#include "opencv2/core.hpp" #include "traincascade_features.h" #include "cascadeclassifier.h" using namespace std; float calcNormFactor( const Mat& sum, const Mat& sqSum ) { CV_DbgAssert( sum.cols > 3 && sqSum.rows > 3 ); Rect normrect( 1, 1, sum.cols - 3, sum.rows - 3 ); size_t p0, p1, p2, p3; CV_SUM_OFFSETS( p0, p1, p2, p3, normrect, sum.step1() ) double area = normrect.width * normrect.height; const int *sp = (const int*)sum.data; int valSum = sp[p0] - sp[p1] - sp[p2] + sp[p3]; const double *sqp = (const double *)sqSum.data; double valSqSum = sqp[p0] - sqp[p1] - sqp[p2] + sqp[p3]; return (float) sqrt( (double) (area * valSqSum - (double)valSum * valSum) ); } CvParams::CvParams() : name( "params" ) {} void CvParams::printDefaults() const { cout << "--" << name << "--" << endl; } void CvParams::printAttrs() const {} bool CvParams::scanAttr( const string, const string ) { return false; } //---------------------------- FeatureParams -------------------------------------- CvFeatureParams::CvFeatureParams() : maxCatCount( 0 ), featSize( 1 ) { name = CC_FEATURE_PARAMS; } void CvFeatureParams::init( const CvFeatureParams& fp ) { maxCatCount = fp.maxCatCount; featSize = fp.featSize; } void CvFeatureParams::write( FileStorage &fs ) const { fs << CC_MAX_CAT_COUNT << maxCatCount; fs << CC_FEATURE_SIZE << featSize; } bool CvFeatureParams::read( const FileNode &node ) { if ( node.empty() ) return false; maxCatCount = node[CC_MAX_CAT_COUNT]; featSize = node[CC_FEATURE_SIZE]; return ( maxCatCount >= 0 && featSize >= 1 ); } Ptr CvFeatureParams::create( int featureType ) { return featureType == HAAR ? Ptr(new CvHaarFeatureParams) : featureType == LBP ? Ptr(new CvLBPFeatureParams) : featureType == HOG ? Ptr(new CvHOGFeatureParams) : Ptr(); } //------------------------------------- FeatureEvaluator --------------------------------------- void CvFeatureEvaluator::init(const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ) { CV_Assert(_maxSampleCount > 0); featureParams = (CvFeatureParams *)_featureParams; winSize = _winSize; numFeatures = 0; cls.create( (int)_maxSampleCount, 1, CV_32FC1 ); generateFeatures(); } void CvFeatureEvaluator::setImage(const Mat &img, uchar clsLabel, int idx) { CV_Assert(img.cols == winSize.width); CV_Assert(img.rows == winSize.height); CV_Assert(idx < cls.rows); cls.ptr(idx)[0] = clsLabel; } Ptr CvFeatureEvaluator::create(int type) { return type == CvFeatureParams::HAAR ? Ptr(new CvHaarEvaluator) : type == CvFeatureParams::LBP ? Ptr(new CvLBPEvaluator) : type == CvFeatureParams::HOG ? Ptr(new CvHOGEvaluator) : Ptr(); }