMat(b), d_c, flags, true); if (!cmp(c_gold, Mat(d_c))) ts->printf(cvtest::TS::CONSOLE, "testConj failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags); } void testScaled(int flags) { int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; Mat a, b; gen(cols, rows, a); gen(cols, rows, b); float scale = 1.f / a.size().area(); Mat c_gold; mulSpectrums(a, b, c_gold, flags, false); GpuMat d_c; mulAndScaleSpectrums(GpuMat(a), GpuMat(b), d_c, flags, scale, false); if (!cmpScaled(c_gold, Mat(d_c), scale)) ts->printf(cvtest::TS::CONSOLE, "testScaled failed: cols=%d, rows=%d, flags=%d\n", cols, rows, flags); } void testScaledConj(int flags) { int cols = 1 + rand() % 100, rows = 1 + rand() % 1000; Mat a, b; gen(cols, rows, a); gen(cols, rows, b); float scale = 1.f / a.size().area(); Mat c_gold; mulSpectrums(a, b, c_gold, flags, true); GpuMat d_c; mulAndScaleSpectrums(GpuMat(a), GpuMat(b), d_c, flags, scale, true); if (!cmpScaled(c_gold, Mat(d_c), scale)) ts->printf(cvtest::TS::CONSOLE, "testScaledConj failed: cols=%d, rows=%d, flags=%D\n", cols, rows, flags); } } CV_GpuMulSpectrumsTest_inst; struct CV_GpuDftTest: cvtest::BaseTest { CV_GpuDftTest() {} void run(int) { srand(0); int cols = 2 + rand() % 100, rows = 2 + rand() % 100; for (int i = 0; i < 2; ++i) { bool inplace = i != 0; testC2C("no flags", cols, rows, 0, inplace); testC2C("no flags 0 1", cols, rows + 1, 0, inplace); testC2C("no flags 1 0", cols, rows + 1, 0, inplace); testC2C("no flags 1 1", cols + 1, rows, 0, inplace); testC2C("DFT_INVERSE", cols, rows, DFT_INVERSE, inplace); testC2C("DFT_ROWS", cols, rows, DFT_ROWS, inplace); testC2C("single col", 1, rows, 0, inplace); testC2C("single row", cols, 1, 0, inplace); testC2C("single col inversed", 1, rows, DFT_INVERSE, inplace); testC2C("single row inversed", cols, 1, DFT_INVERSE, inplace); testC2C("single row DFT_ROWS", cols, 1, DFT_ROWS, inplace); testC2C("size 1 2", 1, 2, 0, inplace); testC2C("size 2 1", 2, 1, 0, inplace); } testR2CThenC2R("sanity", cols, rows); testR2CThenC2R("sanity 0 1", cols, rows + 1); testR2CThenC2R("sanity 1 0", cols + 1, rows); testR2CThenC2R("sanity 1 1", cols + 1, rows + 1); testR2CThenC2R("single col", 1, rows); testR2CThenC2R("single col 1", 1, rows + 1); testR2CThenC2R("single row", cols, 1); testR2CThenC2R("single row 1", cols + 1, 1); testR2CThenC2R("sanity", cols, rows, true); testR2CThenC2R("sanity 0 1", cols, rows + 1, true); testR2CThenC2R("sanity 1 0", cols + 1, rows, true); testR2CThenC2R("sanity 1 1", cols + 1, rows + 1, true); testR2CThenC2R("single row", cols, 1, true); testR2CThenC2R("single row 1", cols + 1, 1, true); } void gen(int cols, int rows, int cn, Mat& mat) { RNG rng(1); mat.create(rows, cols, CV_MAKETYPE(CV_32F, cn)); rng.fill(mat, RNG::UNIFORM, Scalar::all(0.f), Scalar::all(10.f)); } bool cmp(const Mat& gold, const Mat& mine, float max_err=1e-3f) { if (gold.size() != mine.size()) { ts->printf(cvtest::TS::CONSOLE, "bad sizes: gold: %d %d, mine: %d %d\n", gold.cols, gold.rows, mine.cols, mine.rows); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } if (gold.depth() != mine.depth()) { ts->printf(cvtest::TS::CONSOLE, "bad depth: gold=%d, mine=%d\n", gold.depth(), mine.depth()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } if (gold.channels() != mine.channels()) { ts->printf(cvtest::TS::CONSOLE, "bad channel count: gold=%d, mine=%d\n", gold.channels(), mine.channels()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } for (int i = 0; i < gold.rows; ++i) { for (int j = 0; j < gold.cols * gold.channels(); ++j) { float gold_ = gold.at(i, j); float mine_ = mine.at(i, j); if (fabs(gold_ - mine_) > max_err) { ts->printf(cvtest::TS::CONSOLE, "bad values at %d %d: gold=%f, mine=%f\n", j / gold.channels(), i, gold_, mine_); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); return false; } } } return true; } void testC2C(const std::string& hint, int cols, int rows, int flags, bool inplace=false) { Mat a; gen(cols, rows, 2, a); Mat b_gold; dft(a, b_gold, flags); GpuMat d_b; GpuMat d_b_data; if (inplace) { d_b_data.create(1, a.size().area(), CV_32FC2); d_b = GpuMat(a.rows, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); } dft(GpuMat(a), d_b, Size(cols, rows), flags); bool ok = true; if (ok && inplace && d_b.ptr() != d_b_data.ptr()) { ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done\n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); ok = false; } if (ok && d_b.depth() != CV_32F) { ts->printf(cvtest::TS::CONSOLE, "bad depth: %d\n", d_b.depth()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); ok = false; } if (ok && d_b.channels() != 2) { ts->printf(cvtest::TS::CONSOLE, "bad channel count: %d\n", d_b.channels()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); ok = false; } if (ok) ok = cmp(b_gold, Mat(d_b), rows * cols * 1e-4f); if (!ok) ts->printf(cvtest::TS::CONSOLE, "testC2C failed: hint=%s, cols=%d, rows=%d, flags=%d, inplace=%d\n", hint.c_str(), cols, rows, flags, inplace); } void testR2CThenC2R(const std::string& hint, int cols, int rows, bool inplace=false) { Mat a; gen(cols, rows, 1, a); bool ok = true; GpuMat d_b, d_c; GpuMat d_b_data, d_c_data; if (inplace) { if (a.cols == 1) { d_b_data.create(1, (a.rows / 2 + 1) * a.cols, CV_32FC2); d_b = GpuMat(a.rows / 2 + 1, a.cols, CV_32FC2, d_b_data.ptr(), a.cols * d_b_data.elemSize()); } else { d_b_data.create(1, a.rows * (a.cols / 2 + 1), CV_32FC2); d_b = GpuMat(a.rows, a.cols / 2 + 1, CV_32FC2, d_b_data.ptr(), (a.cols / 2 + 1) * d_b_data.elemSize()); } d_c_data.create(1, a.size().area(), CV_32F); d_c = GpuMat(a.rows, a.cols, CV_32F, d_c_data.ptr(), a.cols * d_c_data.elemSize()); } dft(GpuMat(a), d_b, Size(cols, rows), 0); dft(d_b, d_c, Size(cols, rows), DFT_REAL_OUTPUT | DFT_SCALE); if (ok && inplace && d_b.ptr() != d_b_data.ptr()) { ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done for b\n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); ok = false; } if (ok && inplace && d_c.ptr() != d_c_data.ptr()) { ts->printf(cvtest::TS::CONSOLE, "unnecessary reallocation was done for c\n"); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); ok = false; } if (ok && d_c.depth() != CV_32F) { ts->printf(cvtest::TS::CONSOLE, "bad depth: %d\n", d_c.depth()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); ok = false; } if (ok && d_c.channels() != 1) { ts->printf(cvtest::TS::CONSOLE, "bad channel count: %d\n", d_c.channels()); ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); ok = false; } if (ok) ok = cmp(a, Mat(d_c), rows * cols * 1e-5f); if (!ok) ts->printf(cvtest::TS::CONSOLE, "testR2CThenC2R failed: hint=%s, cols=%d, rows=%d, inplace=%d\n", hint.c_str(), cols, rows, inplace); } }; TEST(dft, accuracy) { CV_GpuDftTest test; test.safe_run(); }