/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include "lkpyramid.hpp" namespace { static void calcSharrDeriv(const cv::Mat& src, cv::Mat& dst) { using namespace cv; using cv::detail::deriv_type; int rows = src.rows, cols = src.cols, cn = src.channels(), colsn = cols*cn, depth = src.depth(); CV_Assert(depth == CV_8U); dst.create(rows, cols, CV_MAKETYPE(DataType::depth, cn*2)); #ifdef HAVE_TEGRA_OPTIMIZATION if (tegra::calcSharrDeriv(src, dst)) return; #endif int x, y, delta = (int)alignSize((cols + 2)*cn, 16); AutoBuffer _tempBuf(delta*2 + 64); deriv_type *trow0 = alignPtr(_tempBuf + cn, 16), *trow1 = alignPtr(trow0 + delta, 16); #if CV_SSE2 __m128i z = _mm_setzero_si128(), c3 = _mm_set1_epi16(3), c10 = _mm_set1_epi16(10); #endif for( y = 0; y < rows; y++ ) { const uchar* srow0 = src.ptr(y > 0 ? y-1 : rows > 1 ? 1 : 0); const uchar* srow1 = src.ptr(y); const uchar* srow2 = src.ptr(y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0); deriv_type* drow = dst.ptr(y); // do vertical convolution x = 0; #if CV_SSE2 for( ; x <= colsn - 8; x += 8 ) { __m128i s0 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow0 + x)), z); __m128i s1 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow1 + x)), z); __m128i s2 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(srow2 + x)), z); __m128i t0 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s0, s2), c3), _mm_mullo_epi16(s1, c10)); __m128i t1 = _mm_sub_epi16(s2, s0); _mm_store_si128((__m128i*)(trow0 + x), t0); _mm_store_si128((__m128i*)(trow1 + x), t1); } #endif for( ; x < colsn; x++ ) { int t0 = (srow0[x] + srow2[x])*3 + srow1[x]*10; int t1 = srow2[x] - srow0[x]; trow0[x] = (deriv_type)t0; trow1[x] = (deriv_type)t1; } // make border int x0 = (cols > 1 ? 1 : 0)*cn, x1 = (cols > 1 ? cols-2 : 0)*cn; for( int k = 0; k < cn; k++ ) { trow0[-cn + k] = trow0[x0 + k]; trow0[colsn + k] = trow0[x1 + k]; trow1[-cn + k] = trow1[x0 + k]; trow1[colsn + k] = trow1[x1 + k]; } // do horizontal convolution, interleave the results and store them to dst x = 0; #if CV_SSE2 for( ; x <= colsn - 8; x += 8 ) { __m128i s0 = _mm_loadu_si128((const __m128i*)(trow0 + x - cn)); __m128i s1 = _mm_loadu_si128((const __m128i*)(trow0 + x + cn)); __m128i s2 = _mm_loadu_si128((const __m128i*)(trow1 + x - cn)); __m128i s3 = _mm_load_si128((const __m128i*)(trow1 + x)); __m128i s4 = _mm_loadu_si128((const __m128i*)(trow1 + x + cn)); __m128i t0 = _mm_sub_epi16(s1, s0); __m128i t1 = _mm_add_epi16(_mm_mullo_epi16(_mm_add_epi16(s2, s4), c3), _mm_mullo_epi16(s3, c10)); __m128i t2 = _mm_unpacklo_epi16(t0, t1); t0 = _mm_unpackhi_epi16(t0, t1); // this can probably be replaced with aligned stores if we aligned dst properly. _mm_storeu_si128((__m128i*)(drow + x*2), t2); _mm_storeu_si128((__m128i*)(drow + x*2 + 8), t0); } #endif for( ; x < colsn; x++ ) { deriv_type t0 = (deriv_type)(trow0[x+cn] - trow0[x-cn]); deriv_type t1 = (deriv_type)((trow1[x+cn] + trow1[x-cn])*3 + trow1[x]*10); drow[x*2] = t0; drow[x*2+1] = t1; } } } }//namespace cv::detail::LKTrackerInvoker::LKTrackerInvoker( const Mat& _prevImg, const Mat& _prevDeriv, const Mat& _nextImg, const Point2f* _prevPts, Point2f* _nextPts, uchar* _status, float* _err, Size _winSize, TermCriteria _criteria, int _level, int _maxLevel, int _flags, float _minEigThreshold ) { prevImg = &_prevImg; prevDeriv = &_prevDeriv; nextImg = &_nextImg; prevPts = _prevPts; nextPts = _nextPts; status = _status; err = _err; winSize = _winSize; criteria = _criteria; level = _level; maxLevel = _maxLevel; flags = _flags; minEigThreshold = _minEigThreshold; } void cv::detail::LKTrackerInvoker::operator()(const BlockedRange& range) const { Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f); const Mat& I = *prevImg; const Mat& J = *nextImg; const Mat& derivI = *prevDeriv; int j, cn = I.channels(), cn2 = cn*2; cv::AutoBuffer _buf(winSize.area()*(cn + cn2)); int derivDepth = DataType::depth; Mat IWinBuf(winSize, CV_MAKETYPE(derivDepth, cn), (deriv_type*)_buf); Mat derivIWinBuf(winSize, CV_MAKETYPE(derivDepth, cn2), (deriv_type*)_buf + winSize.area()*cn); for( int ptidx = range.begin(); ptidx < range.end(); ptidx++ ) { Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level)); Point2f nextPt; if( level == maxLevel ) { if( flags & OPTFLOW_USE_INITIAL_FLOW ) nextPt = nextPts[ptidx]*(float)(1./(1 << level)); else nextPt = prevPt; } else nextPt = nextPts[ptidx]*2.f; nextPts[ptidx] = nextPt; Point2i iprevPt, inextPt; prevPt -= halfWin; iprevPt.x = cvFloor(prevPt.x); iprevPt.y = cvFloor(prevPt.y); if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols || iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows ) { if( level == 0 ) { if( status ) status[ptidx] = false; if( err ) err[ptidx] = 0; } continue; } float a = prevPt.x - iprevPt.x; float b = prevPt.y - iprevPt.y; const int W_BITS = 14, W_BITS1 = 14; const float FLT_SCALE = 1.f/(1 << 20); int iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS)); int iw01 = cvRound(a*(1.f - b)*(1 << W_BITS)); int iw10 = cvRound((1.f - a)*b*(1 << W_BITS)); int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10; int dstep = (int)(derivI.step/derivI.elemSize1()); int step = (int)(I.step/I.elemSize1()); CV_Assert( step == (int)(J.step/J.elemSize1()) ); float A11 = 0, A12 = 0, A22 = 0; #if CV_SSE2 __m128i qw0 = _mm_set1_epi32(iw00 + (iw01 << 16)); __m128i qw1 = _mm_set1_epi32(iw10 + (iw11 << 16)); __m128i z = _mm_setzero_si128(); __m128i qdelta_d = _mm_set1_epi32(1 << (W_BITS1-1)); __m128i qdelta = _mm_set1_epi32(1 << (W_BITS1-5-1)); __m128 qA11 = _mm_setzero_ps(), qA12 = _mm_setzero_ps(), qA22 = _mm_setzero_ps(); #endif // extract the patch from the first image, compute covariation matrix of derivatives int x, y; for( y = 0; y < winSize.height; y++ ) { const uchar* src = (const uchar*)I.data + (y + iprevPt.y)*step + iprevPt.x*cn; const deriv_type* dsrc = (const deriv_type*)derivI.data + (y + iprevPt.y)*dstep + iprevPt.x*cn2; deriv_type* Iptr = (deriv_type*)(IWinBuf.data + y*IWinBuf.step); deriv_type* dIptr = (deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step); x = 0; #if CV_SSE2 for( ; x <= winSize.width*cn - 4; x += 4, dsrc += 4*2, dIptr += 4*2 ) { __m128i v00, v01, v10, v11, t0, t1; v00 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x)), z); v01 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + cn)), z); v10 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step)), z); v11 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(*(const int*)(src + x + step + cn)), z); t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0), _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1)); t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5); _mm_storel_epi64((__m128i*)(Iptr + x), _mm_packs_epi32(t0,t0)); v00 = _mm_loadu_si128((const __m128i*)(dsrc)); v01 = _mm_loadu_si128((const __m128i*)(dsrc + cn2)); v10 = _mm_loadu_si128((const __m128i*)(dsrc + dstep)); v11 = _mm_loadu_si128((const __m128i*)(dsrc + dstep + cn2)); t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0), _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1)); t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0), _mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1)); t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta_d), W_BITS1); t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta_d), W_BITS1); v00 = _mm_packs_epi32(t0, t1); // Ix0 Iy0 Ix1 Iy1 ... _mm_storeu_si128((__m128i*)dIptr, v00); t0 = _mm_srai_epi32(v00, 16); // Iy0 Iy1 Iy2 Iy3 t1 = _mm_srai_epi32(_mm_slli_epi32(v00, 16), 16); // Ix0 Ix1 Ix2 Ix3 __m128 fy = _mm_cvtepi32_ps(t0); __m128 fx = _mm_cvtepi32_ps(t1); qA22 = _mm_add_ps(qA22, _mm_mul_ps(fy, fy)); qA12 = _mm_add_ps(qA12, _mm_mul_ps(fx, fy)); qA11 = _mm_add_ps(qA11, _mm_mul_ps(fx, fx)); } #endif for( ; x < winSize.width*cn; x++, dsrc += 2, dIptr += 2 ) { int ival = CV_DESCALE(src[x]*iw00 + src[x+cn]*iw01 + src[x+step]*iw10 + src[x+step+cn]*iw11, W_BITS1-5); int ixval = CV_DESCALE(dsrc[0]*iw00 + dsrc[cn2]*iw01 + dsrc[dstep]*iw10 + dsrc[dstep+cn2]*iw11, W_BITS1); int iyval = CV_DESCALE(dsrc[1]*iw00 + dsrc[cn2+1]*iw01 + dsrc[dstep+1]*iw10 + dsrc[dstep+cn2+1]*iw11, W_BITS1); Iptr[x] = (short)ival; dIptr[0] = (short)ixval; dIptr[1] = (short)iyval; A11 += (float)(ixval*ixval); A12 += (float)(ixval*iyval); A22 += (float)(iyval*iyval); } } #if CV_SSE2 float CV_DECL_ALIGNED(16) A11buf[4], A12buf[4], A22buf[4]; _mm_store_ps(A11buf, qA11); _mm_store_ps(A12buf, qA12); _mm_store_ps(A22buf, qA22); A11 += A11buf[0] + A11buf[1] + A11buf[2] + A11buf[3]; A12 += A12buf[0] + A12buf[1] + A12buf[2] + A12buf[3]; A22 += A22buf[0] + A22buf[1] + A22buf[2] + A22buf[3]; #endif A11 *= FLT_SCALE; A12 *= FLT_SCALE; A22 *= FLT_SCALE; float D = A11*A22 - A12*A12; float minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) + 4.f*A12*A12))/(2*winSize.width*winSize.height); if( err && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) != 0 ) err[ptidx] = (float)minEig; if( minEig < minEigThreshold || D < FLT_EPSILON ) { if( level == 0 && status ) status[ptidx] = false; continue; } D = 1.f/D; nextPt -= halfWin; Point2f prevDelta; for( j = 0; j < criteria.maxCount; j++ ) { inextPt.x = cvFloor(nextPt.x); inextPt.y = cvFloor(nextPt.y); if( inextPt.x < -winSize.width || inextPt.x >= J.cols || inextPt.y < -winSize.height || inextPt.y >= J.rows ) { if( level == 0 && status ) status[ptidx] = false; break; } a = nextPt.x - inextPt.x; b = nextPt.y - inextPt.y; iw00 = cvRound((1.f - a)*(1.f - b)*(1 << W_BITS)); iw01 = cvRound(a*(1.f - b)*(1 << W_BITS)); iw10 = cvRound((1.f - a)*b*(1 << W_BITS)); iw11 = (1 << W_BITS) - iw00 - iw01 - iw10; float b1 = 0, b2 = 0; #if CV_SSE2 qw0 = _mm_set1_epi32(iw00 + (iw01 << 16)); qw1 = _mm_set1_epi32(iw10 + (iw11 << 16)); __m128 qb0 = _mm_setzero_ps(), qb1 = _mm_setzero_ps(); #endif for( y = 0; y < winSize.height; y++ ) { const uchar* Jptr = (const uchar*)J.data + (y + inextPt.y)*step + inextPt.x*cn; const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step); const deriv_type* dIptr = (const deriv_type*)(derivIWinBuf.data + y*derivIWinBuf.step); x = 0; #if CV_SSE2 for( ; x <= winSize.width*cn - 8; x += 8, dIptr += 8*2 ) { __m128i diff0 = _mm_loadu_si128((const __m128i*)(Iptr + x)), diff1; __m128i v00 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x)), z); __m128i v01 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + cn)), z); __m128i v10 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step)), z); __m128i v11 = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(Jptr + x + step + cn)), z); __m128i t0 = _mm_add_epi32(_mm_madd_epi16(_mm_unpacklo_epi16(v00, v01), qw0), _mm_madd_epi16(_mm_unpacklo_epi16(v10, v11), qw1)); __m128i t1 = _mm_add_epi32(_mm_madd_epi16(_mm_unpackhi_epi16(v00, v01), qw0), _mm_madd_epi16(_mm_unpackhi_epi16(v10, v11), qw1)); t0 = _mm_srai_epi32(_mm_add_epi32(t0, qdelta), W_BITS1-5); t1 = _mm_srai_epi32(_mm_add_epi32(t1, qdelta), W_BITS1-5); diff0 = _mm_subs_epi16(_mm_packs_epi32(t0, t1), diff0); diff1 = _mm_unpackhi_epi16(diff0, diff0); diff0 = _mm_unpacklo_epi16(diff0, diff0); // It0 It0 It1 It1 ... v00 = _mm_loadu_si128((const __m128i*)(dIptr)); // Ix0 Iy0 Ix1 Iy1 ... v01 = _mm_loadu_si128((const __m128i*)(dIptr + 8)); v10 = _mm_mullo_epi16(v00, diff0); v11 = _mm_mulhi_epi16(v00, diff0); v00 = _mm_unpacklo_epi16(v10, v11); v10 = _mm_unpackhi_epi16(v10, v11); qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00)); qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10)); v10 = _mm_mullo_epi16(v01, diff1); v11 = _mm_mulhi_epi16(v01, diff1); v00 = _mm_unpacklo_epi16(v10, v11); v10 = _mm_unpackhi_epi16(v10, v11); qb0 = _mm_add_ps(qb0, _mm_cvtepi32_ps(v00)); qb1 = _mm_add_ps(qb1, _mm_cvtepi32_ps(v10)); } #endif for( ; x < winSize.width*cn; x++, dIptr += 2 ) { int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 + Jptr[x+step]*iw10 + Jptr[x+step+cn]*iw11, W_BITS1-5) - Iptr[x]; b1 += (float)(diff*dIptr[0]); b2 += (float)(diff*dIptr[1]); } } #if CV_SSE2 float CV_DECL_ALIGNED(16) bbuf[4]; _mm_store_ps(bbuf, _mm_add_ps(qb0, qb1)); b1 += bbuf[0] + bbuf[2]; b2 += bbuf[1] + bbuf[3]; #endif b1 *= FLT_SCALE; b2 *= FLT_SCALE; Point2f delta( (float)((A12*b2 - A22*b1) * D), (float)((A12*b1 - A11*b2) * D)); //delta = -delta; nextPt += delta; nextPts[ptidx] = nextPt + halfWin; if( delta.ddot(delta) <= criteria.epsilon ) break; if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 && std::abs(delta.y + prevDelta.y) < 0.01 ) { nextPts[ptidx] -= delta*0.5f; break; } prevDelta = delta; } if( status[ptidx] && err && level == 0 && (flags & CV_LKFLOW_GET_MIN_EIGENVALS) == 0 ) { Point2f nextPoint = nextPts[ptidx] - halfWin; Point inextPoint; inextPoint.x = cvFloor(nextPoint.x); inextPoint.y = cvFloor(nextPoint.y); if( inextPoint.x < -winSize.width || inextPoint.x >= J.cols || inextPoint.y < -winSize.height || inextPoint.y >= J.rows ) { if( status ) status[ptidx] = false; continue; } float aa = nextPoint.x - inextPoint.x; float bb = nextPoint.y - inextPoint.y; iw00 = cvRound((1.f - aa)*(1.f - bb)*(1 << W_BITS)); iw01 = cvRound(aa*(1.f - bb)*(1 << W_BITS)); iw10 = cvRound((1.f - aa)*bb*(1 << W_BITS)); iw11 = (1 << W_BITS) - iw00 - iw01 - iw10; float errval = 0.f; for( y = 0; y < winSize.height; y++ ) { const uchar* Jptr = (const uchar*)J.data + (y + inextPoint.y)*step + inextPoint.x*cn; const deriv_type* Iptr = (const deriv_type*)(IWinBuf.data + y*IWinBuf.step); for( x = 0; x < winSize.width*cn; x++ ) { int diff = CV_DESCALE(Jptr[x]*iw00 + Jptr[x+cn]*iw01 + Jptr[x+step]*iw10 + Jptr[x+step+cn]*iw11, W_BITS1-5) - Iptr[x]; errval += std::abs((float)diff); } } err[ptidx] = errval * 1.f/(32*winSize.width*cn*winSize.height); } } } int cv::buildOpticalFlowPyramid(InputArray _img, OutputArrayOfArrays pyramid, Size winSize, int maxLevel, bool withDerivatives, int pyrBorder, int derivBorder, bool tryReuseInputImage) { Mat img = _img.getMat(); CV_Assert(img.depth() == CV_8U && winSize.width > 2 && winSize.height > 2 ); int pyrstep = withDerivatives ? 2 : 1; pyramid.create(1, (maxLevel + 1) * pyrstep, 0 /*type*/, -1, true, 0); int derivType = CV_MAKETYPE(DataType::depth, img.channels() * 2); //level 0 bool lvl0IsSet = false; if(tryReuseInputImage && img.isSubmatrix() && (pyrBorder & BORDER_ISOLATED) == 0) { Size wholeSize; Point ofs; img.locateROI(wholeSize, ofs); if (ofs.x >= winSize.width && ofs.y >= winSize.height && ofs.x + img.cols + winSize.width <= wholeSize.width && ofs.y + img.rows + winSize.height <= wholeSize.height) { pyramid.getMatRef(0) = img; lvl0IsSet = true; } } if(!lvl0IsSet) { Mat& temp = pyramid.getMatRef(0); if(!temp.empty()) temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width); if(temp.type() != img.type() || temp.cols != winSize.width*2 + img.cols || temp.rows != winSize.height * 2 + img.rows) temp.create(img.rows + winSize.height*2, img.cols + winSize.width*2, img.type()); if(pyrBorder == BORDER_TRANSPARENT) img.copyTo(temp(Rect(winSize.width, winSize.height, img.cols, img.rows))); else copyMakeBorder(img, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder); temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width); } Size sz = img.size(); Mat prevLevel = pyramid.getMatRef(0); Mat thisLevel = prevLevel; for(int level = 0; level <= maxLevel; ++level) { if (level != 0) { Mat& temp = pyramid.getMatRef(level * pyrstep); if(!temp.empty()) temp.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width); if(temp.type() != img.type() || temp.cols != winSize.width*2 + sz.width || temp.rows != winSize.height * 2 + sz.height) temp.create(sz.height + winSize.height*2, sz.width + winSize.width*2, img.type()); thisLevel = temp(Rect(winSize.width, winSize.height, sz.width, sz.height)); pyrDown(prevLevel, thisLevel, sz); if(pyrBorder != BORDER_TRANSPARENT) copyMakeBorder(thisLevel, temp, winSize.height, winSize.height, winSize.width, winSize.width, pyrBorder|BORDER_ISOLATED); temp.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width); } if(withDerivatives) { Mat& deriv = pyramid.getMatRef(level * pyrstep + 1); if(!deriv.empty()) deriv.adjustROI(winSize.height, winSize.height, winSize.width, winSize.width); if(deriv.type() != derivType || deriv.cols != winSize.width*2 + sz.width || deriv.rows != winSize.height * 2 + sz.height) deriv.create(sz.height + winSize.height*2, sz.width + winSize.width*2, derivType); Mat derivI = deriv(Rect(winSize.width, winSize.height, sz.width, sz.height)); calcSharrDeriv(thisLevel, derivI); if(derivBorder != BORDER_TRANSPARENT) copyMakeBorder(derivI, deriv, winSize.height, winSize.height, winSize.width, winSize.width, derivBorder|BORDER_ISOLATED); deriv.adjustROI(-winSize.height, -winSize.height, -winSize.width, -winSize.width); } sz = Size((sz.width+1)/2, (sz.height+1)/2); if( sz.width <= winSize.width || sz.height <= winSize.height ) { pyramid.create(1, (level + 1) * pyrstep, 0 /*type*/, -1, true, 0);//check this return level; } prevLevel = thisLevel; } return maxLevel; } void cv::calcOpticalFlowPyrLK( InputArray _prevImg, InputArray _nextImg, InputArray _prevPts, InputOutputArray _nextPts, OutputArray _status, OutputArray _err, Size winSize, int maxLevel, TermCriteria criteria, int flags, double minEigThreshold ) { Mat prevPtsMat = _prevPts.getMat(); const int derivDepth = DataType::depth; CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 ); int level=0, i, npoints; CV_Assert( (npoints = prevPtsMat.checkVector(2, CV_32F, true)) >= 0 ); if( npoints == 0 ) { _nextPts.release(); _status.release(); _err.release(); return; } if( !(flags & OPTFLOW_USE_INITIAL_FLOW) ) _nextPts.create(prevPtsMat.size(), prevPtsMat.type(), -1, true); Mat nextPtsMat = _nextPts.getMat(); CV_Assert( nextPtsMat.checkVector(2, CV_32F, true) == npoints ); const Point2f* prevPts = (const Point2f*)prevPtsMat.data; Point2f* nextPts = (Point2f*)nextPtsMat.data; _status.create((int)npoints, 1, CV_8U, -1, true); Mat statusMat = _status.getMat(), errMat; CV_Assert( statusMat.isContinuous() ); uchar* status = statusMat.data; float* err = 0; for( i = 0; i < npoints; i++ ) status[i] = true; if( _err.needed() ) { _err.create((int)npoints, 1, CV_32F, -1, true); errMat = _err.getMat(); CV_Assert( errMat.isContinuous() ); err = (float*)errMat.data; } vector prevPyr, nextPyr; int levels1 = -1; int lvlStep1 = 1; int levels2 = -1; int lvlStep2 = 1; if(_prevImg.kind() == _InputArray::STD_VECTOR_MAT) { _prevImg.getMatVector(prevPyr); levels1 = int(prevPyr.size()) - 1; CV_Assert(levels1 >= 0); if (levels1 % 2 == 1 && prevPyr[0].channels() * 2 == prevPyr[1].channels() && prevPyr[1].depth() == derivDepth) { lvlStep1 = 2; levels1 /= 2; } // ensure that pyramid has reqired padding if(levels1 > 0) { Size fullSize; Point ofs; prevPyr[lvlStep1].locateROI(fullSize, ofs); CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height && ofs.x + prevPyr[lvlStep1].cols + winSize.width <= fullSize.width && ofs.y + prevPyr[lvlStep1].rows + winSize.height <= fullSize.height); } if(levels1 < maxLevel) maxLevel = levels1; } if(_nextImg.kind() == _InputArray::STD_VECTOR_MAT) { _nextImg.getMatVector(nextPyr); levels2 = int(nextPyr.size()) - 1; CV_Assert(levels2 >= 0); if (levels2 % 2 == 1 && nextPyr[0].channels() * 2 == nextPyr[1].channels() && nextPyr[1].depth() == derivDepth) { lvlStep2 = 2; levels2 /= 2; } // ensure that pyramid has reqired padding if(levels2 > 0) { Size fullSize; Point ofs; nextPyr[lvlStep2].locateROI(fullSize, ofs); CV_Assert(ofs.x >= winSize.width && ofs.y >= winSize.height && ofs.x + nextPyr[lvlStep2].cols + winSize.width <= fullSize.width && ofs.y + nextPyr[lvlStep2].rows + winSize.height <= fullSize.height); } if(levels2 < maxLevel) maxLevel = levels2; } if (levels1 < 0) maxLevel = buildOpticalFlowPyramid(_prevImg, prevPyr, winSize, maxLevel, false); if (levels2 < 0) maxLevel = buildOpticalFlowPyramid(_nextImg, nextPyr, winSize, maxLevel, false); if( (criteria.type & TermCriteria::COUNT) == 0 ) criteria.maxCount = 30; else criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100); if( (criteria.type & TermCriteria::EPS) == 0 ) criteria.epsilon = 0.01; else criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.); criteria.epsilon *= criteria.epsilon; // dI/dx ~ Ix, dI/dy ~ Iy Mat derivIBuf; if(lvlStep1 == 1) derivIBuf.create(prevPyr[0].rows + winSize.height*2, prevPyr[0].cols + winSize.width*2, CV_MAKETYPE(derivDepth, prevPyr[0].channels() * 2)); for( level = maxLevel; level >= 0; level-- ) { Mat derivI; if(lvlStep1 == 1) { Size imgSize = prevPyr[level * lvlStep1].size(); Mat _derivI( imgSize.height + winSize.height*2, imgSize.width + winSize.width*2, derivIBuf.type(), derivIBuf.data ); derivI = _derivI(Rect(winSize.width, winSize.height, imgSize.width, imgSize.height)); calcSharrDeriv(prevPyr[level * lvlStep1], derivI); copyMakeBorder(derivI, _derivI, winSize.height, winSize.height, winSize.width, winSize.width, BORDER_CONSTANT|BORDER_ISOLATED); } else derivI = prevPyr[level * lvlStep1 + 1]; CV_Assert(prevPyr[level * lvlStep1].size() == nextPyr[level * lvlStep2].size()); CV_Assert(prevPyr[level * lvlStep1].type() == nextPyr[level * lvlStep2].type()); #ifdef HAVE_TEGRA_OPTIMIZATION typedef tegra::LKTrackerInvoker LKTrackerInvoker; #else typedef cv::detail::LKTrackerInvoker LKTrackerInvoker; #endif parallel_for(BlockedRange(0, npoints), LKTrackerInvoker(prevPyr[level * lvlStep1], derivI, nextPyr[level * lvlStep2], prevPts, nextPts, status, err, winSize, criteria, level, maxLevel, flags, (float)minEigThreshold)); } } static int icvMinimalPyramidSize( CvSize imgSize ) { return cvAlign(imgSize.width,8) * imgSize.height / 3; } static void icvInitPyramidalAlgorithm( const CvMat* imgA, const CvMat* imgB, CvMat* pyrA, CvMat* pyrB, int level, CvTermCriteria * criteria, int max_iters, int flags, uchar *** imgI, uchar *** imgJ, int **step, CvSize** size, double **scale, cv::AutoBuffer* buffer ) { const int ALIGN = 8; int pyrBytes, bufferBytes = 0, elem_size; int level1 = level + 1; int i; CvSize imgSize, levelSize; *imgI = *imgJ = 0; *step = 0; *scale = 0; *size = 0; /* check input arguments */ if( ((flags & CV_LKFLOW_PYR_A_READY) != 0 && !pyrA) || ((flags & CV_LKFLOW_PYR_B_READY) != 0 && !pyrB) ) CV_Error( CV_StsNullPtr, "Some of the precomputed pyramids are missing" ); if( level < 0 ) CV_Error( CV_StsOutOfRange, "The number of pyramid levels is negative" ); switch( criteria->type ) { case CV_TERMCRIT_ITER: criteria->epsilon = 0.f; break; case CV_TERMCRIT_EPS: criteria->max_iter = max_iters; break; case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS: break; default: assert( 0 ); CV_Error( CV_StsBadArg, "Invalid termination criteria" ); } /* compare squared values */ criteria->epsilon *= criteria->epsilon; /* set pointers and step for every level */ pyrBytes = 0; imgSize = cvGetSize(imgA); elem_size = CV_ELEM_SIZE(imgA->type); levelSize = imgSize; for( i = 1; i < level1; i++ ) { levelSize.width = (levelSize.width + 1) >> 1; levelSize.height = (levelSize.height + 1) >> 1; int tstep = cvAlign(levelSize.width,ALIGN) * elem_size; pyrBytes += tstep * levelSize.height; } assert( pyrBytes <= imgSize.width * imgSize.height * elem_size * 4 / 3 ); /* buffer_size = + */ bufferBytes = (int)((level1 >= 0) * ((pyrA->data.ptr == 0) + (pyrB->data.ptr == 0)) * pyrBytes + (sizeof(imgI[0][0]) * 2 + sizeof(step[0][0]) + sizeof(size[0][0]) + sizeof(scale[0][0])) * level1); buffer->allocate( bufferBytes ); *imgI = (uchar **) (uchar*)(*buffer); *imgJ = *imgI + level1; *step = (int *) (*imgJ + level1); *scale = (double *) (*step + level1); *size = (CvSize *)(*scale + level1); imgI[0][0] = imgA->data.ptr; imgJ[0][0] = imgB->data.ptr; step[0][0] = imgA->step; scale[0][0] = 1; size[0][0] = imgSize; if( level > 0 ) { uchar *bufPtr = (uchar *) (*size + level1); uchar *ptrA = pyrA->data.ptr; uchar *ptrB = pyrB->data.ptr; if( !ptrA ) { ptrA = bufPtr; bufPtr += pyrBytes; } if( !ptrB ) ptrB = bufPtr; levelSize = imgSize; /* build pyramids for both frames */ for( i = 1; i <= level; i++ ) { int levelBytes; CvMat prev_level, next_level; levelSize.width = (levelSize.width + 1) >> 1; levelSize.height = (levelSize.height + 1) >> 1; size[0][i] = levelSize; step[0][i] = cvAlign( levelSize.width, ALIGN ) * elem_size; scale[0][i] = scale[0][i - 1] * 0.5; levelBytes = step[0][i] * levelSize.height; imgI[0][i] = (uchar *) ptrA; ptrA += levelBytes; if( !(flags & CV_LKFLOW_PYR_A_READY) ) { prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); cvSetData( &prev_level, imgI[0][i-1], step[0][i-1] ); cvSetData( &next_level, imgI[0][i], step[0][i] ); cvPyrDown( &prev_level, &next_level ); } imgJ[0][i] = (uchar *) ptrB; ptrB += levelBytes; if( !(flags & CV_LKFLOW_PYR_B_READY) ) { prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 ); next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 ); cvSetData( &prev_level, imgJ[0][i-1], step[0][i-1] ); cvSetData( &next_level, imgJ[0][i], step[0][i] ); cvPyrDown( &prev_level, &next_level ); } } } } /* compute dI/dx and dI/dy */ static void icvCalcIxIy_32f( const float* src, int src_step, float* dstX, float* dstY, int dst_step, CvSize src_size, const float* smooth_k, float* buffer0 ) { int src_width = src_size.width, dst_width = src_size.width-2; int x, height = src_size.height - 2; float* buffer1 = buffer0 + src_width; src_step /= sizeof(src[0]); dst_step /= sizeof(dstX[0]); for( ; height--; src += src_step, dstX += dst_step, dstY += dst_step ) { const float* src2 = src + src_step; const float* src3 = src + src_step*2; for( x = 0; x < src_width; x++ ) { float t0 = (src3[x] + src[x])*smooth_k[0] + src2[x]*smooth_k[1]; float t1 = src3[x] - src[x]; buffer0[x] = t0; buffer1[x] = t1; } for( x = 0; x < dst_width; x++ ) { float t0 = buffer0[x+2] - buffer0[x]; float t1 = (buffer1[x] + buffer1[x+2])*smooth_k[0] + buffer1[x+1]*smooth_k[1]; dstX[x] = t0; dstY[x] = t1; } } } #undef CV_8TO32F #define CV_8TO32F(a) (a) static const void* icvAdjustRect( const void* srcptr, int src_step, int pix_size, CvSize src_size, CvSize win_size, CvPoint ip, CvRect* pRect ) { CvRect rect; const char* src = (const char*)srcptr; if( ip.x >= 0 ) { src += ip.x*pix_size; rect.x = 0; } else { rect.x = -ip.x; if( rect.x > win_size.width ) rect.x = win_size.width; } if( ip.x + win_size.width < src_size.width ) rect.width = win_size.width; else { rect.width = src_size.width - ip.x - 1; if( rect.width < 0 ) { src += rect.width*pix_size; rect.width = 0; } assert( rect.width <= win_size.width ); } if( ip.y >= 0 ) { src += ip.y * src_step; rect.y = 0; } else rect.y = -ip.y; if( ip.y + win_size.height < src_size.height ) rect.height = win_size.height; else { rect.height = src_size.height - ip.y - 1; if( rect.height < 0 ) { src += rect.height*src_step; rect.height = 0; } } *pRect = rect; return src - rect.x*pix_size; } static CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R ( const uchar* src, int src_step, CvSize src_size, float* dst, int dst_step, CvSize win_size, CvPoint2D32f center ) { CvPoint ip; float a12, a22, b1, b2; float a, b; double s = 0; int i, j; center.x -= (win_size.width-1)*0.5f; center.y -= (win_size.height-1)*0.5f; ip.x = cvFloor( center.x ); ip.y = cvFloor( center.y ); if( win_size.width <= 0 || win_size.height <= 0 ) return CV_BADRANGE_ERR; a = center.x - ip.x; b = center.y - ip.y; a = MAX(a,0.0001f); a12 = a*(1.f-b); a22 = a*b; b1 = 1.f - b; b2 = b; s = (1. - a)/a; src_step /= sizeof(src[0]); dst_step /= sizeof(dst[0]); if( 0 <= ip.x && ip.x + win_size.width < src_size.width && 0 <= ip.y && ip.y + win_size.height < src_size.height ) { // extracted rectangle is totally inside the image src += ip.y * src_step + ip.x; #if 0 if( icvCopySubpix_8u32f_C1R_p && icvCopySubpix_8u32f_C1R_p( src, src_step, dst, dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 ) return CV_OK; #endif for( ; win_size.height--; src += src_step, dst += dst_step ) { float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step])); for( j = 0; j < win_size.width; j++ ) { float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]); dst[j] = prev + t; prev = (float)(t*s); } } } else { CvRect r; src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src), sizeof(*src), src_size, win_size,ip, &r); for( i = 0; i < win_size.height; i++, dst += dst_step ) { const uchar *src2 = src + src_step; if( i < r.y || i >= r.height ) src2 -= src_step; for( j = 0; j < r.x; j++ ) { float s0 = CV_8TO32F(src[r.x])*b1 + CV_8TO32F(src2[r.x])*b2; dst[j] = (float)(s0); } if( j < r.width ) { float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j])); for( ; j < r.width; j++ ) { float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]); dst[j] = prev + t; prev = (float)(t*s); } } for( ; j < win_size.width; j++ ) { float s0 = CV_8TO32F(src[r.width])*b1 + CV_8TO32F(src2[r.width])*b2; dst[j] = (float)(s0); } if( i < r.height ) src = src2; } } return CV_OK; } #define ICV_32F8U(x) ((uchar)cvRound(x)) #define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \ worktype, cast_macro, cvt ) \ static CvStatus CV_STDCALL \ icvGetQuadrangleSubPix_##flavor##_C1R \ ( const srctype * src, int src_step, CvSize src_size, \ dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \ { \ int x, y; \ double dx = (win_size.width - 1)*0.5; \ double dy = (win_size.height - 1)*0.5; \ double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \ double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \ \ src_step /= sizeof(srctype); \ dst_step /= sizeof(dsttype); \ \ for( y = 0; y < win_size.height; y++, dst += dst_step ) \ { \ double xs = A12*y + A13; \ double ys = A22*y + A23; \ double xe = A11*(win_size.width-1) + A12*y + A13; \ double ye = A21*(win_size.width-1) + A22*y + A23; \ \ if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \ (unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \ (unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \ (unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \ { \ for( x = 0; x < win_size.width; x++ ) \ { \ int ixs = cvFloor( xs ); \ int iys = cvFloor( ys ); \ const srctype *ptr = src + src_step*iys + ixs; \ double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \ worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \ worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\ xs += A11; \ ys += A21; \ \ dst[x] = cast_macro(p0 + b * (p1 - p0)); \ } \ } \ else \ { \ for( x = 0; x < win_size.width; x++ ) \ { \ int ixs = cvFloor( xs ), iys = cvFloor( ys ); \ double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \ const srctype *ptr0, *ptr1; \ worktype p0, p1; \ xs += A11; ys += A21; \ \ if( (unsigned)iys < (unsigned)(src_size.height-1) ) \ ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \ else \ ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \ \ if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \ { \ p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \ p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \ } \ else \ { \ ixs = ixs < 0 ? 0 : src_size.width - 1; \ p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \ } \ dst[x] = cast_macro(p0 + b * (p1 - p0)); \ } \ } \ } \ \ return CV_OK; \ } ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F ) CV_IMPL void cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB, void* /*pyrarrA*/, void* /*pyrarrB*/, const CvPoint2D32f * featuresA, CvPoint2D32f * featuresB, int count, CvSize winSize, int level, char *status, float *error, CvTermCriteria criteria, int flags ) { if( count <= 0 ) return; CV_Assert( featuresA && featuresB ); cv::Mat A = cv::cvarrToMat(arrA), B = cv::cvarrToMat(arrB); cv::Mat ptA(count, 1, CV_32FC2, (void*)featuresA); cv::Mat ptB(count, 1, CV_32FC2, (void*)featuresB); cv::Mat st, err; if( status ) st = cv::Mat(count, 1, CV_8U, (void*)status); if( error ) err = cv::Mat(count, 1, CV_32F, (void*)error); cv::calcOpticalFlowPyrLK( A, B, ptA, ptB, status ? cv::_OutputArray(st) : cv::_OutputArray(), error ? cv::_OutputArray(err) : cv::_OutputArray(), winSize, level, criteria, flags); } /* Affine tracking algorithm */ CV_IMPL void cvCalcAffineFlowPyrLK( const void* arrA, const void* arrB, void* pyrarrA, void* pyrarrB, const CvPoint2D32f * featuresA, CvPoint2D32f * featuresB, float *matrices, int count, CvSize winSize, int level, char *status, float *error, CvTermCriteria criteria, int flags ) { const int MAX_ITERS = 100; cv::AutoBuffer _status; cv::AutoBuffer buffer; cv::AutoBuffer pyr_buffer; CvMat stubA, *imgA = (CvMat*)arrA; CvMat stubB, *imgB = (CvMat*)arrB; CvMat pstubA, *pyrA = (CvMat*)pyrarrA; CvMat pstubB, *pyrB = (CvMat*)pyrarrB; static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; /* 3/32, 10/32, 3/32 */ int bufferBytes = 0; uchar **imgI = 0; uchar **imgJ = 0; int *step = 0; double *scale = 0; CvSize* size = 0; float *patchI; float *patchJ; float *Ix; float *Iy; int i, j, k, l; CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 ); int patchLen = patchSize.width * patchSize.height; int patchStep = patchSize.width * sizeof( patchI[0] ); CvSize srcPatchSize = cvSize( patchSize.width + 2, patchSize.height + 2 ); int srcPatchLen = srcPatchSize.width * srcPatchSize.height; int srcPatchStep = srcPatchSize.width * sizeof( patchI[0] ); CvSize imgSize; float eps = (float)MIN(winSize.width, winSize.height); imgA = cvGetMat( imgA, &stubA ); imgB = cvGetMat( imgB, &stubB ); if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 ) CV_Error( CV_StsUnsupportedFormat, "" ); if( !CV_ARE_TYPES_EQ( imgA, imgB )) CV_Error( CV_StsUnmatchedFormats, "" ); if( !CV_ARE_SIZES_EQ( imgA, imgB )) CV_Error( CV_StsUnmatchedSizes, "" ); if( imgA->step != imgB->step ) CV_Error( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" ); if( !matrices ) CV_Error( CV_StsNullPtr, "" ); imgSize = cvGetMatSize( imgA ); if( pyrA ) { pyrA = cvGetMat( pyrA, &pstubA ); if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) ) CV_Error( CV_StsBadArg, "pyramid A has insufficient size" ); } else { pyrA = &pstubA; pyrA->data.ptr = 0; } if( pyrB ) { pyrB = cvGetMat( pyrB, &pstubB ); if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) ) CV_Error( CV_StsBadArg, "pyramid B has insufficient size" ); } else { pyrB = &pstubB; pyrB->data.ptr = 0; } if( count == 0 ) return; /* check input arguments */ if( !featuresA || !featuresB || !matrices ) CV_Error( CV_StsNullPtr, "" ); if( winSize.width <= 1 || winSize.height <= 1 ) CV_Error( CV_StsOutOfRange, "the search window is too small" ); if( count < 0 ) CV_Error( CV_StsOutOfRange, "" ); icvInitPyramidalAlgorithm( imgA, imgB, pyrA, pyrB, level, &criteria, MAX_ITERS, flags, &imgI, &imgJ, &step, &size, &scale, &pyr_buffer ); /* buffer_size = + */ bufferBytes = (srcPatchLen + patchLen*3)*sizeof(patchI[0]) + (36*2 + 6)*sizeof(double); buffer.allocate(bufferBytes); if( !status ) { _status.allocate(count); status = _status; } patchI = (float *)(uchar*)buffer; patchJ = patchI + srcPatchLen; Ix = patchJ + patchLen; Iy = Ix + patchLen; if( status ) memset( status, 1, count ); if( !(flags & CV_LKFLOW_INITIAL_GUESSES) ) { memcpy( featuresB, featuresA, count * sizeof( featuresA[0] )); for( i = 0; i < count * 4; i += 4 ) { matrices[i] = matrices[i + 3] = 1.f; matrices[i + 1] = matrices[i + 2] = 0.f; } } for( i = 0; i < count; i++ ) { featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5); featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5); } /* do processing from top pyramid level (smallest image) to the bottom (original image) */ for( l = level; l >= 0; l-- ) { CvSize levelSize = size[l]; int levelStep = step[l]; /* find flow for each given point at the particular level */ for( i = 0; i < count; i++ ) { CvPoint2D32f u; float Av[6]; double G[36]; double meanI = 0, meanJ = 0; int x, y; int pt_status = status[i]; CvMat mat; if( !pt_status ) continue; Av[0] = matrices[i*4]; Av[1] = matrices[i*4+1]; Av[3] = matrices[i*4+2]; Av[4] = matrices[i*4+3]; Av[2] = featuresB[i].x += featuresB[i].x; Av[5] = featuresB[i].y += featuresB[i].y; u.x = (float) (featuresA[i].x * scale[l]); u.y = (float) (featuresA[i].y * scale[l]); if( u.x < -eps || u.x >= levelSize.width+eps || u.y < -eps || u.y >= levelSize.height+eps || icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep, levelSize, patchI, srcPatchStep, srcPatchSize, u ) < 0 ) { /* point is outside the image. take the next */ if( l == 0 ) status[i] = 0; continue; } icvCalcIxIy_32f( patchI, srcPatchStep, Ix, Iy, (srcPatchSize.width-2)*sizeof(patchI[0]), srcPatchSize, smoothKernel, patchJ ); /* repack patchI (remove borders) */ for( k = 0; k < patchSize.height; k++ ) memcpy( patchI + k * patchSize.width, patchI + (k + 1) * srcPatchSize.width + 1, patchStep ); memset( G, 0, sizeof( G )); /* calculate G matrix */ for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) { for( x = -winSize.width; x <= winSize.width; x++, k++ ) { double ixix = ((double) Ix[k]) * Ix[k]; double ixiy = ((double) Ix[k]) * Iy[k]; double iyiy = ((double) Iy[k]) * Iy[k]; double xx, xy, yy; G[0] += ixix; G[1] += ixiy; G[2] += x * ixix; G[3] += y * ixix; G[4] += x * ixiy; G[5] += y * ixiy; // G[6] == G[1] G[7] += iyiy; // G[8] == G[4] // G[9] == G[5] G[10] += x * iyiy; G[11] += y * iyiy; xx = x * x; xy = x * y; yy = y * y; // G[12] == G[2] // G[13] == G[8] == G[4] G[14] += xx * ixix; G[15] += xy * ixix; G[16] += xx * ixiy; G[17] += xy * ixiy; // G[18] == G[3] // G[19] == G[9] // G[20] == G[15] G[21] += yy * ixix; // G[22] == G[17] G[23] += yy * ixiy; // G[24] == G[4] // G[25] == G[10] // G[26] == G[16] // G[27] == G[22] G[28] += xx * iyiy; G[29] += xy * iyiy; // G[30] == G[5] // G[31] == G[11] // G[32] == G[17] // G[33] == G[23] // G[34] == G[29] G[35] += yy * iyiy; meanI += patchI[k]; } } meanI /= patchSize.width*patchSize.height; G[8] = G[4]; G[9] = G[5]; G[22] = G[17]; // fill part of G below its diagonal for( y = 1; y < 6; y++ ) for( x = 0; x < y; x++ ) G[y * 6 + x] = G[x * 6 + y]; cvInitMatHeader( &mat, 6, 6, CV_64FC1, G ); if( cvInvert( &mat, &mat, CV_SVD ) < 1e-4 ) { /* bad matrix. take the next point */ if( l == 0 ) status[i] = 0; continue; } for( j = 0; j < criteria.max_iter; j++ ) { double b[6] = {0,0,0,0,0,0}, eta[6]; double t0, t1, s = 0; if( Av[2] < -eps || Av[2] >= levelSize.width+eps || Av[5] < -eps || Av[5] >= levelSize.height+eps || icvGetQuadrangleSubPix_8u32f_C1R( imgJ[l], levelStep, levelSize, patchJ, patchStep, patchSize, Av ) < 0 ) { pt_status = 0; break; } for( y = -winSize.height, k = 0, meanJ = 0; y <= winSize.height; y++ ) for( x = -winSize.width; x <= winSize.width; x++, k++ ) meanJ += patchJ[k]; meanJ = meanJ / (patchSize.width * patchSize.height) - meanI; for( y = -winSize.height, k = 0; y <= winSize.height; y++ ) { for( x = -winSize.width; x <= winSize.width; x++, k++ ) { double t = patchI[k] - patchJ[k] + meanJ; double ixt = Ix[k] * t; double iyt = Iy[k] * t; s += t; b[0] += ixt; b[1] += iyt; b[2] += x * ixt; b[3] += y * ixt; b[4] += x * iyt; b[5] += y * iyt; } } for( k = 0; k < 6; k++ ) eta[k] = G[k*6]*b[0] + G[k*6+1]*b[1] + G[k*6+2]*b[2] + G[k*6+3]*b[3] + G[k*6+4]*b[4] + G[k*6+5]*b[5]; Av[2] = (float)(Av[2] + Av[0] * eta[0] + Av[1] * eta[1]); Av[5] = (float)(Av[5] + Av[3] * eta[0] + Av[4] * eta[1]); t0 = Av[0] * (1 + eta[2]) + Av[1] * eta[4]; t1 = Av[0] * eta[3] + Av[1] * (1 + eta[5]); Av[0] = (float)t0; Av[1] = (float)t1; t0 = Av[3] * (1 + eta[2]) + Av[4] * eta[4]; t1 = Av[3] * eta[3] + Av[4] * (1 + eta[5]); Av[3] = (float)t0; Av[4] = (float)t1; if( eta[0] * eta[0] + eta[1] * eta[1] < criteria.epsilon ) break; } if( pt_status != 0 || l == 0 ) { status[i] = (char)pt_status; featuresB[i].x = Av[2]; featuresB[i].y = Av[5]; matrices[i*4] = Av[0]; matrices[i*4+1] = Av[1]; matrices[i*4+2] = Av[3]; matrices[i*4+3] = Av[4]; } if( pt_status && l == 0 && error ) { /* calc error */ double err = 0; for( y = 0, k = 0; y < patchSize.height; y++ ) { for( x = 0; x < patchSize.width; x++, k++ ) { double t = patchI[k] - patchJ[k] + meanJ; err += t * t; } } error[i] = (float)sqrt(err); } } } } static void icvGetRTMatrix( const CvPoint2D32f* a, const CvPoint2D32f* b, int count, CvMat* M, int full_affine ) { if( full_affine ) { double sa[36], sb[6]; CvMat A = cvMat( 6, 6, CV_64F, sa ), B = cvMat( 6, 1, CV_64F, sb ); CvMat MM = cvMat( 6, 1, CV_64F, M->data.db ); int i; memset( sa, 0, sizeof(sa) ); memset( sb, 0, sizeof(sb) ); for( i = 0; i < count; i++ ) { sa[0] += a[i].x*a[i].x; sa[1] += a[i].y*a[i].x; sa[2] += a[i].x; sa[6] += a[i].x*a[i].y; sa[7] += a[i].y*a[i].y; sa[8] += a[i].y; sa[12] += a[i].x; sa[13] += a[i].y; sa[14] += 1; sb[0] += a[i].x*b[i].x; sb[1] += a[i].y*b[i].x; sb[2] += b[i].x; sb[3] += a[i].x*b[i].y; sb[4] += a[i].y*b[i].y; sb[5] += b[i].y; } sa[21] = sa[0]; sa[22] = sa[1]; sa[23] = sa[2]; sa[27] = sa[6]; sa[28] = sa[7]; sa[29] = sa[8]; sa[33] = sa[12]; sa[34] = sa[13]; sa[35] = sa[14]; cvSolve( &A, &B, &MM, CV_SVD ); } else { double sa[16], sb[4], m[4], *om = M->data.db; CvMat A = cvMat( 4, 4, CV_64F, sa ), B = cvMat( 4, 1, CV_64F, sb ); CvMat MM = cvMat( 4, 1, CV_64F, m ); int i; memset( sa, 0, sizeof(sa) ); memset( sb, 0, sizeof(sb) ); for( i = 0; i < count; i++ ) { sa[0] += a[i].x*a[i].x + a[i].y*a[i].y; sa[1] += 0; sa[2] += a[i].x; sa[3] += a[i].y; sa[4] += 0; sa[5] += a[i].x*a[i].x + a[i].y*a[i].y; sa[6] += -a[i].y; sa[7] += a[i].x; sa[8] += a[i].x; sa[9] += -a[i].y; sa[10] += 1; sa[11] += 0; sa[12] += a[i].y; sa[13] += a[i].x; sa[14] += 0; sa[15] += 1; sb[0] += a[i].x*b[i].x + a[i].y*b[i].y; sb[1] += a[i].x*b[i].y - a[i].y*b[i].x; sb[2] += b[i].x; sb[3] += b[i].y; } cvSolve( &A, &B, &MM, CV_SVD ); om[0] = om[4] = m[0]; om[1] = -m[1]; om[3] = m[1]; om[2] = m[2]; om[5] = m[3]; } } CV_IMPL int cvEstimateRigidTransform( const CvArr* matA, const CvArr* matB, CvMat* matM, int full_affine ) { const int COUNT = 15; const int WIDTH = 160, HEIGHT = 120; const int RANSAC_MAX_ITERS = 500; const int RANSAC_SIZE0 = 3; const double RANSAC_GOOD_RATIO = 0.5; cv::Ptr sA, sB; cv::AutoBuffer pA, pB; cv::AutoBuffer good_idx; cv::AutoBuffer status; cv::Ptr gray; CvMat stubA, *A = cvGetMat( matA, &stubA ); CvMat stubB, *B = cvGetMat( matB, &stubB ); CvSize sz0, sz1; int cn, equal_sizes; int i, j, k, k1; int count_x, count_y, count = 0; double scale = 1; CvRNG rng = cvRNG(-1); double m[6]={0}; CvMat M = cvMat( 2, 3, CV_64F, m ); int good_count = 0; CvRect brect; if( !CV_IS_MAT(matM) ) CV_Error( matM ? CV_StsBadArg : CV_StsNullPtr, "Output parameter M is not a valid matrix" ); if( !CV_ARE_SIZES_EQ( A, B ) ) CV_Error( CV_StsUnmatchedSizes, "Both input images must have the same size" ); if( !CV_ARE_TYPES_EQ( A, B ) ) CV_Error( CV_StsUnmatchedFormats, "Both input images must have the same data type" ); if( CV_MAT_TYPE(A->type) == CV_8UC1 || CV_MAT_TYPE(A->type) == CV_8UC3 ) { cn = CV_MAT_CN(A->type); sz0 = cvGetSize(A); sz1 = cvSize(WIDTH, HEIGHT); scale = MAX( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height ); scale = MIN( scale, 1. ); sz1.width = cvRound( sz0.width * scale ); sz1.height = cvRound( sz0.height * scale ); equal_sizes = sz1.width == sz0.width && sz1.height == sz0.height; if( !equal_sizes || cn != 1 ) { sA = cvCreateMat( sz1.height, sz1.width, CV_8UC1 ); sB = cvCreateMat( sz1.height, sz1.width, CV_8UC1 ); if( cn != 1 ) { gray = cvCreateMat( sz0.height, sz0.width, CV_8UC1 ); cvCvtColor( A, gray, CV_BGR2GRAY ); cvResize( gray, sA, CV_INTER_AREA ); cvCvtColor( B, gray, CV_BGR2GRAY ); cvResize( gray, sB, CV_INTER_AREA ); gray.release(); } else { cvResize( A, sA, CV_INTER_AREA ); cvResize( B, sB, CV_INTER_AREA ); } A = sA; B = sB; } count_y = COUNT; count_x = cvRound((double)COUNT*sz1.width/sz1.height); count = count_x * count_y; pA.allocate(count); pB.allocate(count); status.allocate(count); for( i = 0, k = 0; i < count_y; i++ ) for( j = 0; j < count_x; j++, k++ ) { pA[k].x = (j+0.5f)*sz1.width/count_x; pA[k].y = (i+0.5f)*sz1.height/count_y; } // find the corresponding points in B cvCalcOpticalFlowPyrLK( A, B, 0, 0, pA, pB, count, cvSize(10,10), 3, status, 0, cvTermCriteria(CV_TERMCRIT_ITER,40,0.1), 0 ); // repack the remained points for( i = 0, k = 0; i < count; i++ ) if( status[i] ) { if( i > k ) { pA[k] = pA[i]; pB[k] = pB[i]; } k++; } count = k; } else if( CV_MAT_TYPE(A->type) == CV_32FC2 || CV_MAT_TYPE(A->type) == CV_32SC2 ) { count = A->cols*A->rows; CvMat _pA, _pB; pA.allocate(count); pB.allocate(count); _pA = cvMat( A->rows, A->cols, CV_32FC2, pA ); _pB = cvMat( B->rows, B->cols, CV_32FC2, pB ); cvConvert( A, &_pA ); cvConvert( B, &_pB ); } else CV_Error( CV_StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" ); good_idx.allocate(count); if( count < RANSAC_SIZE0 ) return 0; CvMat _pB = cvMat(1, count, CV_32FC2, pB); brect = cvBoundingRect(&_pB, 1); // RANSAC stuff: // 1. find the consensus for( k = 0; k < RANSAC_MAX_ITERS; k++ ) { int idx[RANSAC_SIZE0]; CvPoint2D32f a[3]; CvPoint2D32f b[3]; memset( a, 0, sizeof(a) ); memset( b, 0, sizeof(b) ); // choose random 3 non-complanar points from A & B for( i = 0; i < RANSAC_SIZE0; i++ ) { for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ ) { idx[i] = cvRandInt(&rng) % count; for( j = 0; j < i; j++ ) { if( idx[j] == idx[i] ) break; // check that the points are not very close one each other if( fabs(pA[idx[i]].x - pA[idx[j]].x) + fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON ) break; if( fabs(pB[idx[i]].x - pB[idx[j]].x) + fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON ) break; } if( j < i ) continue; if( i+1 == RANSAC_SIZE0 ) { // additional check for non-complanar vectors a[0] = pA[idx[0]]; a[1] = pA[idx[1]]; a[2] = pA[idx[2]]; b[0] = pB[idx[0]]; b[1] = pB[idx[1]]; b[2] = pB[idx[2]]; double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y; double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y; double dbx1 = b[1].x - b[0].x, dby1 = b[1].y - b[0].y; double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y; const double eps = 0.01; if( fabs(dax1*day2 - day1*dax2) < eps*sqrt(dax1*dax1+day1*day1)*sqrt(dax2*dax2+day2*day2) || fabs(dbx1*dby2 - dby1*dbx2) < eps*sqrt(dbx1*dbx1+dby1*dby1)*sqrt(dbx2*dbx2+dby2*dby2) ) continue; } break; } if( k1 >= RANSAC_MAX_ITERS ) break; } if( i < RANSAC_SIZE0 ) continue; // estimate the transformation using 3 points icvGetRTMatrix( a, b, 3, &M, full_affine ); for( i = 0, good_count = 0; i < count; i++ ) { if( fabs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) + fabs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < MAX(brect.width,brect.height)*0.05 ) good_idx[good_count++] = i; } if( good_count >= count*RANSAC_GOOD_RATIO ) break; } if( k >= RANSAC_MAX_ITERS ) return 0; if( good_count < count ) { for( i = 0; i < good_count; i++ ) { j = good_idx[i]; pA[i] = pA[j]; pB[i] = pB[j]; } } icvGetRTMatrix( pA, pB, good_count, &M, full_affine ); m[2] /= scale; m[5] /= scale; cvConvert( &M, matM ); return 1; } cv::Mat cv::estimateRigidTransform( InputArray src1, InputArray src2, bool fullAffine ) { Mat M(2, 3, CV_64F), A = src1.getMat(), B = src2.getMat(); CvMat matA = A, matB = B, matM = M; cvEstimateRigidTransform(&matA, &matB, &matM, fullAffine); return M; } /* End of file. */