#include #include "opencv2/imgproc.hpp" #include "opencv2/imgcodecs.hpp" #include "opencv2/highgui.hpp" #include #include using namespace cv; using namespace std; static void help() { cout << "\nThis program demonstrates the famous watershed segmentation algorithm in OpenCV: watershed()\n" "Usage:\n" "./watershed [image_name -- default is fruits.jpg]\n" << endl; cout << "Hot keys: \n" "\tESC - quit the program\n" "\tr - restore the original image\n" "\tw or SPACE - run watershed segmentation algorithm\n" "\t\t(before running it, *roughly* mark the areas to segment on the image)\n" "\t (before that, roughly outline several markers on the image)\n"; } Mat markerMask, img; Point prevPt(-1, -1); static void onMouse( int event, int x, int y, int flags, void* ) { if( x < 0 || x >= img.cols || y < 0 || y >= img.rows ) return; if( event == EVENT_LBUTTONUP || !(flags & EVENT_FLAG_LBUTTON) ) prevPt = Point(-1,-1); else if( event == EVENT_LBUTTONDOWN ) prevPt = Point(x,y); else if( event == EVENT_MOUSEMOVE && (flags & EVENT_FLAG_LBUTTON) ) { Point pt(x, y); if( prevPt.x < 0 ) prevPt = pt; line( markerMask, prevPt, pt, Scalar::all(255), 5, 8, 0 ); line( img, prevPt, pt, Scalar::all(255), 5, 8, 0 ); prevPt = pt; imshow("image", img); } } int main( int argc, char** argv ) { cv::CommandLineParser parser(argc, argv, "{help h | | }{ @input | fruits.jpg | }"); if (parser.has("help")) { help(); return 0; } string filename = samples::findFile(parser.get("@input")); Mat img0 = imread(filename, 1), imgGray; if( img0.empty() ) { cout << "Couldn't open image " << filename << ". Usage: watershed \n"; return 0; } help(); namedWindow( "image", 1 ); img0.copyTo(img); cvtColor(img, markerMask, COLOR_BGR2GRAY); cvtColor(markerMask, imgGray, COLOR_GRAY2BGR); markerMask = Scalar::all(0); imshow( "image", img ); setMouseCallback( "image", onMouse, 0 ); for(;;) { char c = (char)waitKey(0); if( c == 27 ) break; if( c == 'r' ) { markerMask = Scalar::all(0); img0.copyTo(img); imshow( "image", img ); } if( c == 'w' || c == ' ' ) { int i, j, compCount = 0; vector > contours; vector hierarchy; findContours(markerMask, contours, hierarchy, RETR_CCOMP, CHAIN_APPROX_SIMPLE); if( contours.empty() ) continue; Mat markers(markerMask.size(), CV_32S); markers = Scalar::all(0); int idx = 0; for( ; idx >= 0; idx = hierarchy[idx][0], compCount++ ) drawContours(markers, contours, idx, Scalar::all(compCount+1), -1, 8, hierarchy, INT_MAX); if( compCount == 0 ) continue; vector colorTab; for( i = 0; i < compCount; i++ ) { int b = theRNG().uniform(0, 255); int g = theRNG().uniform(0, 255); int r = theRNG().uniform(0, 255); colorTab.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r)); } double t = (double)getTickCount(); watershed( img0, markers ); t = (double)getTickCount() - t; printf( "execution time = %gms\n", t*1000./getTickFrequency() ); Mat wshed(markers.size(), CV_8UC3); // paint the watershed image for( i = 0; i < markers.rows; i++ ) for( j = 0; j < markers.cols; j++ ) { int index = markers.at(i,j); if( index == -1 ) wshed.at(i,j) = Vec3b(255,255,255); else if( index <= 0 || index > compCount ) wshed.at(i,j) = Vec3b(0,0,0); else wshed.at(i,j) = colorTab[index - 1]; } wshed = wshed*0.5 + imgGray*0.5; imshow( "watershed transform", wshed ); } } return 0; }