// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2019 Intel Corporation #include "../test_precomp.hpp" #ifdef HAVE_INF_ENGINE #include //////////////////////////////////////////////////////////////////////////////// // FIXME: Suppress deprecation warnings for OpenVINO 2019R2+ // BEGIN {{{ #if defined(__GNUC__) #pragma GCC diagnostic ignored "-Wdeprecated-declarations" #endif #ifdef _MSC_VER #pragma warning(disable: 4996) // was declared deprecated #endif #if defined(__GNUC__) #pragma GCC visibility push(default) #endif #include #if defined(__GNUC__) #pragma GCC visibility pop #endif // END }}} //////////////////////////////////////////////////////////////////////////////// #include #include #include "backends/ie/util.hpp" namespace opencv_test { namespace { // FIXME: taken from DNN module static void initDLDTDataPath() { #ifndef WINRT static bool initialized = false; if (!initialized) { const char* omzDataPath = getenv("OPENCV_OPEN_MODEL_ZOO_DATA_PATH"); if (omzDataPath) cvtest::addDataSearchPath(omzDataPath); const char* dnnDataPath = getenv("OPENCV_DNN_TEST_DATA_PATH"); if (dnnDataPath) { // Add the dnnDataPath itself - G-API is using some images there directly cvtest::addDataSearchPath(dnnDataPath); cvtest::addDataSearchPath(dnnDataPath + std::string("/omz_intel_models")); } initialized = true; } #endif // WINRT } // FIXME: taken from the DNN module void normAssert(cv::InputArray ref, cv::InputArray test, const char *comment /*= ""*/, double l1 = 0.00001, double lInf = 0.0001) { double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total(); EXPECT_LE(normL1, l1) << comment; double normInf = cvtest::norm(ref, test, cv::NORM_INF); EXPECT_LE(normInf, lInf) << comment; } } // anonymous namespace // TODO: Probably DNN/IE part can be further parametrized with a template // NOTE: here ".." is used to leave the default "gapi/" search scope TEST(TestAgeGenderIE, InferBasicTensor) { initDLDTDataPath(); const std::string path = "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013"; const auto topology_path = findDataFile(path + ".xml", false); const auto weights_path = findDataFile(path + ".bin", false); // Load IE network, initialize input data using that. namespace IE = InferenceEngine; cv::Mat in_mat; cv::Mat gapi_age, gapi_gender; IE::Blob::Ptr ie_age, ie_gender; { IE::CNNNetReader reader; reader.ReadNetwork(topology_path); reader.ReadWeights(weights_path); auto net = reader.getNetwork(); const auto &iedims = net.getInputsInfo().begin()->second->getTensorDesc().getDims(); auto cvdims = cv::gapi::ie::util::to_ocv(iedims); in_mat.create(cvdims, CV_32F); cv::randu(in_mat, -1, 1); auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU"); auto plugin_net = plugin.LoadNetwork(net, {}); auto infer_request = plugin_net.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { topology_path, weights_path, "CPU" }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(TestAgeGenderIE, InferBasicImage) { initDLDTDataPath(); const std::string path = "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013"; const auto topology_path = findDataFile(path + ".xml", false); const auto weights_path = findDataFile(path + ".bin", false); // FIXME: Ideally it should be an image from disk // cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); cv::Mat in_mat(cv::Size(320, 240), CV_8UC3); cv::randu(in_mat, 0, 255); cv::Mat gapi_age, gapi_gender; // Load & run IE network namespace IE = InferenceEngine; IE::Blob::Ptr ie_age, ie_gender; { IE::CNNNetReader reader; reader.ReadNetwork(topology_path); reader.ReadWeights(weights_path); auto net = reader.getNetwork(); auto &ii = net.getInputsInfo().at("data"); ii->setPrecision(IE::Precision::U8); ii->setLayout(IE::Layout::NHWC); ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR); auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU"); auto plugin_net = plugin.LoadNetwork(net, {}); auto infer_request = plugin_net.CreateInferRequest(); infer_request.SetBlob("data", cv::gapi::ie::util::to_ie(in_mat)); infer_request.Infer(); ie_age = infer_request.GetBlob("age_conv3"); ie_gender = infer_request.GetBlob("prob"); } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GMat in; cv::GMat age, gender; std::tie(age, gender) = cv::gapi::infer(in); cv::GComputation comp(cv::GIn(in), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { topology_path, weights_path, "CPU" }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) normAssert(cv::gapi::ie::util::to_ocv(ie_age), gapi_age, "Test age output" ); normAssert(cv::gapi::ie::util::to_ocv(ie_gender), gapi_gender, "Test gender output"); } TEST(TestAgeGenderIE, InferROIList) { initDLDTDataPath(); const std::string path = "Retail/object_attributes/age_gender/dldt/age-gender-recognition-retail-0013"; const auto topology_path = findDataFile(path + ".xml", false); const auto weights_path = findDataFile(path + ".bin", false); // FIXME: Ideally it should be an image from disk // cv::Mat in_mat = cv::imread(findDataFile("grace_hopper_227.png")); cv::Mat in_mat(cv::Size(640, 480), CV_8UC3); cv::randu(in_mat, 0, 255); std::vector rois = { cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}), cv::Rect(cv::Point{50, 100}, cv::Size{96, 160}), }; std::vector gapi_age, gapi_gender; // Load & run IE network namespace IE = InferenceEngine; std::vector ie_age, ie_gender; { IE::CNNNetReader reader; reader.ReadNetwork(topology_path); reader.ReadWeights(weights_path); auto net = reader.getNetwork(); auto &ii = net.getInputsInfo().at("data"); ii->setPrecision(IE::Precision::U8); ii->setLayout(IE::Layout::NHWC); ii->getPreProcess().setResizeAlgorithm(IE::RESIZE_BILINEAR); auto plugin = IE::PluginDispatcher().getPluginByDevice("CPU"); auto plugin_net = plugin.LoadNetwork(net, {}); auto infer_request = plugin_net.CreateInferRequest(); auto frame_blob = cv::gapi::ie::util::to_ie(in_mat); for (auto &&rc : rois) { const auto ie_rc = IE::ROI { 0u , static_cast(rc.x) , static_cast(rc.y) , static_cast(rc.width) , static_cast(rc.height) }; infer_request.SetBlob("data", IE::make_shared_blob(frame_blob, ie_rc)); infer_request.Infer(); using namespace cv::gapi::ie::util; ie_age.push_back(to_ocv(infer_request.GetBlob("age_conv3")).clone()); ie_gender.push_back(to_ocv(infer_request.GetBlob("prob")).clone()); } } // Configure & run G-API using AGInfo = std::tuple; G_API_NET(AgeGender, , "test-age-gender"); cv::GArray rr; cv::GMat in; cv::GArray age, gender; std::tie(age, gender) = cv::gapi::infer(rr, in); cv::GComputation comp(cv::GIn(in, rr), cv::GOut(age, gender)); auto pp = cv::gapi::ie::Params { topology_path, weights_path, "CPU" }.cfgOutputLayers({ "age_conv3", "prob" }); comp.apply(cv::gin(in_mat, rois), cv::gout(gapi_age, gapi_gender), cv::compile_args(cv::gapi::networks(pp))); // Validate with IE itself (avoid DNN module dependency here) ASSERT_EQ(2u, ie_age.size() ); ASSERT_EQ(2u, ie_gender.size()); ASSERT_EQ(2u, gapi_age.size() ); ASSERT_EQ(2u, gapi_gender.size()); normAssert(ie_age [0], gapi_age [0], "0: Test age output"); normAssert(ie_gender[0], gapi_gender[0], "0: Test gender output"); normAssert(ie_age [1], gapi_age [1], "1: Test age output"); normAssert(ie_gender[1], gapi_gender[1], "1: Test gender output"); } } // namespace opencv_test #endif // HAVE_INF_ENGINE