/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifdef __GNUC__ # pragma GCC diagnostic ignored "-Wmissing-declarations" # if defined __clang__ || defined __APPLE__ # pragma GCC diagnostic ignored "-Wmissing-prototypes" # pragma GCC diagnostic ignored "-Wextra" # endif #endif #include #include #include #include #include #include #include #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include "opencv2/highgui.hpp" #include "opencv2/calib3d.hpp" #include "opencv2/video.hpp" #include "opencv2/objdetect.hpp" #include "opencv2/features2d.hpp" #include "opencv2/ocl.hpp" #include "opencv2/ts.hpp" #include "opencv2/ts/ts_perf.hpp" #include "opencv2/ts/ts_gtest.h" #include "opencv2/core/utility.hpp" #define Min_Size 1000 #define Max_Size 4000 #define Multiple 2 #define TAB " " using namespace std; using namespace cv; void gen(Mat &mat, int rows, int cols, int type, Scalar low, Scalar high); void gen(Mat &mat, int rows, int cols, int type, int low, int high, int n); string abspath(const string &relpath); typedef struct { short x; short y; } COOR; COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab); void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit); template int ExpectedEQ(T1 expected, T2 actual) { if(expected == actual) return 1; return 0; } template int EeceptDoubleEQ(T1 expected, T1 actual) { testing::internal::Double lhs(expected); testing::internal::Double rhs(actual); if (lhs.AlmostEquals(rhs)) { return 1; } return 0; } template int AssertEQ(T expected, T actual) { if(expected == actual) { return 1; } return 0; } int ExceptDoubleNear(double val1, double val2, double abs_error); bool match_rect(cv::Rect r1, cv::Rect r2, int threshold); double checkNorm(const cv::Mat &m); double checkNorm(const cv::Mat &m1, const cv::Mat &m2); double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2); int ExpectedMatNear(cv::Mat dst, cv::Mat cpu_dst, double eps); int ExceptedMatSimilar(cv::Mat dst, cv::Mat cpu_dst, double eps); class Runnable { public: explicit Runnable(const std::string &runname): name_(runname) {} virtual ~Runnable() {} const std::string &name() const { return name_; } virtual void run() = 0; private: std::string name_; }; class TestSystem { public: static TestSystem &instance() { static TestSystem me; return me; } void setWorkingDir(const std::string &val) { working_dir_ = val; } const std::string &workingDir() const { return working_dir_; } void setTestFilter(const std::string &val) { test_filter_ = val; } const std::string &testFilter() const { return test_filter_; } void setNumIters(int num_iters) { num_iters_ = num_iters; } void setGPUWarmupIters(int num_iters) { gpu_warmup_iters_ = num_iters; } void setCPUIters(int num_iters) { cpu_num_iters_ = num_iters; } void setTopThreshold(double top) { top_ = top; } void setBottomThreshold(double bottom) { bottom_ = bottom; } void addInit(Runnable *init) { inits_.push_back(init); } void addTest(Runnable *test) { tests_.push_back(test); } void run(); // It's public because OpenCV callback uses it void printError(const std::string &msg); std::stringstream &startNewSubtest() { finishCurrentSubtest(); return cur_subtest_description_; } bool stop() const { return cur_iter_idx_ >= num_iters_; } bool cpu_stop() const { return cur_iter_idx_ >= cpu_num_iters_; } int get_cur_iter_idx() { return cur_iter_idx_; } int get_cpu_num_iters() { return cpu_num_iters_; } bool warmupStop() { return cur_warmup_idx_++ >= gpu_warmup_iters_; } void warmupComplete() { cur_warmup_idx_ = 0; } void cpuOn() { cpu_started_ = cv::getTickCount(); } void cpuOff() { int64 delta = cv::getTickCount() - cpu_started_; cpu_times_.push_back(delta); ++cur_iter_idx_; } void cpuComplete() { cpu_elapsed_ += meanTime(cpu_times_); cur_subtest_is_empty_ = false; cur_iter_idx_ = 0; } void gpuOn() { gpu_started_ = cv::getTickCount(); } void gpuOff() { int64 delta = cv::getTickCount() - gpu_started_; gpu_times_.push_back(delta); ++cur_iter_idx_; } void gpuComplete() { gpu_elapsed_ += meanTime(gpu_times_); cur_subtest_is_empty_ = false; cur_iter_idx_ = 0; } void gpufullOn() { gpu_full_started_ = cv::getTickCount(); } void gpufullOff() { int64 delta = cv::getTickCount() - gpu_full_started_; gpu_full_times_.push_back(delta); ++cur_iter_idx_; } void gpufullComplete() { gpu_full_elapsed_ += meanTime(gpu_full_times_); cur_subtest_is_empty_ = false; cur_iter_idx_ = 0; } bool isListMode() const { return is_list_mode_; } void setListMode(bool value) { is_list_mode_ = value; } void setRecordName(const std::string &name) { recordname_ = name; } void setCurrentTest(const std::string &name) { itname_ = name; itname_changed_ = true; } void setAccurate(int accurate, double diff) { is_accurate_ = accurate; accurate_diff_ = diff; } void ExpectMatsNear(vector& dst, vector& cpu_dst, vector& eps) { assert(dst.size() == cpu_dst.size()); assert(cpu_dst.size() == eps.size()); is_accurate_ = 1; for(size_t i=0; i eps[i]) is_accurate_ = 0; } } void ExpectedMatNear(cv::Mat& dst, cv::Mat& cpu_dst, double eps) { assert(dst.type() == cpu_dst.type()); assert(dst.size() == cpu_dst.size()); accurate_diff_ = checkNorm(dst, cpu_dst); if(accurate_diff_ <= eps) is_accurate_ = 1; else is_accurate_ = 0; } void ExceptedMatSimilar(cv::Mat& dst, cv::Mat& cpu_dst, double eps) { assert(dst.type() == cpu_dst.type()); assert(dst.size() == cpu_dst.size()); accurate_diff_ = checkSimilarity(cpu_dst, dst); if(accurate_diff_ <= eps) is_accurate_ = 1; else is_accurate_ = 0; } std::stringstream &getCurSubtestDescription() { return cur_subtest_description_; } private: TestSystem(): cur_subtest_is_empty_(true), cpu_elapsed_(0), gpu_elapsed_(0), gpu_full_elapsed_(0), speedup_total_(0.0), num_subtests_called_(0), speedup_faster_count_(0), speedup_slower_count_(0), speedup_equal_count_(0), speedup_full_faster_count_(0), speedup_full_slower_count_(0), speedup_full_equal_count_(0), is_list_mode_(false), num_iters_(10), cpu_num_iters_(2), gpu_warmup_iters_(1), cur_iter_idx_(0), cur_warmup_idx_(0), record_(0), recordname_("performance"), itname_changed_(true), is_accurate_(-1), accurate_diff_(0.) { cpu_times_.reserve(num_iters_); gpu_times_.reserve(num_iters_); gpu_full_times_.reserve(num_iters_); } void finishCurrentSubtest(); void resetCurrentSubtest() { cpu_elapsed_ = 0; gpu_elapsed_ = 0; gpu_full_elapsed_ = 0; cur_subtest_description_.str(""); cur_subtest_is_empty_ = true; cur_iter_idx_ = 0; cur_warmup_idx_ = 0; cpu_times_.clear(); gpu_times_.clear(); gpu_full_times_.clear(); is_accurate_ = -1; accurate_diff_ = 0.; } double meanTime(const std::vector &samples); void printHeading(); void printSummary(); void printMetrics(int is_accurate, double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f, double speedup = 0.0f, double fullspeedup = 0.0f); void writeHeading(); void writeSummary(); void writeMetrics(double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f, double speedup = 0.0f, double fullspeedup = 0.0f, double gpu_min = 0.0f, double gpu_max = 0.0f, double std_dev = 0.0f); std::string working_dir_; std::string test_filter_; std::vector inits_; std::vector tests_; std::stringstream cur_subtest_description_; bool cur_subtest_is_empty_; int64 cpu_started_; int64 gpu_started_; int64 gpu_full_started_; double cpu_elapsed_; double gpu_elapsed_; double gpu_full_elapsed_; double speedup_total_; double speedup_full_total_; int num_subtests_called_; int speedup_faster_count_; int speedup_slower_count_; int speedup_equal_count_; int speedup_full_faster_count_; int speedup_full_slower_count_; int speedup_full_equal_count_; bool is_list_mode_; double top_; double bottom_; int num_iters_; int cpu_num_iters_; //there's no need to set cpu running same times with gpu int gpu_warmup_iters_; //gpu warm up times, default is 1 int cur_iter_idx_; int cur_warmup_idx_; //current gpu warm up times std::vector cpu_times_; std::vector gpu_times_; std::vector gpu_full_times_; FILE *record_; std::string recordname_; std::string itname_; bool itname_changed_; int is_accurate_; double accurate_diff_; }; #define GLOBAL_INIT(name) \ struct name##_init: Runnable { \ name##_init(): Runnable(#name) { \ TestSystem::instance().addInit(this); \ } \ void run(); \ } name##_init_instance; \ void name##_init::run() #define PERFTEST(name) \ struct name##_test: Runnable { \ name##_test(): Runnable(#name) { \ TestSystem::instance().addTest(this); \ } \ void run(); \ } name##_test_instance; \ void name##_test::run() #define SUBTEST TestSystem::instance().startNewSubtest() #define CPU_ON \ while (!TestSystem::instance().cpu_stop()) { \ TestSystem::instance().cpuOn() #define CPU_OFF \ TestSystem::instance().cpuOff(); \ } TestSystem::instance().cpuComplete() #define GPU_ON \ while (!TestSystem::instance().stop()) { \ TestSystem::instance().gpuOn() #define GPU_OFF \ ocl::finish(); \ TestSystem::instance().gpuOff(); \ } TestSystem::instance().gpuComplete() #define GPU_FULL_ON \ while (!TestSystem::instance().stop()) { \ TestSystem::instance().gpufullOn() #define GPU_FULL_OFF \ TestSystem::instance().gpufullOff(); \ } TestSystem::instance().gpufullComplete() #define WARMUP_ON \ while (!TestSystem::instance().warmupStop()) { #define WARMUP_OFF \ ocl::finish(); \ } TestSystem::instance().warmupComplete()