// must be defined before importing numpy headers // https://numpy.org/doc/1.17/reference/c-api.array.html#importing-the-api #define NO_IMPORT_ARRAY #define PY_ARRAY_UNIQUE_SYMBOL opencv_ARRAY_API #include "cv2_convert.hpp" #include "cv2_numpy.hpp" #include "cv2_util.hpp" #include "opencv2/core/utils/logger.hpp" PyTypeObject* pyopencv_Mat_TypePtr = nullptr; //====================================================================================================================== using namespace cv; template static std::string pycv_dumpArray(const T* arr, int n) { std::ostringstream out; out << "["; for (int i = 0; i < n; ++i) out << " " << arr[i]; out << " ]"; return out.str(); } static inline std::string getArrayTypeName(PyArrayObject* arr) { PyArray_Descr* dtype = PyArray_DESCR(arr); PySafeObject dtype_str(PyObject_Str(reinterpret_cast(dtype))); if (!dtype_str) { // Fallback to typenum value return cv::format("%d", PyArray_TYPE(arr)); } std::string type_name; if (!getUnicodeString(dtype_str, type_name)) { // Failed to get string from bytes object - clear set TypeError and // fallback to typenum value PyErr_Clear(); return cv::format("%d", PyArray_TYPE(arr)); } return type_name; } //====================================================================================================================== // --- Mat // special case, when the converter needs full ArgInfo structure template<> bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info) { if(!o || o == Py_None) { if( !m.data ) m.allocator = &GetNumpyAllocator(); return true; } if( PyInt_Check(o) ) { double v[] = {static_cast(PyInt_AsLong((PyObject*)o)), 0., 0., 0.}; if ( info.arithm_op_src ) { // Normally cv.XXX(x) means cv.XXX( (x, 0., 0., 0.) ); // However cv.add(mat,x) means cv::add(mat, (x,x,x,x) ). v[1] = v[0]; v[2] = v[0]; v[3] = v[0]; } m = Mat(4, 1, CV_64F, v).clone(); return true; } if( PyFloat_Check(o) ) { double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.}; if ( info.arithm_op_src ) { // Normally cv.XXX(x) means cv.XXX( (x, 0., 0., 0.) ); // However cv.add(mat,x) means cv::add(mat, (x,x,x,x) ). v[1] = v[0]; v[2] = v[0]; v[3] = v[0]; } m = Mat(4, 1, CV_64F, v).clone(); return true; } if( PyTuple_Check(o) ) { // see https://github.com/opencv/opencv/issues/24057 const int sz = (int)PyTuple_Size((PyObject*)o); const int sz2 = info.arithm_op_src ? std::max(4, sz) : sz; // Scalar has 4 elements. m = Mat::zeros(sz2, 1, CV_64F); for( int i = 0; i < sz; i++ ) { PyObject* oi = PyTuple_GetItem(o, i); if( PyInt_Check(oi) ) m.at(i) = (double)PyInt_AsLong(oi); else if( PyFloat_Check(oi) ) m.at(i) = (double)PyFloat_AsDouble(oi); else { failmsg("%s is not a numerical tuple", info.name); m.release(); return false; } } return true; } if( !PyArray_Check(o) ) { failmsg("%s is not a numpy array, neither a scalar", info.name); return false; } PyArrayObject* oarr = (PyArrayObject*) o; if (info.outputarg && !PyArray_ISWRITEABLE(oarr)) { failmsg("%s marked as output argument, but provided NumPy array " "marked as readonly", info.name); return false; } bool needcopy = false, needcast = false; int typenum = PyArray_TYPE(oarr), new_typenum = typenum; int type = typenum == NPY_UBYTE ? CV_8U : typenum == NPY_BYTE ? CV_8S : typenum == NPY_USHORT ? CV_16U : typenum == NPY_SHORT ? CV_16S : typenum == NPY_INT ? CV_32S : typenum == NPY_INT32 ? CV_32S : typenum == NPY_HALF ? CV_16F : typenum == NPY_FLOAT ? CV_32F : typenum == NPY_DOUBLE ? CV_64F : -1; if( type < 0 ) { if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG ) { needcopy = needcast = true; new_typenum = NPY_INT; type = CV_32S; } else { const std::string dtype_name = getArrayTypeName(oarr); failmsg("%s data type = %s is not supported", info.name, dtype_name.c_str()); return false; } } #ifndef CV_MAX_DIM const int CV_MAX_DIM = 32; #endif int ndims = PyArray_NDIM(oarr); if(ndims >= CV_MAX_DIM) { failmsg("%s dimensionality (=%d) is too high", info.name, ndims); return false; } size_t elemsize = CV_ELEM_SIZE1(type); const npy_intp* _sizes = PyArray_DIMS(oarr); const npy_intp* _strides = PyArray_STRIDES(oarr); CV_LOG_DEBUG(NULL, "Incoming ndarray '" << info.name << "': ndims=" << ndims << " _sizes=" << pycv_dumpArray(_sizes, ndims) << " _strides=" << pycv_dumpArray(_strides, ndims)); bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX && !info.nd_mat; if (pyopencv_Mat_TypePtr && PyObject_TypeCheck(o, pyopencv_Mat_TypePtr)) { bool wrapChannels = false; PyObject* pyobj_wrap_channels = PyObject_GetAttrString(o, "wrap_channels"); if (pyobj_wrap_channels) { if (!pyopencv_to_safe(pyobj_wrap_channels, wrapChannels, ArgInfo("cv.Mat.wrap_channels", 0))) { // TODO extra message Py_DECREF(pyobj_wrap_channels); return false; } Py_DECREF(pyobj_wrap_channels); } ismultichannel = wrapChannels && ndims >= 1; } for( int i = ndims-1; i >= 0 && !needcopy; i-- ) { // these checks handle cases of // a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases // b) transposed arrays, where _strides[] elements go in non-descending order // c) flipped arrays, where some of _strides[] elements are negative // the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) || (i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) ) needcopy = true; } if (ismultichannel) { int channels = ndims >= 1 ? (int)_sizes[ndims - 1] : 1; if (channels > CV_CN_MAX) { failmsg("%s unable to wrap channels, too high (%d > CV_CN_MAX=%d)", info.name, (int)channels, (int)CV_CN_MAX); return false; } ndims--; type |= CV_MAKETYPE(0, channels); if (ndims >= 1 && _strides[ndims - 1] != (npy_intp)elemsize*_sizes[ndims]) needcopy = true; elemsize = CV_ELEM_SIZE(type); } if (needcopy) { if (info.outputarg) { failmsg("Layout of the output array %s is incompatible with cv::Mat", info.name); return false; } if( needcast ) { o = PyArray_Cast(oarr, new_typenum); oarr = (PyArrayObject*) o; } else { oarr = PyArray_GETCONTIGUOUS(oarr); o = (PyObject*) oarr; } _strides = PyArray_STRIDES(oarr); } int size[CV_MAX_DIM+1] = {}; size_t step[CV_MAX_DIM+1] = {}; // Normalize strides in case NPY_RELAXED_STRIDES is set size_t default_step = elemsize; for ( int i = ndims - 1; i >= 0; --i ) { size[i] = (int)_sizes[i]; if ( size[i] > 1 ) { step[i] = (size_t)_strides[i]; default_step = step[i] * size[i]; } else { step[i] = default_step; default_step *= size[i]; } } // see https://github.com/opencv/opencv/issues/24057 if ( ( info.arithm_op_src ) && ( ndims == 1 ) && ( size[0] <= 4 ) ) { const int sz = size[0]; // Real Data Length(1, 2, 3 or 4) const int sz2 = 4; // Scalar has 4 elements. m = Mat::zeros(sz2, 1, CV_64F); const char *base_ptr = PyArray_BYTES(oarr); for(int i = 0; i < sz; i++ ) { PyObject* oi = PyArray_GETITEM(oarr, base_ptr + step[0] * i); if( PyInt_Check(oi) ) m.at(i) = (double)PyInt_AsLong(oi); else if( PyFloat_Check(oi) ) m.at(i) = (double)PyFloat_AsDouble(oi); else { failmsg("%s has some non-numerical elements", info.name); m.release(); return false; } } return true; } // handle degenerate case // FIXIT: Don't force 1D for Scalars if( ndims == 0) { size[ndims] = 1; step[ndims] = elemsize; ndims++; } #if 1 CV_LOG_DEBUG(NULL, "Construct Mat: ndims=" << ndims << " size=" << pycv_dumpArray(size, ndims) << " step=" << pycv_dumpArray(step, ndims) << " type=" << cv::typeToString(type)); #endif m = Mat(ndims, size, type, PyArray_DATA(oarr), step); m.u = GetNumpyAllocator().allocate(o, ndims, size, type, step); m.addref(); if( !needcopy ) { Py_INCREF(o); } m.allocator = &GetNumpyAllocator(); return true; } template<> PyObject* pyopencv_from(const cv::Mat& m) { if( !m.data ) Py_RETURN_NONE; cv::Mat temp, *p = (cv::Mat*)&m; if(!p->u || p->allocator != &GetNumpyAllocator()) { temp.allocator = &GetNumpyAllocator(); ERRWRAP2(m.copyTo(temp)); p = &temp; } PyObject* o = (PyObject*)p->u->userdata; Py_INCREF(o); return o; } // --- bool template<> bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj) || PyArray_IsIntegerScalar(obj)) { npy_bool npy_value = NPY_FALSE; const int ret_code = PyArray_BoolConverter(obj, &npy_value); if (ret_code >= 0) { value = (npy_value == NPY_TRUE); return true; } } failmsg("Argument '%s' is not convertable to bool", info.name); return false; } template<> PyObject* pyopencv_from(const bool& value) { return PyBool_FromLong(value); } // --- ptr template<> bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info) { CV_UNUSED(info); if (!obj || obj == Py_None) return true; if (!PyLong_Check(obj)) return false; ptr = PyLong_AsVoidPtr(obj); return ptr != NULL && !PyErr_Occurred(); } PyObject* pyopencv_from(void*& ptr) { return PyLong_FromVoidPtr(ptr); } // -- Scalar template<> bool pyopencv_to(PyObject *o, Scalar& s, const ArgInfo& info) { if(!o || o == Py_None) return true; if (PySequence_Check(o)) { if (4 < PySequence_Size(o)) { failmsg("Scalar value for argument '%s' is longer than 4", info.name); return false; } for (Py_ssize_t i = 0; i < PySequence_Size(o); i++) { SafeSeqItem item_wrap(o, i); PyObject *item = item_wrap.item; if (PyFloat_Check(item) || PyInt_Check(item)) { s[(int)i] = PyFloat_AsDouble(item); } else { failmsg("Scalar value for argument '%s' is not numeric", info.name); return false; } } } else { if (PyFloat_Check(o) || PyInt_Check(o)) { s = PyFloat_AsDouble(o); } else { failmsg("Scalar value for argument '%s' is not numeric", info.name); return false; } } return true; } template<> PyObject* pyopencv_from(const Scalar& src) { return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]); } // --- size_t template<> bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be integer type, not bool", info.name); return false; } if (PyArray_IsIntegerScalar(obj)) { if (PyLong_Check(obj)) { #if defined(CV_PYTHON_3) value = PyLong_AsSize_t(obj); #else #if ULONG_MAX == SIZE_MAX value = PyLong_AsUnsignedLong(obj); #else value = PyLong_AsUnsignedLongLong(obj); #endif #endif } #if !defined(CV_PYTHON_3) // Python 2.x has PyIntObject which is not a subtype of PyLongObject // Overflow check here is unnecessary because object will be converted to long on the // interpreter side else if (PyInt_Check(obj)) { const long res = PyInt_AsLong(obj); if (res < 0) { failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name); return false; } #if ULONG_MAX == SIZE_MAX value = PyInt_AsUnsignedLongMask(obj); #else value = PyInt_AsUnsignedLongLongMask(obj); #endif } #endif else { const bool isParsed = parseNumpyScalar(obj, value); if (!isParsed) { failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name); return false; } } } else { failmsg("Argument '%s' is required to be an integer", info.name); return false; } return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const size_t& value) { return PyLong_FromSize_t(value); } // --- int template<> bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be integer, not bool", info.name); return false; } if (PyArray_IsIntegerScalar(obj)) { value = PyArray_PyIntAsInt(obj); } else { failmsg("Argument '%s' is required to be an integer", info.name); return false; } return !CV_HAS_CONVERSION_ERROR(value); } template<> PyObject* pyopencv_from(const int& value) { return PyInt_FromLong(value); } // --- int64 template<> bool pyopencv_to(PyObject* obj, int64& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be integer, not bool", info.name); return false; } if (PyArray_IsIntegerScalar(obj)) { value = PyLong_AsLongLong(obj); } else { failmsg("Argument '%s' is required to be an integer", info.name); return false; } return !CV_HAS_CONVERSION_ERROR(value); } template<> PyObject* pyopencv_from(const int64& value) { return PyLong_FromLongLong(value); } // --- uchar template<> bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info) { CV_UNUSED(info); if(!obj || obj == Py_None) return true; int ivalue = (int)PyInt_AsLong(obj); value = cv::saturate_cast(ivalue); return ivalue != -1 || !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const uchar& value) { return PyInt_FromLong(value); } // --- char template<> bool pyopencv_to(PyObject* obj, char& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be an integer, not bool", info.name); return false; } if (PyArray_IsIntegerScalar(obj)) { value = saturate_cast(PyArray_PyIntAsInt(obj)); } else { failmsg("Argument '%s' is required to be an integer", info.name); return false; } return !CV_HAS_CONVERSION_ERROR(value); } // --- double template<> bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be double, not bool", info.name); return false; } if (PyArray_IsPythonNumber(obj)) { if (PyLong_Check(obj)) { value = PyLong_AsDouble(obj); } else { value = PyFloat_AsDouble(obj); } } else if (PyArray_CheckScalar(obj)) { const bool isParsed = parseNumpyScalar(obj, value); if (!isParsed) { failmsg("Argument '%s' can not be safely parsed to 'double'", info.name); return false; } } else { failmsg("Argument '%s' can not be treated as a double", info.name); return false; } return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const double& value) { return PyFloat_FromDouble(value); } // --- float template<> bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (isBool(obj)) { failmsg("Argument '%s' must be float, not bool", info.name); return false; } if (PyArray_IsPythonNumber(obj)) { if (PyLong_Check(obj)) { double res = PyLong_AsDouble(obj); value = static_cast(res); } else { double res = PyFloat_AsDouble(obj); value = static_cast(res); } } else if (PyArray_CheckScalar(obj)) { const bool isParsed = parseNumpyScalar(obj, value); if (!isParsed) { failmsg("Argument '%s' can not be safely parsed to 'float'", info.name); return false; } } else { failmsg("Argument '%s' can't be treated as a float", info.name); return false; } return !PyErr_Occurred(); } template<> PyObject* pyopencv_from(const float& value) { return PyFloat_FromDouble(value); } // --- string template<> bool pyopencv_to(PyObject* obj, String &value, const ArgInfo& info) { if(!obj || obj == Py_None) { return true; } std::string str; #if ((PY_VERSION_HEX >= 0x03060000) && !defined(Py_LIMITED_API)) || (Py_LIMITED_API >= 0x03060000) if (info.pathlike) { obj = PyOS_FSPath(obj); if (PyErr_Occurred()) { failmsg("Expected '%s' to be a str or path-like object", info.name); return false; } } #endif if (getUnicodeString(obj, str)) { value = str; return true; } else { // If error hasn't been already set by Python conversion functions if (!PyErr_Occurred()) { // Direct access to underlying slots of PyObjectType is not allowed // when limited API is enabled #ifdef Py_LIMITED_API failmsg("Can't convert object to 'str' for '%s'", info.name); #else failmsg("Can't convert object of type '%s' to 'str' for '%s'", obj->ob_type->tp_name, info.name); #endif } } return false; } template<> PyObject* pyopencv_from(const String& value) { return PyString_FromString(value.empty() ? "" : value.c_str()); } #if CV_VERSION_MAJOR == 3 template<> PyObject* pyopencv_from(const std::string& value) { return PyString_FromString(value.empty() ? "" : value.c_str()); } #endif // --- Size template<> bool pyopencv_to(PyObject* obj, Size& sz, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(sz.width), RefWrapper(sz.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Size& sz) { return Py_BuildValue("(ii)", sz.width, sz.height); } template<> bool pyopencv_to(PyObject* obj, Size_& sz, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(sz.width), RefWrapper(sz.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Size_& sz) { return Py_BuildValue("(ff)", sz.width, sz.height); } // --- Rect template<> bool pyopencv_to(PyObject* obj, Rect& r, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(r.x), RefWrapper(r.y), RefWrapper(r.width), RefWrapper(r.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Rect& r) { return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height); } template<> bool pyopencv_to(PyObject* obj, Rect2f& r, const ArgInfo& info) { RefWrapper values[] = { RefWrapper(r.x), RefWrapper(r.y), RefWrapper(r.width), RefWrapper(r.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Rect2f& r) { return Py_BuildValue("(ffff)", r.x, r.y, r.width, r.height); } template<> bool pyopencv_to(PyObject* obj, Rect2d& r, const ArgInfo& info) { RefWrapper values[] = { RefWrapper(r.x), RefWrapper(r.y), RefWrapper(r.width), RefWrapper(r.height)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Rect2d& r) { return Py_BuildValue("(dddd)", r.x, r.y, r.width, r.height); } // --- RotatedRect static inline bool convertToRotatedRect(PyObject* obj, RotatedRect& dst) { PyObject* type = PyObject_Type(obj); if (getPyObjectAttr(type, "__module__") == MODULESTR && getPyObjectNameAttr(type) == "RotatedRect") { struct pyopencv_RotatedRect_t { PyObject_HEAD cv::RotatedRect v; }; dst = reinterpret_cast(obj)->v; Py_DECREF(type); return true; } Py_DECREF(type); return false; } template<> bool pyopencv_to(PyObject* obj, RotatedRect& dst, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } // This is a workaround for compatibility with an initialization from tuple. // Allows import RotatedRect as an object. if (convertToRotatedRect(obj, dst)) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s' as RotatedRect." "Input argument doesn't provide sequence protocol", info.name); return false; } const std::size_t sequenceSize = PySequence_Size(obj); if (sequenceSize != 3) { failmsg("Can't parse '%s' as RotatedRect. Expected sequence length 3, got %lu", info.name, sequenceSize); return false; } { const String centerItemName = format("'%s' center point", info.name); const ArgInfo centerItemInfo(centerItemName.c_str(), 0); SafeSeqItem centerItem(obj, 0); if (!pyopencv_to(centerItem.item, dst.center, centerItemInfo)) { return false; } } { const String sizeItemName = format("'%s' size", info.name); const ArgInfo sizeItemInfo(sizeItemName.c_str(), 0); SafeSeqItem sizeItem(obj, 1); if (!pyopencv_to(sizeItem.item, dst.size, sizeItemInfo)) { return false; } } { const String angleItemName = format("'%s' angle", info.name); const ArgInfo angleItemInfo(angleItemName.c_str(), 0); SafeSeqItem angleItem(obj, 2); if (!pyopencv_to(angleItem.item, dst.angle, angleItemInfo)) { return false; } } return true; } template<> PyObject* pyopencv_from(const RotatedRect& src) { return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle); } // --- Range template<> bool pyopencv_to(PyObject* obj, Range& r, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (PyObject_Size(obj) == 0) { r = Range::all(); return true; } RefWrapper values[] = {RefWrapper(r.start), RefWrapper(r.end)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Range& r) { return Py_BuildValue("(ii)", r.start, r.end); } // --- Point template<> bool pyopencv_to(PyObject* obj, Point& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Point& p) { return Py_BuildValue("(ii)", p.x, p.y); } template <> bool pyopencv_to(PyObject* obj, Point2f& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Point2f& p) { return Py_BuildValue("(dd)", p.x, p.y); } template<> bool pyopencv_to(PyObject* obj, Point2d& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Point2d& p) { return Py_BuildValue("(dd)", p.x, p.y); } template<> bool pyopencv_to(PyObject* obj, Point3i& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y), RefWrapper(p.z)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Point3i& p) { return Py_BuildValue("(iii)", p.x, p.y, p.z); } template<> bool pyopencv_to(PyObject* obj, Point3f& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y), RefWrapper(p.z)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Point3f& p) { return Py_BuildValue("(ddd)", p.x, p.y, p.z); } template<> bool pyopencv_to(PyObject* obj, Point3d& p, const ArgInfo& info) { RefWrapper values[] = {RefWrapper(p.x), RefWrapper(p.y), RefWrapper(p.z)}; return parseSequence(obj, values, info); } template<> PyObject* pyopencv_from(const Point3d& p) { return Py_BuildValue("(ddd)", p.x, p.y, p.z); } // --- Vec bool pyopencv_to(PyObject* obj, Vec4d& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2]), RefWrapper(v[3])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec4d& v) { return Py_BuildValue("(dddd)", v[0], v[1], v[2], v[3]); } bool pyopencv_to(PyObject* obj, Vec4f& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2]), RefWrapper(v[3])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec4f& v) { return Py_BuildValue("(ffff)", v[0], v[1], v[2], v[3]); } bool pyopencv_to(PyObject* obj, Vec4i& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2]), RefWrapper(v[3])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec4i& v) { return Py_BuildValue("(iiii)", v[0], v[1], v[2], v[3]); } bool pyopencv_to(PyObject* obj, Vec3d& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec3d& v) { return Py_BuildValue("(ddd)", v[0], v[1], v[2]); } bool pyopencv_to(PyObject* obj, Vec3f& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec3f& v) { return Py_BuildValue("(fff)", v[0], v[1], v[2]); } bool pyopencv_to(PyObject* obj, Vec3i& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1]), RefWrapper(v[2])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec3i& v) { return Py_BuildValue("(iii)", v[0], v[1], v[2]); } bool pyopencv_to(PyObject* obj, Vec2d& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec2d& v) { return Py_BuildValue("(dd)", v[0], v[1]); } bool pyopencv_to(PyObject* obj, Vec2f& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec2f& v) { return Py_BuildValue("(ff)", v[0], v[1]); } bool pyopencv_to(PyObject* obj, Vec2i& v, ArgInfo& info) { RefWrapper values[] = {RefWrapper(v[0]), RefWrapper(v[1])}; return parseSequence(obj, values, info); } PyObject* pyopencv_from(const Vec2i& v) { return Py_BuildValue("(ii)", v[0], v[1]); } // --- TermCriteria template<> bool pyopencv_to(PyObject* obj, TermCriteria& dst, const ArgInfo& info) { if (!obj || obj == Py_None) { return true; } if (!PySequence_Check(obj)) { failmsg("Can't parse '%s' as TermCriteria." "Input argument doesn't provide sequence protocol", info.name); return false; } const std::size_t sequenceSize = PySequence_Size(obj); if (sequenceSize != 3) { failmsg("Can't parse '%s' as TermCriteria. Expected sequence length 3, " "got %lu", info.name, sequenceSize); return false; } { const String typeItemName = format("'%s' criteria type", info.name); const ArgInfo typeItemInfo(typeItemName.c_str(), 0); SafeSeqItem typeItem(obj, 0); if (!pyopencv_to(typeItem.item, dst.type, typeItemInfo)) { return false; } } { const String maxCountItemName = format("'%s' max count", info.name); const ArgInfo maxCountItemInfo(maxCountItemName.c_str(), 0); SafeSeqItem maxCountItem(obj, 1); if (!pyopencv_to(maxCountItem.item, dst.maxCount, maxCountItemInfo)) { return false; } } { const String epsilonItemName = format("'%s' epsilon", info.name); const ArgInfo epsilonItemInfo(epsilonItemName.c_str(), 0); SafeSeqItem epsilonItem(obj, 2); if (!pyopencv_to(epsilonItem.item, dst.epsilon, epsilonItemInfo)) { return false; } } return true; } template<> PyObject* pyopencv_from(const TermCriteria& src) { return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon); } // --- Moments template<> PyObject* pyopencv_from(const Moments& m) { return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}", "m00", m.m00, "m10", m.m10, "m01", m.m01, "m20", m.m20, "m11", m.m11, "m02", m.m02, "m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03, "mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02, "mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03, "nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02, "nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03); } // --- pair template<> PyObject* pyopencv_from(const std::pair& src) { return Py_BuildValue("(id)", src.first, src.second); }