/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Niko Li, newlife20080214@gmail.com // Jia Haipeng, jiahaipeng95@gmail.com // Shengen Yan, yanshengen@gmail.com // Jiang Liyuan, lyuan001.good@163.com // Rock Li, Rock.Li@amd.com // Wu Zailong, bullet@yeah.net // Xu Pang, pangxu010@163.com // Sen Liu, swjtuls1987@126.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" #ifdef HAVE_OPENCL using namespace cvtest; using namespace testing; using namespace std; MatType nulltype = -1; #define ONE_TYPE(type) testing::ValuesIn(typeVector(type)) #define NULL_TYPE testing::ValuesIn(typeVector(nulltype)) vector typeVector(MatType type) { vector v; v.push_back(type); return v; } typedef struct { short x; short y; } COOR; COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab) { int isr2 = sr * sr; int c0, c1, c2, c3; int iter; uchar *ptr = NULL; uchar *pstart = NULL; int revx = 0, revy = 0; c0 = sptr[0]; c1 = sptr[1]; c2 = sptr[2]; c3 = sptr[3]; // iterate meanshift procedure for(iter = 0; iter < maxIter; iter++ ) { int count = 0; int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0; //mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp) int minx = x0 - sp; int miny = y0 - sp; int maxx = x0 + sp; int maxy = y0 + sp; //deal with the image boundary if(minx < 0) minx = 0; if(miny < 0) miny = 0; if(maxx >= size.width) maxx = size.width - 1; if(maxy >= size.height) maxy = size.height - 1; if(iter == 0) { pstart = sptr; } else { pstart = pstart + revy * sstep + (revx << 2); //point to the new position } ptr = pstart; ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2)) { int rowCount = 0; int x = minx; #if CV_ENABLE_UNROLLED for( ; x + 4 <= maxx; x += 4, ptr += 16) { int t0, t1, t2; t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x; rowCount++; } t0 = ptr[4], t1 = ptr[5], t2 = ptr[6]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x + 1; rowCount++; } t0 = ptr[8], t1 = ptr[9], t2 = ptr[10]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x + 2; rowCount++; } t0 = ptr[12], t1 = ptr[13], t2 = ptr[14]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x + 3; rowCount++; } } #endif for(; x <= maxx; x++, ptr += 4) { int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2]; if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2) { s0 += t0; s1 += t1; s2 += t2; sx += x; rowCount++; } } if(rowCount == 0) continue; count += rowCount; sy += y * rowCount; } if( count == 0 ) break; int x1 = sx / count; int y1 = sy / count; s0 = s0 / count; s1 = s1 / count; s2 = s2 / count; bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) + tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps); //revise the pointer corresponding to the new (y0,x0) revx = x1 - x0; revy = y1 - y0; x0 = x1; y0 = y1; c0 = s0; c1 = s1; c2 = s2; if( stopFlag ) break; } //for iter dptr[0] = (uchar)c0; dptr[1] = (uchar)c1; dptr[2] = (uchar)c2; dptr[3] = (uchar)c3; COOR coor; coor.x = (short)x0; coor.y = (short)y0; return coor; } void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit) { if( src_roi.empty() ) CV_Error( CV_StsBadArg, "The input image is empty" ); if( src_roi.depth() != CV_8U || src_roi.channels() != 4 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) ); CV_Assert( !(dst_roi.step & 0x3) ); if( !(crit.type & cv::TermCriteria::MAX_ITER) ) crit.maxCount = 5; int maxIter = std::min(std::max(crit.maxCount, 1), 100); float eps; if( !(crit.type & cv::TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(crit.epsilon, 0.0); int tab[512]; for(int i = 0; i < 512; i++) tab[i] = (i - 255) * (i - 255); uchar *sptr = src_roi.data; uchar *dptr = dst_roi.data; int sstep = (int)src_roi.step; int dstep = (int)dst_roi.step; cv::Size size = src_roi.size(); for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2), dptr += dstep - (size.width << 2)) { for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4) { do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab); } } } void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit) { if( src_roi.empty() ) CV_Error( CV_StsBadArg, "The input image is empty" ); if( src_roi.depth() != CV_8U || src_roi.channels() != 4 ) CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" ); CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) && (src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows)); CV_Assert( !(dstCoor_roi.step & 0x3) ); if( !(crit.type & cv::TermCriteria::MAX_ITER) ) crit.maxCount = 5; int maxIter = std::min(std::max(crit.maxCount, 1), 100); float eps; if( !(crit.type & cv::TermCriteria::EPS) ) eps = 1.f; eps = (float)std::max(crit.epsilon, 0.0); int tab[512]; for(int i = 0; i < 512; i++) tab[i] = (i - 255) * (i - 255); uchar *sptr = src_roi.data; uchar *dptr = dst_roi.data; short *dCoorptr = (short *)dstCoor_roi.data; int sstep = (int)src_roi.step; int dstep = (int)dst_roi.step; int dCoorstep = (int)dstCoor_roi.step >> 1; cv::Size size = src_roi.size(); for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2), dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1)) { for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2) { *((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab); } } } PARAM_TEST_CASE(ImgprocTestBase, MatType, MatType, MatType, MatType, MatType, bool) { int type1, type2, type3, type4, type5; cv::Scalar val; // set up roi int roicols; int roirows; int src1x; int src1y; int src2x; int src2y; int dstx; int dsty; int dst1x; int dst1y; int maskx; int masky; //mat cv::Mat mat1; cv::Mat mat2; cv::Mat mask; cv::Mat dst; cv::Mat dst1; //bak, for two outputs //mat with roi cv::Mat mat1_roi; cv::Mat mat2_roi; cv::Mat mask_roi; cv::Mat dst_roi; cv::Mat dst1_roi; //bak //ocl mat cv::ocl::oclMat clmat1; cv::ocl::oclMat clmat2; cv::ocl::oclMat clmask; cv::ocl::oclMat cldst; cv::ocl::oclMat cldst1; //bak //ocl mat with roi cv::ocl::oclMat clmat1_roi; cv::ocl::oclMat clmat2_roi; cv::ocl::oclMat clmask_roi; cv::ocl::oclMat cldst_roi; cv::ocl::oclMat cldst1_roi; virtual void SetUp() { type1 = GET_PARAM(0); type2 = GET_PARAM(1); type3 = GET_PARAM(2); type4 = GET_PARAM(3); type5 = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); double min = 1, max = 20; if(type1 != nulltype) { mat1 = randomMat(rng, size, type1, min, max, false); clmat1 = mat1; } if(type2 != nulltype) { mat2 = randomMat(rng, size, type2, min, max, false); clmat2 = mat2; } if(type3 != nulltype) { dst = randomMat(rng, size, type3, min, max, false); cldst = dst; } if(type4 != nulltype) { dst1 = randomMat(rng, size, type4, min, max, false); cldst1 = dst1; } if(type5 != nulltype) { mask = randomMat(rng, size, CV_8UC1, 0, 2, false); cv::threshold(mask, mask, 0.5, 255., type5); clmask = mask; } val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0)); } void random_roi() { #ifdef RANDOMROI //randomize ROI cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, mat1.cols); roirows = rng.uniform(1, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); src1y = rng.uniform(0, mat1.rows - roirows); src2x = rng.uniform(0, mat2.cols - roicols); src2y = rng.uniform(0, mat2.rows - roirows); dstx = rng.uniform(0, dst.cols - roicols); dsty = rng.uniform(0, dst.rows - roirows); dst1x = rng.uniform(0, dst1.cols - roicols); dst1y = rng.uniform(0, dst1.rows - roirows); maskx = rng.uniform(0, mask.cols - roicols); masky = rng.uniform(0, mask.rows - roirows); #else roicols = mat1.cols; roirows = mat1.rows; src1x = 0; src1y = 0; src2x = 0; src2y = 0; dstx = 0; dsty = 0; dst1x = 0; dst1y = 0; maskx = 0; masky = 0; #endif if(type1 != nulltype) { mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); clmat1_roi = clmat1(Rect(src1x, src1y, roicols, roirows)); } if(type2 != nulltype) { mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows)); clmat2_roi = clmat2(Rect(src2x, src2y, roicols, roirows)); } if(type3 != nulltype) { dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); cldst_roi = cldst(Rect(dstx, dsty, roicols, roirows)); } if(type4 != nulltype) { dst1_roi = dst1(Rect(dst1x, dst1y, roicols, roirows)); cldst1_roi = cldst1(Rect(dst1x, dst1y, roicols, roirows)); } if(type5 != nulltype) { mask_roi = mask(Rect(maskx, masky, roicols, roirows)); clmask_roi = clmask(Rect(maskx, masky, roicols, roirows)); } } void Near(double threshold) { cv::Mat cpu_cldst; cldst.download(cpu_cldst); EXPECT_MAT_NEAR(dst, cpu_cldst, threshold); } }; ////////////////////////////////equalizeHist////////////////////////////////////////// struct equalizeHist : ImgprocTestBase {}; TEST_P(equalizeHist, Mat) { if (mat1.type() != CV_8UC1 || mat1.type() != dst.type()) { cout << "Unsupported type" << endl; EXPECT_DOUBLE_EQ(0.0, 0.0); } else { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::equalizeHist(mat1_roi, dst_roi); cv::ocl::equalizeHist(clmat1_roi, cldst_roi); Near(1.1); } } } ////////////////////////////////copyMakeBorder//////////////////////////////////////////// struct CopyMakeBorder : ImgprocTestBase {}; TEST_P(CopyMakeBorder, Mat) { int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE, cv::BORDER_REFLECT, cv::BORDER_WRAP, cv::BORDER_REFLECT_101}; //const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101"}; cv::RNG &rng = TS::ptr()->get_rng(); int top = rng.uniform(0, 10); int bottom = rng.uniform(0, 10); int left = rng.uniform(0, 10); int right = rng.uniform(0, 10); if (mat1.type() != dst.type()) { cout << "Unsupported type" << endl; EXPECT_DOUBLE_EQ(0.0, 0.0); } else { for(size_t i = 0; i < sizeof(bordertype) / sizeof(int); i++) for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); #ifdef RANDOMROI if(((bordertype[i] != cv::BORDER_CONSTANT) && (bordertype[i] != cv::BORDER_REPLICATE)) && (mat1_roi.cols <= left) || (mat1_roi.cols <= right) || (mat1_roi.rows <= top) || (mat1_roi.rows <= bottom)) { continue; } if((dstx >= left) && (dsty >= top) && (dstx + cldst_roi.cols + right <= cldst_roi.wholecols) && (dsty + cldst_roi.rows + bottom <= cldst_roi.wholerows)) { dst_roi.adjustROI(top, bottom, left, right); cldst_roi.adjustROI(top, bottom, left, right); } else { continue; } #endif cv::copyMakeBorder(mat1_roi, dst_roi, top, bottom, left, right, bordertype[i] | cv::BORDER_ISOLATED, cv::Scalar(1.0)); cv::ocl::copyMakeBorder(clmat1_roi, cldst_roi, top, bottom, left, right, bordertype[i] | cv::BORDER_ISOLATED, cv::Scalar(1.0)); cv::Mat cpu_cldst; #ifndef RANDOMROI cldst_roi.download(cpu_cldst); EXPECT_MAT_NEAR(dst_roi, cpu_cldst, 0.0); #else cldst.download(cpu_cldst); EXPECT_MAT_NEAR(dst, cpu_cldst, 0.0); #endif } } } ////////////////////////////////cornerMinEigenVal////////////////////////////////////////// struct cornerMinEigenVal : ImgprocTestBase {}; TEST_P(cornerMinEigenVal, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); int blockSize = 3, apertureSize = 3;//1 + 2 * (rand() % 4); //int borderType = cv::BORDER_CONSTANT; //int borderType = cv::BORDER_REPLICATE; int borderType = cv::BORDER_REFLECT; cv::cornerMinEigenVal(mat1_roi, dst_roi, blockSize, apertureSize, borderType); cv::ocl::cornerMinEigenVal(clmat1_roi, cldst_roi, blockSize, apertureSize, borderType); Near(1.); } } ////////////////////////////////cornerHarris////////////////////////////////////////// struct cornerHarris : ImgprocTestBase {}; TEST_P(cornerHarris, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); int blockSize = 3, apertureSize = 3; //1 + 2 * (rand() % 4); double k = 2; //int borderType = cv::BORDER_CONSTANT; //int borderType = cv::BORDER_REPLICATE; int borderType = cv::BORDER_REFLECT; cv::cornerHarris(mat1_roi, dst_roi, blockSize, apertureSize, k, borderType); cv::ocl::cornerHarris(clmat1_roi, cldst_roi, blockSize, apertureSize, k, borderType); Near(1.); } } ////////////////////////////////integral///////////////////////////////////////////////// struct integral : ImgprocTestBase {}; TEST_P(integral, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::ocl::integral(clmat1_roi, cldst_roi, cldst1_roi); cv::integral(mat1_roi, dst_roi, dst1_roi); Near(0); cv::Mat cpu_cldst1; cldst1.download(cpu_cldst1); EXPECT_MAT_NEAR(dst1, cpu_cldst1, 0.0); } } ///////////////////////////////////////////////////////////////////////////////////////////////// // warpAffine & warpPerspective PARAM_TEST_CASE(WarpTestBase, MatType, int) { int type; cv::Size size; int interpolation; //src mat cv::Mat mat1; cv::Mat dst; // set up roi int src_roicols; int src_roirows; int dst_roicols; int dst_roirows; int src1x; int src1y; int dstx; int dsty; //src mat with roi cv::Mat mat1_roi; cv::Mat dst_roi; //ocl dst mat for testing cv::ocl::oclMat gdst_whole; //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gdst; virtual void SetUp() { type = GET_PARAM(0); //dsize = GET_PARAM(1); interpolation = GET_PARAM(1); cv::RNG &rng = TS::ptr()->get_rng(); size = cv::Size(MWIDTH, MHEIGHT); mat1 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); } void random_roi() { #ifdef RANDOMROI //randomize ROI cv::RNG &rng = TS::ptr()->get_rng(); src_roicols = rng.uniform(1, mat1.cols); src_roirows = rng.uniform(1, mat1.rows); dst_roicols = rng.uniform(1, dst.cols); dst_roirows = rng.uniform(1, dst.rows); src1x = rng.uniform(0, mat1.cols - src_roicols); src1y = rng.uniform(0, mat1.rows - src_roirows); dstx = rng.uniform(0, dst.cols - dst_roicols); dsty = rng.uniform(0, dst.rows - dst_roirows); #else src_roicols = mat1.cols; src_roirows = mat1.rows; dst_roicols = dst.cols; dst_roirows = dst.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; #endif mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows)); dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); gmat1 = mat1_roi; } }; /////warpAffine struct WarpAffine : WarpTestBase {}; TEST_P(WarpAffine, Mat) { static const double coeffs[2][3] = { {cos(CV_PI / 6), -sin(CV_PI / 6), 100.0}, {sin(CV_PI / 6), cos(CV_PI / 6), -100.0} }; Mat M(2, 3, CV_64F, (void *)coeffs); for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::warpAffine(mat1_roi, dst_roi, M, size, interpolation); cv::ocl::warpAffine(gmat1, gdst, M, size, interpolation); cv::Mat cpu_dst; gdst_whole.download(cpu_dst); EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); } } // warpPerspective struct WarpPerspective : WarpTestBase {}; TEST_P(WarpPerspective, Mat) { static const double coeffs[3][3] = { {cos(3.14 / 6), -sin(3.14 / 6), 100.0}, {sin(3.14 / 6), cos(3.14 / 6), -100.0}, {0.0, 0.0, 1.0} }; Mat M(3, 3, CV_64F, (void *)coeffs); for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::warpPerspective(mat1_roi, dst_roi, M, size, interpolation); cv::ocl::warpPerspective(gmat1, gdst, M, size, interpolation); cv::Mat cpu_dst; gdst_whole.download(cpu_dst); EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); } } ///////////////////////////////////////////////////////////////////////////////////////////////// // remap ////////////////////////////////////////////////////////////////////////////////////////////////// PARAM_TEST_CASE(Remap, MatType, MatType, MatType, int, int) { int srcType; int map1Type; int map2Type; cv::Scalar val; int interpolation; int bordertype; cv::Mat src; cv::Mat dst; cv::Mat map1; cv::Mat map2; //std::vector oclinfo; int src_roicols; int src_roirows; int dst_roicols; int dst_roirows; int map1_roicols; int map1_roirows; int map2_roicols; int map2_roirows; int srcx; int srcy; int dstx; int dsty; int map1x; int map1y; int map2x; int map2y; cv::Mat src_roi; cv::Mat dst_roi; cv::Mat map1_roi; cv::Mat map2_roi; //ocl mat for testing cv::ocl::oclMat gdst; //ocl mat with roi cv::ocl::oclMat gsrc_roi; cv::ocl::oclMat gdst_roi; cv::ocl::oclMat gmap1_roi; cv::ocl::oclMat gmap2_roi; virtual void SetUp() { srcType = GET_PARAM(0); map1Type = GET_PARAM(1); map2Type = GET_PARAM(2); interpolation = GET_PARAM(3); bordertype = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size srcSize = cv::Size(MWIDTH, MHEIGHT); cv::Size map1Size = cv::Size(MWIDTH, MHEIGHT); double min = 5, max = 16; if(srcType != nulltype) { src = randomMat(rng, srcSize, srcType, min, max, false); } if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype)) { map1 = randomMat(rng, map1Size, map1Type, min, max, false); } else if (map1Type == CV_32FC1 && map2Type == CV_32FC1) { map1 = randomMat(rng, map1Size, map1Type, min, max, false); map2 = randomMat(rng, map1Size, map1Type, min, max, false); } else { cout << "The wrong input type" << endl; return; } dst = randomMat(rng, map1Size, srcType, min, max, false); switch (src.channels()) { case 1: val = cv::Scalar(rng.uniform(0.0, 10.0), 0, 0, 0); break; case 2: val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0, 0); break; case 3: val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), 0); break; case 4: val = cv::Scalar(rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0), rng.uniform(0.0, 10.0)); break; } } void random_roi() { cv::RNG &rng = TS::ptr()->get_rng(); dst_roicols = rng.uniform(1, dst.cols); dst_roirows = rng.uniform(1, dst.rows); src_roicols = rng.uniform(1, src.cols); src_roirows = rng.uniform(1, src.rows); srcx = rng.uniform(0, src.cols - src_roicols); srcy = rng.uniform(0, src.rows - src_roirows); dstx = rng.uniform(0, dst.cols - dst_roicols); dsty = rng.uniform(0, dst.rows - dst_roirows); map1_roicols = dst_roicols; map1_roirows = dst_roirows; map2_roicols = dst_roicols; map2_roirows = dst_roirows; map1x = dstx; map1y = dsty; map2x = dstx; map2y = dsty; if((map1Type == CV_16SC2 && map2Type == nulltype) || (map1Type == CV_32FC2 && map2Type == nulltype)) { map1_roi = map1(Rect(map1x, map1y, map1_roicols, map1_roirows)); gmap1_roi = map1_roi; } else if (map1Type == CV_32FC1 && map2Type == CV_32FC1) { map1_roi = map1(Rect(map1x, map1y, map1_roicols, map1_roirows)); gmap1_roi = map1_roi; map2_roi = map2(Rect(map2x, map2y, map2_roicols, map2_roirows)); gmap2_roi = map2_roi; } src_roi = src(Rect(srcx, srcy, src_roicols, src_roirows)); dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); gsrc_roi = src_roi; gdst = dst; gdst_roi = gdst(Rect(dstx, dsty, dst_roicols, dst_roirows)); } }; TEST_P(Remap, Mat) { if((interpolation == 1 && map1Type == CV_16SC2) || (map1Type == CV_32FC1 && map2Type == nulltype) || (map1Type == CV_16SC2 && map2Type == CV_32FC1) || (map1Type == CV_32FC2 && map2Type == CV_32FC1)) { cout << "Don't support the dataType" << endl; return; } int bordertype[] = {cv::BORDER_CONSTANT, cv::BORDER_REPLICATE/*,BORDER_REFLECT,BORDER_WRAP,BORDER_REFLECT_101*/}; //const char *borderstr[] = {"BORDER_CONSTANT", "BORDER_REPLICATE"/*, "BORDER_REFLECT","BORDER_WRAP","BORDER_REFLECT_101"*/}; // for(int i = 0; i < sizeof(bordertype)/sizeof(int); i++) for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::remap(src_roi, dst_roi, map1_roi, map2_roi, interpolation, bordertype[0], val); cv::ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, interpolation, bordertype[0], val); cv::Mat cpu_dst; gdst.download(cpu_dst); if(interpolation == 0) EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); EXPECT_MAT_NEAR(dst, cpu_dst, 2.0); } } ///////////////////////////////////////////////////////////////////////////////////////////////// // resize PARAM_TEST_CASE(Resize, MatType, cv::Size, double, double, int) { int type; cv::Size dsize; double fx, fy; int interpolation; //src mat cv::Mat mat1; cv::Mat dst; // set up roi int src_roicols; int src_roirows; int dst_roicols; int dst_roirows; int src1x; int src1y; int dstx; int dsty; //src mat with roi cv::Mat mat1_roi; cv::Mat dst_roi; //ocl dst mat for testing cv::ocl::oclMat gdst_whole; //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gdst; virtual void SetUp() { type = GET_PARAM(0); dsize = GET_PARAM(1); fx = GET_PARAM(2); fy = GET_PARAM(3); interpolation = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); if(dsize == cv::Size() && !(fx > 0 && fy > 0)) { cout << "invalid dsize and fx fy" << endl; return; } if(dsize == cv::Size()) { dsize.width = (int)(size.width * fx); dsize.height = (int)(size.height * fy); } mat1 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, dsize, type, 5, 16, false); } void random_roi() { #ifdef RANDOMROI //randomize ROI cv::RNG &rng = TS::ptr()->get_rng(); src_roicols = rng.uniform(1, mat1.cols); src_roirows = rng.uniform(1, mat1.rows); dst_roicols = (int)(src_roicols * fx); dst_roirows = (int)(src_roirows * fy); src1x = rng.uniform(0, mat1.cols - src_roicols); src1y = rng.uniform(0, mat1.rows - src_roirows); dstx = rng.uniform(0, dst.cols - dst_roicols); dsty = rng.uniform(0, dst.rows - dst_roirows); #else src_roicols = mat1.cols; src_roirows = mat1.rows; dst_roicols = dst.cols; dst_roirows = dst.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; #endif dsize.width = dst_roicols; dsize.height = dst_roirows; mat1_roi = mat1(Rect(src1x, src1y, src_roicols, src_roirows)); dst_roi = dst(Rect(dstx, dsty, dst_roicols, dst_roirows)); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, dst_roicols, dst_roirows)); dsize.width = (int)(mat1_roi.size().width * fx); dsize.height = (int)(mat1_roi.size().height * fy); gmat1 = mat1_roi; } }; TEST_P(Resize, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); // cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation); // cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation); if(dst_roicols < 1 || dst_roirows < 1) continue; cv::resize(mat1_roi, dst_roi, dsize, fx, fy, interpolation); cv::ocl::resize(gmat1, gdst, dsize, fx, fy, interpolation); cv::Mat cpu_dst; gdst_whole.download(cpu_dst); EXPECT_MAT_NEAR(dst, cpu_dst, 1.0); } } ///////////////////////////////////////////////////////////////////////////////////////////////// //threshold PARAM_TEST_CASE(Threshold, MatType, ThreshOp) { int type; int threshOp; //src mat cv::Mat mat1; cv::Mat dst; // set up roi int roicols; int roirows; int src1x; int src1y; int dstx; int dsty; //src mat with roi cv::Mat mat1_roi; cv::Mat dst_roi; //ocl dst mat for testing cv::ocl::oclMat gdst_whole; //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gdst; virtual void SetUp() { type = GET_PARAM(0); threshOp = GET_PARAM(1); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); mat1 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); } void random_roi() { #ifdef RANDOMROI //randomize ROI cv::RNG &rng = TS::ptr()->get_rng(); roicols = rng.uniform(1, mat1.cols); roirows = rng.uniform(1, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); src1y = rng.uniform(0, mat1.rows - roirows); dstx = rng.uniform(0, dst.cols - roicols); dsty = rng.uniform(0, dst.rows - roirows); #else roicols = mat1.cols; roirows = mat1.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; #endif mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); gmat1 = mat1_roi; } }; TEST_P(Threshold, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); double maxVal = randomDouble(20.0, 127.0); double thresh = randomDouble(0.0, maxVal); cv::threshold(mat1_roi, dst_roi, thresh, maxVal, threshOp); cv::ocl::threshold(gmat1, gdst, thresh, maxVal, threshOp); cv::Mat cpu_dst; gdst_whole.download(cpu_dst); EXPECT_MAT_NEAR(dst, cpu_dst, 1); } } PARAM_TEST_CASE(meanShiftTestBase, MatType, MatType, int, int, cv::TermCriteria) { int type, typeCoor; int sp, sr; cv::TermCriteria crit; //src mat cv::Mat src; cv::Mat dst; cv::Mat dstCoor; //set up roi int roicols; int roirows; int srcx; int srcy; int dstx; int dsty; //src mat with roi cv::Mat src_roi; cv::Mat dst_roi; cv::Mat dstCoor_roi; //ocl dst mat cv::ocl::oclMat gdst; cv::ocl::oclMat gdstCoor; //ocl mat with roi cv::ocl::oclMat gsrc_roi; cv::ocl::oclMat gdst_roi; cv::ocl::oclMat gdstCoor_roi; virtual void SetUp() { type = GET_PARAM(0); typeCoor = GET_PARAM(1); sp = GET_PARAM(2); sr = GET_PARAM(3); crit = GET_PARAM(4); cv::RNG &rng = TS::ptr()->get_rng(); // MWIDTH=256, MHEIGHT=256. defined in utility.hpp cv::Size size = cv::Size(MWIDTH, MHEIGHT); src = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); dstCoor = randomMat(rng, size, typeCoor, 5, 16, false); } void random_roi() { #ifdef RANDOMROI cv::RNG &rng = TS::ptr()->get_rng(); //randomize ROI roicols = rng.uniform(1, src.cols); roirows = rng.uniform(1, src.rows); srcx = rng.uniform(0, src.cols - roicols); srcy = rng.uniform(0, src.rows - roirows); dstx = rng.uniform(0, dst.cols - roicols); dsty = rng.uniform(0, dst.rows - roirows); #else roicols = src.cols; roirows = src.rows; srcx = 0; srcy = 0; dstx = 0; dsty = 0; #endif src_roi = src(Rect(srcx, srcy, roicols, roirows)); dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); dstCoor_roi = dstCoor(Rect(dstx, dsty, roicols, roirows)); gdst = dst; gdstCoor = dstCoor; gsrc_roi = src_roi; gdst_roi = gdst(Rect(dstx, dsty, roicols, roirows)); //gdst_roi gdstCoor_roi = gdstCoor(Rect(dstx, dsty, roicols, roirows)); } }; /////////////////////////meanShiftFiltering///////////////////////////// struct meanShiftFiltering : meanShiftTestBase {}; TEST_P(meanShiftFiltering, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::Mat cpu_gdst; gdst.download(cpu_gdst); meanShiftFiltering_(src_roi, dst_roi, sp, sr, crit); cv::ocl::meanShiftFiltering(gsrc_roi, gdst_roi, sp, sr, crit); gdst.download(cpu_gdst); EXPECT_MAT_NEAR(dst, cpu_gdst, 0.0); } } ///////////////////////////meanShiftProc////////////////////////////////// struct meanShiftProc : meanShiftTestBase {}; TEST_P(meanShiftProc, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::Mat cpu_gdst; cv::Mat cpu_gdstCoor; meanShiftProc_(src_roi, dst_roi, dstCoor_roi, sp, sr, crit); cv::ocl::meanShiftProc(gsrc_roi, gdst_roi, gdstCoor_roi, sp, sr, crit); gdst.download(cpu_gdst); gdstCoor.download(cpu_gdstCoor); EXPECT_MAT_NEAR(dst, cpu_gdst, 0.0); EXPECT_MAT_NEAR(dstCoor, cpu_gdstCoor, 0.0); } } /////////////////////////////////////////////////////////////////////////////////////// //hist void calcHistGold(const cv::Mat &src, cv::Mat &hist) { hist.create(1, 256, CV_32SC1); hist.setTo(cv::Scalar::all(0)); int *hist_row = hist.ptr(); for (int y = 0; y < src.rows; ++y) { const uchar *src_row = src.ptr(y); for (int x = 0; x < src.cols; ++x) ++hist_row[src_row[x]]; } } PARAM_TEST_CASE(histTestBase, MatType, MatType) { int type_src; //src mat cv::Mat src; cv::Mat dst_hist; //set up roi int roicols; int roirows; int srcx; int srcy; //src mat with roi cv::Mat src_roi; //ocl dst mat, dst_hist and gdst_hist don't have roi cv::ocl::oclMat gdst_hist; //ocl mat with roi cv::ocl::oclMat gsrc_roi; virtual void SetUp() { type_src = GET_PARAM(0); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size = cv::Size(MWIDTH, MHEIGHT); src = randomMat(rng, size, type_src, 0, 256, false); } void random_roi() { #ifdef RANDOMROI cv::RNG &rng = TS::ptr()->get_rng(); //randomize ROI roicols = rng.uniform(1, src.cols); roirows = rng.uniform(1, src.rows); srcx = rng.uniform(0, src.cols - roicols); srcy = rng.uniform(0, src.rows - roirows); #else roicols = src.cols; roirows = src.rows; srcx = 0; srcy = 0; #endif src_roi = src(Rect(srcx, srcy, roicols, roirows)); gsrc_roi = src_roi; } }; ///////////////////////////calcHist/////////////////////////////////////// struct calcHist : histTestBase {}; TEST_P(calcHist, Mat) { for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::Mat cpu_hist; calcHistGold(src_roi, dst_hist); cv::ocl::calcHist(gsrc_roi, gdst_hist); gdst_hist.download(cpu_hist); EXPECT_MAT_NEAR(dst_hist, cpu_hist, 0.0); } } /////////////////////////////////////////////////////////////////////////////////////////////////////// // CLAHE PARAM_TEST_CASE(CLAHE, cv::Size, double) { cv::Size gridSize; double clipLimit; cv::Mat src; cv::Mat dst_gold; cv::ocl::oclMat g_src; cv::ocl::oclMat g_dst; virtual void SetUp() { gridSize = GET_PARAM(0); clipLimit = GET_PARAM(1); cv::RNG &rng = TS::ptr()->get_rng(); src = randomMat(rng, cv::Size(MWIDTH, MHEIGHT), CV_8UC1, 0, 256, false); g_src.upload(src); } }; TEST_P(CLAHE, Accuracy) { cv::Ptr clahe = cv::ocl::createCLAHE(clipLimit, gridSize); clahe->apply(g_src, g_dst); cv::Mat dst(g_dst); cv::Ptr clahe_gold = cv::createCLAHE(clipLimit, gridSize); clahe_gold->apply(src, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 1.0); } ///////////////////////////Convolve////////////////////////////////// PARAM_TEST_CASE(ConvolveTestBase, MatType, bool) { int type; //src mat cv::Mat mat1; cv::Mat mat2; cv::Mat dst; cv::Mat dst1; //bak, for two outputs // set up roi int roicols; int roirows; int src1x; int src1y; int src2x; int src2y; int dstx; int dsty; //src mat with roi cv::Mat mat1_roi; cv::Mat mat2_roi; cv::Mat dst_roi; cv::Mat dst1_roi; //bak //ocl dst mat for testing cv::ocl::oclMat gdst_whole; cv::ocl::oclMat gdst1_whole; //bak //ocl mat with roi cv::ocl::oclMat gmat1; cv::ocl::oclMat gmat2; cv::ocl::oclMat gdst; cv::ocl::oclMat gdst1; //bak virtual void SetUp() { type = GET_PARAM(0); cv::RNG &rng = TS::ptr()->get_rng(); cv::Size size(MWIDTH, MHEIGHT); mat1 = randomMat(rng, size, type, 5, 16, false); mat2 = randomMat(rng, size, type, 5, 16, false); dst = randomMat(rng, size, type, 5, 16, false); dst1 = randomMat(rng, size, type, 5, 16, false); } void random_roi() { cv::RNG &rng = TS::ptr()->get_rng(); #ifdef RANDOMROI //randomize ROI roicols = rng.uniform(1, mat1.cols); roirows = rng.uniform(1, mat1.rows); src1x = rng.uniform(0, mat1.cols - roicols); src1y = rng.uniform(0, mat1.rows - roirows); dstx = rng.uniform(0, dst.cols - roicols); dsty = rng.uniform(0, dst.rows - roirows); #else roicols = mat1.cols; roirows = mat1.rows; src1x = 0; src1y = 0; dstx = 0; dsty = 0; #endif src2x = rng.uniform(0, mat2.cols - roicols); src2y = rng.uniform(0, mat2.rows - roirows); mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows)); mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows)); dst_roi = dst(Rect(dstx, dsty, roicols, roirows)); dst1_roi = dst1(Rect(dstx, dsty, roicols, roirows)); gdst_whole = dst; gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows)); gdst1_whole = dst1; gdst1 = gdst1_whole(Rect(dstx, dsty, roicols, roirows)); gmat1 = mat1_roi; gmat2 = mat2_roi; //end } }; struct Convolve : ConvolveTestBase {}; void conv2( cv::Mat x, cv::Mat y, cv::Mat z) { int N1 = x.rows; int M1 = x.cols; int N2 = y.rows; int M2 = y.cols; int i, j; int m, n; float *kerneldata = (float *)(x.data); float *srcdata = (float *)(y.data); float *dstdata = (float *)(z.data); for(i = 0; i < N2; i++) for(j = 0; j < M2; j++) { float temp = 0; for(m = 0; m < N1; m++) for(n = 0; n < M1; n++) { int r, c; r = min(max((i - N1 / 2 + m), 0), N2 - 1); c = min(max((j - M1 / 2 + n), 0), M2 - 1); temp += kerneldata[m * (x.step >> 2) + n] * srcdata[r * (y.step >> 2) + c]; } dstdata[i * (z.step >> 2) + j] = temp; } } TEST_P(Convolve, Mat) { if(mat1.type() != CV_32FC1) { cout << "\tUnsupported type\t\n"; } for(int j = 0; j < LOOP_TIMES; j++) { random_roi(); cv::ocl::oclMat temp1; cv::Mat kernel_cpu = mat2(Rect(0, 0, 7, 7)); temp1 = kernel_cpu; conv2(kernel_cpu, mat1_roi, dst_roi); cv::ocl::convolve(gmat1, temp1, gdst); cv::Mat cpu_dst; gdst_whole.download(cpu_dst); EXPECT_MAT_NEAR(dst, cpu_dst, .1); } } //////////////////////////////// ColumnSum ////////////////////////////////////// PARAM_TEST_CASE(ColumnSum, cv::Size) { cv::Size size; cv::Mat src; virtual void SetUp() { size = GET_PARAM(0); } }; TEST_P(ColumnSum, Accuracy) { cv::Mat src = randomMat(size, CV_32FC1); cv::ocl::oclMat d_dst; cv::ocl::oclMat d_src(src); cv::ocl::columnSum(d_src, d_dst); cv::Mat dst(d_dst); for (int j = 0; j < src.cols; ++j) { float gold = src.at(0, j); float res = dst.at(0, j); ASSERT_NEAR(res, gold, 1e-5); } for (int i = 1; i < src.rows; ++i) { for (int j = 0; j < src.cols; ++j) { float gold = src.at(i, j) += src.at(i - 1, j); float res = dst.at(i, j); ASSERT_NEAR(res, gold, 1e-5); } } } ///////////////////////////////////////////////////////////////////////////////////// INSTANTIATE_TEST_CASE_P(ImgprocTestBase, equalizeHist, Combine( ONE_TYPE(CV_8UC1), NULL_TYPE, ONE_TYPE(CV_8UC1), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, CopyMakeBorder, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), NULL_TYPE, Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerMinEigenVal, Combine( Values(CV_8UC1, CV_32FC1), NULL_TYPE, ONE_TYPE(CV_32FC1), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, cornerHarris, Combine( Values(CV_8UC1, CV_32FC1), NULL_TYPE, ONE_TYPE(CV_32FC1), NULL_TYPE, NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(ImgprocTestBase, integral, Combine( ONE_TYPE(CV_8UC1), NULL_TYPE, ONE_TYPE(CV_32SC1), ONE_TYPE(CV_32FC1), NULL_TYPE, Values(false))); // Values(false) is the reserved parameter INSTANTIATE_TEST_CASE_P(Imgproc, WarpAffine, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR, (MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP)))); INSTANTIATE_TEST_CASE_P(Imgproc, WarpPerspective, Combine (Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR, (MatType)cv::INTER_CUBIC, (MatType)(cv::INTER_NEAREST | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_LINEAR | cv::WARP_INVERSE_MAP), (MatType)(cv::INTER_CUBIC | cv::WARP_INVERSE_MAP)))); INSTANTIATE_TEST_CASE_P(Imgproc, Resize, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(cv::Size()), Values(0.5, 1.5, 2), Values(0.5, 1.5, 2), Values((MatType)cv::INTER_NEAREST, (MatType)cv::INTER_LINEAR))); INSTANTIATE_TEST_CASE_P(Imgproc, Threshold, Combine( Values(CV_8UC1, CV_32FC1), Values(ThreshOp(cv::THRESH_BINARY), ThreshOp(cv::THRESH_BINARY_INV), ThreshOp(cv::THRESH_TRUNC), ThreshOp(cv::THRESH_TOZERO), ThreshOp(cv::THRESH_TOZERO_INV)))); INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftFiltering, Combine( ONE_TYPE(CV_8UC4), ONE_TYPE(CV_16SC2), Values(5), Values(6), Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1)) )); INSTANTIATE_TEST_CASE_P(Imgproc, meanShiftProc, Combine( ONE_TYPE(CV_8UC4), ONE_TYPE(CV_16SC2), Values(5), Values(6), Values(cv::TermCriteria(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1)) )); INSTANTIATE_TEST_CASE_P(Imgproc, Remap, Combine( Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(CV_32FC1, CV_16SC2, CV_32FC2), Values(-1, CV_32FC1), Values((int)cv::INTER_NEAREST, (int)cv::INTER_LINEAR), Values((int)cv::BORDER_CONSTANT))); INSTANTIATE_TEST_CASE_P(histTestBase, calcHist, Combine( ONE_TYPE(CV_8UC1), ONE_TYPE(CV_32SC1) //no use )); INSTANTIATE_TEST_CASE_P(Imgproc, CLAHE, Combine( Values(cv::Size(4, 4), cv::Size(32, 8), cv::Size(8, 64)), Values(0.0, 10.0, 62.0, 300.0))); INSTANTIATE_TEST_CASE_P(Imgproc, ColumnSum, DIFFERENT_SIZES); #endif // HAVE_OPENCL