#include "precomp.hpp" #define MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES 0 static cvflann::IndexParams& get_params(const cv::flann::IndexParams& p) { return *(cvflann::IndexParams*)(p.params); } cv::flann::IndexParams::~IndexParams() { delete &get_params(*this); } namespace cv { namespace flann { using namespace cvflann; IndexParams::IndexParams() { params = new ::cvflann::IndexParams(); } template T getParam(const IndexParams& _p, const std::string& key, const T& defaultVal=T()) { ::cvflann::IndexParams& p = get_params(_p); ::cvflann::IndexParams::const_iterator it = p.find(key); if( it == p.end() ) return defaultVal; return it->second.cast(); } template void setParam(IndexParams& _p, const std::string& key, const T& value) { ::cvflann::IndexParams& p = get_params(_p); p[key] = value; } std::string IndexParams::getString(const std::string& key, const std::string& defaultVal) const { return getParam(*this, key, defaultVal); } int IndexParams::getInt(const std::string& key, int defaultVal) const { return getParam(*this, key, defaultVal); } double IndexParams::getDouble(const std::string& key, double defaultVal) const { return getParam(*this, key, defaultVal); } void IndexParams::setString(const std::string& key, const std::string& value) { setParam(*this, key, value); } void IndexParams::setInt(const std::string& key, int value) { setParam(*this, key, value); } void IndexParams::setDouble(const std::string& key, double value) { setParam(*this, key, value); } void IndexParams::setFloat(const std::string& key, float value) { setParam(*this, key, value); } void IndexParams::setBool(const std::string& key, bool value) { setParam(*this, key, value); } void IndexParams::setAlgorithm(int value) { setParam(*this, "algorithm", (cvflann::flann_algorithm_t)value); } void IndexParams::getAll(std::vector& names, std::vector& types, std::vector& strValues, std::vector& numValues) const { names.clear(); types.clear(); strValues.clear(); numValues.clear(); ::cvflann::IndexParams& p = get_params(*this); ::cvflann::IndexParams::const_iterator it = p.begin(), it_end = p.end(); for( ; it != it_end; ++it ) { names.push_back(it->first); try { std::string val = it->second.cast(); types.push_back(CV_USRTYPE1); strValues.push_back(val); numValues.push_back(-1); continue; } catch (...) {} strValues.push_back(it->second.type().name()); try { double val = it->second.cast(); types.push_back( CV_64F ); numValues.push_back(val); continue; } catch (...) {} try { float val = it->second.cast(); types.push_back( CV_32F ); numValues.push_back(val); continue; } catch (...) {} try { int val = it->second.cast(); types.push_back( CV_32S ); numValues.push_back(val); continue; } catch (...) {} try { short val = it->second.cast(); types.push_back( CV_16S ); numValues.push_back(val); continue; } catch (...) {} try { ushort val = it->second.cast(); types.push_back( CV_16U ); numValues.push_back(val); continue; } catch (...) {} try { char val = it->second.cast(); types.push_back( CV_8S ); numValues.push_back(val); continue; } catch (...) {} try { uchar val = it->second.cast(); types.push_back( CV_8U ); numValues.push_back(val); continue; } catch (...) {} try { bool val = it->second.cast(); types.push_back( CV_MAKETYPE(CV_USRTYPE1,2) ); numValues.push_back(val); continue; } catch (...) {} try { cvflann::flann_algorithm_t val = it->second.cast(); types.push_back( CV_MAKETYPE(CV_USRTYPE1,3) ); numValues.push_back(val); continue; } catch (...) {} types.push_back(-1); // unknown type numValues.push_back(-1); } } KDTreeIndexParams::KDTreeIndexParams(int trees) { ::cvflann::IndexParams& p = get_params(*this); p["algorithm"] = FLANN_INDEX_KDTREE; p["trees"] = trees; } LinearIndexParams::LinearIndexParams() { ::cvflann::IndexParams& p = get_params(*this); p["algorithm"] = FLANN_INDEX_LINEAR; } CompositeIndexParams::CompositeIndexParams(int trees, int branching, int iterations, flann_centers_init_t centers_init, float cb_index ) { ::cvflann::IndexParams& p = get_params(*this); p["algorithm"] = FLANN_INDEX_KMEANS; // number of randomized trees to use (for kdtree) p["trees"] = trees; // branching factor p["branching"] = branching; // max iterations to perform in one kmeans clustering (kmeans tree) p["iterations"] = iterations; // algorithm used for picking the initial cluster centers for kmeans tree p["centers_init"] = centers_init; // cluster boundary index. Used when searching the kmeans tree p["cb_index"] = cb_index; } AutotunedIndexParams::AutotunedIndexParams(float target_precision, float build_weight, float memory_weight, float sample_fraction) { ::cvflann::IndexParams& p = get_params(*this); p["algorithm"] = FLANN_INDEX_AUTOTUNED; // precision desired (used for autotuning, -1 otherwise) p["target_precision"] = target_precision; // build tree time weighting factor p["build_weight"] = build_weight; // index memory weighting factor p["memory_weight"] = memory_weight; // what fraction of the dataset to use for autotuning p["sample_fraction"] = sample_fraction; } KMeansIndexParams::KMeansIndexParams(int branching, int iterations, flann_centers_init_t centers_init, float cb_index ) { ::cvflann::IndexParams& p = get_params(*this); p["algorithm"] = FLANN_INDEX_KMEANS; // branching factor p["branching"] = branching; // max iterations to perform in one kmeans clustering (kmeans tree) p["iterations"] = iterations; // algorithm used for picking the initial cluster centers for kmeans tree p["centers_init"] = centers_init; // cluster boundary index. Used when searching the kmeans tree p["cb_index"] = cb_index; } LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level) { ::cvflann::IndexParams& p = get_params(*this); p["algorithm"] = FLANN_INDEX_LSH; // The number of hash tables to use p["table_number"] = (unsigned)table_number; // The length of the key in the hash tables p["key_size"] = (unsigned)key_size; // Number of levels to use in multi-probe (0 for standard LSH) p["multi_probe_level"] = (unsigned)multi_probe_level; } SavedIndexParams::SavedIndexParams(const std::string& _filename) { std::string filename = _filename; ::cvflann::IndexParams& p = get_params(*this); p["algorithm"] = FLANN_INDEX_SAVED; p["filename"] = filename; } SearchParams::SearchParams( int checks, float eps, bool sorted ) { ::cvflann::IndexParams& p = get_params(*this); // how many leafs to visit when searching for neighbours (-1 for unlimited) p["checks"] = checks; // search for eps-approximate neighbours (default: 0) p["eps"] = eps; // only for radius search, require neighbours sorted by distance (default: true) p["sorted"] = sorted; } template void buildIndex_(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance()) { typedef typename Distance::ElementType ElementType; if(DataType::type != data.type()) CV_Error_(CV_StsUnsupportedFormat, ("type=%d\n", data.type())); if(!data.isContinuous()) CV_Error(CV_StsBadArg, "Only continuous arrays are supported"); ::cvflann::Matrix dataset((ElementType*)data.data, data.rows, data.cols); IndexType* _index = new IndexType(dataset, get_params(params), dist); _index->buildIndex(); index = _index; } template void buildIndex(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance()) { buildIndex_ >(index, data, params, dist); } #if CV_NEON typedef ::cvflann::Hamming HammingDistance; #else typedef ::cvflann::HammingLUT HammingDistance; #endif typedef ::cvflann::LshIndex LshIndex; Index::Index() { index = 0; featureType = CV_32F; algo = FLANN_INDEX_LINEAR; distType = FLANN_DIST_L2; } Index::Index(InputArray _data, const IndexParams& params, flann_distance_t _distType) { index = 0; featureType = CV_32F; algo = FLANN_INDEX_LINEAR; distType = FLANN_DIST_L2; build(_data, params, _distType); } void Index::build(InputArray _data, const IndexParams& params, flann_distance_t _distType) { release(); algo = getParam(params, "algorithm", FLANN_INDEX_LINEAR); if( algo == FLANN_INDEX_SAVED ) { load(_data, getParam(params, "filename", std::string())); return; } Mat data = _data.getMat(); index = 0; featureType = data.type(); distType = _distType; if( algo == FLANN_INDEX_LSH ) { buildIndex_(index, data, params); return; } switch( distType ) { case FLANN_DIST_L2: buildIndex< ::cvflann::L2 >(index, data, params); break; case FLANN_DIST_L1: buildIndex< ::cvflann::L1 >(index, data, params); break; #if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES case FLANN_DIST_MAX: buildIndex< ::cvflann::MaxDistance >(index, data, params); break; case FLANN_DIST_HIST_INTERSECT: buildIndex< ::cvflann::HistIntersectionDistance >(index, data, params); break; case FLANN_DIST_HELLINGER: buildIndex< ::cvflann::HellingerDistance >(index, data, params); break; case FLANN_DIST_CHI_SQUARE: buildIndex< ::cvflann::ChiSquareDistance >(index, data, params); break; case FLANN_DIST_KL: buildIndex< ::cvflann::KL_Divergence >(index, data, params); break; #endif default: CV_Error(CV_StsBadArg, "Unknown/unsupported distance type"); } } template void deleteIndex_(void* index) { delete (IndexType*)index; } template void deleteIndex(void* index) { deleteIndex_< ::cvflann::Index >(index); } Index::~Index() { release(); } void Index::release() { if( !index ) return; if( algo == FLANN_INDEX_LSH ) { deleteIndex_(index); } else { CV_Assert( featureType == CV_32F ); switch( distType ) { case FLANN_DIST_L2: deleteIndex< ::cvflann::L2 >(index); break; case FLANN_DIST_L1: deleteIndex< ::cvflann::L1 >(index); break; #if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES case FLANN_DIST_MAX: deleteIndex< ::cvflann::MaxDistance >(index); break; case FLANN_DIST_HIST_INTERSECT: deleteIndex< ::cvflann::HistIntersectionDistance >(index); break; case FLANN_DIST_HELLINGER: deleteIndex< ::cvflann::HellingerDistance >(index); break; case FLANN_DIST_CHI_SQUARE: deleteIndex< ::cvflann::ChiSquareDistance >(index); break; case FLANN_DIST_KL: deleteIndex< ::cvflann::KL_Divergence >(index); break; #endif default: CV_Error(CV_StsBadArg, "Unknown/unsupported distance type"); } } index = 0; } template void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists, int knn, const SearchParams& params) { typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; int type = DataType::type; int dtype = DataType::type; CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype); CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous()); ::cvflann::Matrix _query((ElementType*)query.data, query.rows, query.cols); ::cvflann::Matrix _indices((int*)indices.data, indices.rows, indices.cols); ::cvflann::Matrix _dists((DistanceType*)dists.data, dists.rows, dists.cols); ((IndexType*)index)->knnSearch(_query, _indices, _dists, knn, (const ::cvflann::SearchParams&)get_params(params)); } template void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists, int knn, const SearchParams& params) { runKnnSearch_ >(index, query, indices, dists, knn, params); } template int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists, double radius, const SearchParams& params) { typedef typename Distance::ElementType ElementType; typedef typename Distance::ResultType DistanceType; int type = DataType::type; int dtype = DataType::type; CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype); CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous()); ::cvflann::Matrix _query((ElementType*)query.data, query.rows, query.cols); ::cvflann::Matrix _indices((int*)indices.data, indices.rows, indices.cols); ::cvflann::Matrix _dists((DistanceType*)dists.data, dists.rows, dists.cols); return ((IndexType*)index)->radiusSearch(_query, _indices, _dists, saturate_cast(radius), (const ::cvflann::SearchParams&)get_params(params)); } template int runRadiusSearch(void* index, const Mat& query, Mat& indices, Mat& dists, double radius, const SearchParams& params) { return runRadiusSearch_ >(index, query, indices, dists, radius, params); } static void createIndicesDists(OutputArray _indices, OutputArray _dists, Mat& indices, Mat& dists, int rows, int minCols, int maxCols, int dtype) { if( _indices.needed() ) { indices = _indices.getMat(); if( !indices.isContinuous() || indices.type() != CV_32S || indices.rows != rows || indices.cols < minCols || indices.cols > maxCols ) { if( !indices.isContinuous() ) _indices.release(); _indices.create( rows, minCols, CV_32S ); indices = _indices.getMat(); } } else indices.create( rows, minCols, CV_32S ); if( _dists.needed() ) { dists = _dists.getMat(); if( !dists.isContinuous() || dists.type() != dtype || dists.rows != rows || dists.cols < minCols || dists.cols > maxCols ) { if( !indices.isContinuous() ) _dists.release(); _dists.create( rows, minCols, dtype ); dists = _dists.getMat(); } } else dists.create( rows, minCols, dtype ); } void Index::knnSearch(InputArray _query, OutputArray _indices, OutputArray _dists, int knn, const SearchParams& params) { Mat query = _query.getMat(), indices, dists; int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F; createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype ); if( algo == FLANN_INDEX_LSH ) { runKnnSearch_(index, query, indices, dists, knn, params); return; } switch( distType ) { case FLANN_DIST_L2: runKnnSearch< ::cvflann::L2 >(index, query, indices, dists, knn, params); break; case FLANN_DIST_L1: runKnnSearch< ::cvflann::L1 >(index, query, indices, dists, knn, params); break; #if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES case FLANN_DIST_MAX: runKnnSearch< ::cvflann::MaxDistance >(index, query, indices, dists, knn, params); break; case FLANN_DIST_HIST_INTERSECT: runKnnSearch< ::cvflann::HistIntersectionDistance >(index, query, indices, dists, knn, params); break; case FLANN_DIST_HELLINGER: runKnnSearch< ::cvflann::HellingerDistance >(index, query, indices, dists, knn, params); break; case FLANN_DIST_CHI_SQUARE: runKnnSearch< ::cvflann::ChiSquareDistance >(index, query, indices, dists, knn, params); break; case FLANN_DIST_KL: runKnnSearch< ::cvflann::KL_Divergence >(index, query, indices, dists, knn, params); break; #endif default: CV_Error(CV_StsBadArg, "Unknown/unsupported distance type"); } } int Index::radiusSearch(InputArray _query, OutputArray _indices, OutputArray _dists, double radius, int maxResults, const SearchParams& params) { Mat query = _query.getMat(), indices, dists; int dtype = algo == FLANN_INDEX_LSH ? CV_32S : CV_32F; CV_Assert( maxResults > 0 ); createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype ); if( algo == FLANN_INDEX_LSH ) CV_Error( CV_StsNotImplemented, "LSH index does not support radiusSearch operation" ); switch( distType ) { case FLANN_DIST_L2: return runRadiusSearch< ::cvflann::L2 >(index, query, indices, dists, radius, params); case FLANN_DIST_L1: return runRadiusSearch< ::cvflann::L1 >(index, query, indices, dists, radius, params); #if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES case FLANN_DIST_MAX: return runRadiusSearch< ::cvflann::MaxDistance >(index, query, indices, dists, radius, params); case FLANN_DIST_HIST_INTERSECT: return runRadiusSearch< ::cvflann::HistIntersectionDistance >(index, query, indices, dists, radius, params); case FLANN_DIST_HELLINGER: return runRadiusSearch< ::cvflann::HellingerDistance >(index, query, indices, dists, radius, params); case FLANN_DIST_CHI_SQUARE: return runRadiusSearch< ::cvflann::ChiSquareDistance >(index, query, indices, dists, radius, params); case FLANN_DIST_KL: return runRadiusSearch< ::cvflann::KL_Divergence >(index, query, indices, dists, radius, params); #endif default: CV_Error(CV_StsBadArg, "Unknown/unsupported distance type"); } return -1; } flann_distance_t Index::getDistance() const { return distType; } flann_algorithm_t Index::getAlgorithm() const { return algo; } template void saveIndex_(const Index* index0, const void* index, FILE* fout) { IndexType* _index = (IndexType*)index; ::cvflann::save_header(fout, *_index); // some compilers may store short enumerations as bytes, // so make sure we always write integers (which are 4-byte values in any modern C compiler) int idistType = (int)index0->getDistance(); ::cvflann::save_value(fout, idistType); _index->saveIndex(fout); } template void saveIndex(const Index* index0, const void* index, FILE* fout) { saveIndex_< ::cvflann::Index >(index0, index, fout); } void Index::save(const std::string& filename) const { FILE* fout = fopen(filename.c_str(), "wb"); if (fout == NULL) CV_Error_( CV_StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) ); if( algo == FLANN_INDEX_LSH ) { saveIndex_(this, index, fout); fclose(fout); return; } switch( distType ) { case FLANN_DIST_L2: saveIndex< ::cvflann::L2 >(this, index, fout); break; case FLANN_DIST_L1: saveIndex< ::cvflann::L1 >(this, index, fout); break; #if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES case FLANN_DIST_MAX: saveIndex< ::cvflann::MaxDistance >(this, index, fout); break; case FLANN_DIST_HIST_INTERSECT: saveIndex< ::cvflann::HistIntersectionDistance >(this, index, fout); break; case FLANN_DIST_HELLINGER: saveIndex< ::cvflann::HellingerDistance >(this, index, fout); break; case FLANN_DIST_CHI_SQUARE: saveIndex< ::cvflann::ChiSquareDistance >(this, index, fout); break; case FLANN_DIST_KL: saveIndex< ::cvflann::KL_Divergence >(this, index, fout); break; #endif default: fclose(fout); fout = 0; CV_Error(CV_StsBadArg, "Unknown/unsupported distance type"); } if( fout ) fclose(fout); } template bool loadIndex_(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance()) { typedef typename Distance::ElementType ElementType; CV_Assert(DataType::type == data.type() && data.isContinuous()); ::cvflann::Matrix dataset((ElementType*)data.data, data.rows, data.cols); ::cvflann::IndexParams params; params["algorithm"] = index0->getAlgorithm(); IndexType* _index = new IndexType(dataset, params, dist); _index->loadIndex(fin); index = _index; return true; } template bool loadIndex(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance()) { return loadIndex_ >(index0, index, data, fin, dist); } bool Index::load(InputArray _data, const std::string& filename) { Mat data = _data.getMat(); bool ok = true; release(); FILE* fin = fopen(filename.c_str(), "rb"); if (fin == NULL) return false; ::cvflann::IndexHeader header = ::cvflann::load_header(fin); algo = header.index_type; featureType = header.data_type == FLANN_UINT8 ? CV_8U : header.data_type == FLANN_INT8 ? CV_8S : header.data_type == FLANN_UINT16 ? CV_16U : header.data_type == FLANN_INT16 ? CV_16S : header.data_type == FLANN_INT32 ? CV_32S : header.data_type == FLANN_FLOAT32 ? CV_32F : header.data_type == FLANN_FLOAT64 ? CV_64F : -1; if( (int)header.rows != data.rows || (int)header.cols != data.cols || featureType != data.type() ) { fprintf(stderr, "Reading FLANN index error: the saved data size (%d, %d) or type (%d) is different from the passed one (%d, %d), %d\n", (int)header.rows, (int)header.cols, featureType, data.rows, data.cols, data.type()); fclose(fin); return false; } if( !((algo == FLANN_INDEX_LSH && featureType == CV_8U) || (algo != FLANN_INDEX_LSH && featureType == CV_32F)) ) { fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo); fclose(fin); return false; } int idistType = 0; ::cvflann::load_value(fin, idistType); distType = (flann_distance_t)idistType; if( algo == FLANN_INDEX_LSH ) { loadIndex_(this, index, data, fin); } else { switch( distType ) { case FLANN_DIST_L2: loadIndex< ::cvflann::L2 >(this, index, data, fin); break; case FLANN_DIST_L1: loadIndex< ::cvflann::L1 >(this, index, data, fin); break; #if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES case FLANN_DIST_MAX: loadIndex< ::cvflann::MaxDistance >(this, index, data, fin); break; case FLANN_DIST_HIST_INTERSECT: loadIndex< ::cvflann::HistIntersectionDistance >(index, data, fin); break; case FLANN_DIST_HELLINGER: loadIndex< ::cvflann::HellingerDistance >(this, index, data, fin); break; case FLANN_DIST_CHI_SQUARE: loadIndex< ::cvflann::ChiSquareDistance >(this, index, data, fin); break; case FLANN_DIST_KL: loadIndex< ::cvflann::KL_Divergence >(this, index, data, fin); break; #endif default: fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType); ok = false; } } if( fin ) fclose(fin); return ok; } } }