#include "opencv2/objdetect.hpp" #include "opencv2/highgui.hpp" #include "opencv2/imgproc.hpp" #include using namespace std; using namespace cv; static void help() { cout << "\nThis program demonstrates the smile detector.\n" "Usage:\n" "./smiledetect [--cascade= this is the frontal face classifier]\n" " [--smile-cascade=[]]\n" " [--scale=]\n" " [--try-flip]\n" " [video_filename|camera_index]\n\n" "Example:\n" "./smiledetect --cascade=\"data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n" "During execution:\n\tHit any key to quit.\n" "\tUsing OpenCV version " << CV_VERSION << "\n" << endl; } void detectAndDraw( Mat& img, CascadeClassifier& cascade, CascadeClassifier& nestedCascade, double scale, bool tryflip ); string cascadeName; string nestedCascadeName; int main( int argc, const char** argv ) { VideoCapture capture; Mat frame, image; string inputName; bool tryflip; help(); CascadeClassifier cascade, nestedCascade; double scale; cv::CommandLineParser parser(argc, argv, "{help h||}{scale|1|}" "{cascade|data/haarcascades/haarcascade_frontalface_alt.xml|}" "{smile-cascade|data/haarcascades/haarcascade_smile.xml|}" "{try-flip||}{@input||}"); if (parser.has("help")) { help(); return 0; } cascadeName = samples::findFile(parser.get("cascade")); nestedCascadeName = samples::findFile(parser.get("smile-cascade")); tryflip = parser.has("try-flip"); inputName = parser.get("@input"); scale = parser.get("scale"); if (!parser.check()) { help(); return 1; } if (scale < 1) scale = 1; if( !cascade.load( cascadeName ) ) { cerr << "ERROR: Could not load face cascade" << endl; help(); return -1; } if( !nestedCascade.load( nestedCascadeName ) ) { cerr << "ERROR: Could not load smile cascade" << endl; help(); return -1; } if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) ) { int c = inputName.empty() ? 0 : inputName[0] - '0' ; if(!capture.open(c)) cout << "Capture from camera #" << c << " didn't work" << endl; } else if( inputName.size() ) { inputName = samples::findFileOrKeep(inputName); if(!capture.open( inputName )) cout << "Could not read " << inputName << endl; } if( capture.isOpened() ) { cout << "Video capturing has been started ..." << endl; cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl; for(;;) { capture >> frame; if( frame.empty() ) break; Mat frame1 = frame.clone(); detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip ); char c = (char)waitKey(10); if( c == 27 || c == 'q' || c == 'Q' ) break; } } else { cerr << "ERROR: Could not initiate capture" << endl; help(); return -1; } return 0; } void detectAndDraw( Mat& img, CascadeClassifier& cascade, CascadeClassifier& nestedCascade, double scale, bool tryflip) { vector faces, faces2; const static Scalar colors[] = { Scalar(255,0,0), Scalar(255,128,0), Scalar(255,255,0), Scalar(0,255,0), Scalar(0,128,255), Scalar(0,255,255), Scalar(0,0,255), Scalar(255,0,255) }; Mat gray, smallImg; cvtColor( img, gray, COLOR_BGR2GRAY ); double fx = 1 / scale; resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR_EXACT ); equalizeHist( smallImg, smallImg ); cascade.detectMultiScale( smallImg, faces, 1.1, 2, 0 //|CASCADE_FIND_BIGGEST_OBJECT //|CASCADE_DO_ROUGH_SEARCH |CASCADE_SCALE_IMAGE, Size(30, 30) ); if( tryflip ) { flip(smallImg, smallImg, 1); cascade.detectMultiScale( smallImg, faces2, 1.1, 2, 0 //|CASCADE_FIND_BIGGEST_OBJECT //|CASCADE_DO_ROUGH_SEARCH |CASCADE_SCALE_IMAGE, Size(30, 30) ); for( vector::const_iterator r = faces2.begin(); r != faces2.end(); ++r ) { faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height)); } } for ( size_t i = 0; i < faces.size(); i++ ) { Rect r = faces[i]; Mat smallImgROI; vector nestedObjects; Point center; Scalar color = colors[i%8]; int radius; double aspect_ratio = (double)r.width/r.height; if( 0.75 < aspect_ratio && aspect_ratio < 1.3 ) { center.x = cvRound((r.x + r.width*0.5)*scale); center.y = cvRound((r.y + r.height*0.5)*scale); radius = cvRound((r.width + r.height)*0.25*scale); circle( img, center, radius, color, 3, 8, 0 ); } else rectangle( img, Point(cvRound(r.x*scale), cvRound(r.y*scale)), Point(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)), color, 3, 8, 0); const int half_height=cvRound((float)r.height/2); r.y=r.y + half_height; r.height = half_height-1; smallImgROI = smallImg( r ); nestedCascade.detectMultiScale( smallImgROI, nestedObjects, 1.1, 0, 0 //|CASCADE_FIND_BIGGEST_OBJECT //|CASCADE_DO_ROUGH_SEARCH //|CASCADE_DO_CANNY_PRUNING |CASCADE_SCALE_IMAGE, Size(30, 30) ); // The number of detected neighbors depends on image size (and also illumination, etc.). The // following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be //accurate only after a first smile has been displayed by the user. const int smile_neighbors = (int)nestedObjects.size(); static int max_neighbors=-1; static int min_neighbors=-1; if (min_neighbors == -1) min_neighbors = smile_neighbors; max_neighbors = MAX(max_neighbors, smile_neighbors); // Draw rectangle on the left side of the image reflecting smile intensity float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1); int rect_height = cvRound((float)img.rows * intensityZeroOne); Scalar col = Scalar((float)255 * intensityZeroOne, 0, 0); rectangle(img, Point(0, img.rows), Point(img.cols/10, img.rows - rect_height), col, -1); } imshow( "result", img ); }