package org.opencv.test.features2d; import java.util.Arrays; import org.opencv.core.CvType; import org.opencv.core.Mat; import org.opencv.core.MatOfKeyPoint; import org.opencv.core.Point; import org.opencv.core.Scalar; import org.opencv.core.KeyPoint; import org.opencv.test.OpenCVTestCase; import org.opencv.test.OpenCVTestRunner; import org.opencv.imgproc.Imgproc; import org.opencv.features2d.Feature2D; import org.opencv.features2d.SimpleBlobDetector; public class SIMPLEBLOBFeatureDetectorTest extends OpenCVTestCase { Feature2D detector; int matSize; KeyPoint[] truth; private Mat getMaskImg() { Mat mask = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); Mat right = mask.submat(0, matSize, matSize / 2, matSize); right.setTo(new Scalar(0)); return mask; } private Mat getTestImg() { int center = matSize / 2; int offset = 40; Mat img = new Mat(matSize, matSize, CvType.CV_8U, new Scalar(255)); Imgproc.circle(img, new Point(center - offset, center), 24, new Scalar(0), -1); Imgproc.circle(img, new Point(center + offset, center), 20, new Scalar(50), -1); Imgproc.circle(img, new Point(center, center - offset), 18, new Scalar(100), -1); Imgproc.circle(img, new Point(center, center + offset), 14, new Scalar(150), -1); Imgproc.circle(img, new Point(center, center), 10, new Scalar(200), -1); return img; } @Override protected void setUp() throws Exception { super.setUp(); detector = SimpleBlobDetector.create(); matSize = 200; truth = new KeyPoint[] { new KeyPoint( 140, 100, 41.036568f, -1, 0, 0, -1), new KeyPoint( 60, 100, 48.538486f, -1, 0, 0, -1), new KeyPoint(100, 60, 36.769554f, -1, 0, 0, -1), new KeyPoint(100, 140, 28.635643f, -1, 0, 0, -1), new KeyPoint(100, 100, 20.880613f, -1, 0, 0, -1) }; } public void testCreate() { assertNotNull(detector); } public void testDetectListOfMatListOfListOfKeyPoint() { fail("Not yet implemented"); } public void testDetectListOfMatListOfListOfKeyPointListOfMat() { fail("Not yet implemented"); } public void testDetectMatListOfKeyPoint() { Mat img = getTestImg(); MatOfKeyPoint keypoints = new MatOfKeyPoint(); detector.detect(img, keypoints); assertListKeyPointEquals(Arrays.asList(truth), keypoints.toList(), EPS); } public void testDetectMatListOfKeyPointMat() { Mat img = getTestImg(); Mat mask = getMaskImg(); MatOfKeyPoint keypoints = new MatOfKeyPoint(); detector.detect(img, keypoints, mask); assertListKeyPointEquals(Arrays.asList(truth[1]), keypoints.toList(), EPS); } public void testEmpty() { // assertFalse(detector.empty()); fail("Not yet implemented"); } public void testRead() { Mat img = getTestImg(); MatOfKeyPoint keypoints1 = new MatOfKeyPoint(); detector.detect(img, keypoints1); String filename = OpenCVTestRunner.getTempFileName("yml"); writeFile(filename, "%YAML:1.0\nthresholdStep: 10\nminThreshold: 50\nmaxThreshold: 220\nminRepeatability: 2\nfilterByArea: true\nminArea: 800\nmaxArea: 5000\n"); detector.read(filename); MatOfKeyPoint keypoints2 = new MatOfKeyPoint(); detector.detect(img, keypoints2); assertTrue(keypoints2.total() <= keypoints1.total()); } public void testWrite() { String filename = OpenCVTestRunner.getTempFileName("xml"); detector.write(filename); String truth = "<?xml version=\"1.0\"?>\n<opencv_storage>\n<format>3</format>\n<thresholdStep>10.</thresholdStep>\n<minThreshold>50.</minThreshold>\n<maxThreshold>220.</maxThreshold>\n<minRepeatability>2</minRepeatability>\n<minDistBetweenBlobs>10.</minDistBetweenBlobs>\n<filterByColor>1</filterByColor>\n<blobColor>0</blobColor>\n<filterByArea>1</filterByArea>\n<minArea>25.</minArea>\n<maxArea>5000.</maxArea>\n<filterByCircularity>0</filterByCircularity>\n<minCircularity>8.0000001192092896e-01</minCircularity>\n<maxCircularity>3.4028234663852886e+38</maxCircularity>\n<filterByInertia>1</filterByInertia>\n<minInertiaRatio>1.0000000149011612e-01</minInertiaRatio>\n<maxInertiaRatio>3.4028234663852886e+38</maxInertiaRatio>\n<filterByConvexity>1</filterByConvexity>\n<minConvexity>9.4999998807907104e-01</minConvexity>\n<maxConvexity>3.4028234663852886e+38</maxConvexity>\n</opencv_storage>\n"; assertEquals(truth, readFile(filename)); } }