/* This sample demonstrates the way you can perform independed tasks on the different GPUs */ // Disable some warnings which are caused with CUDA headers #if defined(_MSC_VER) #pragma warning(disable: 4201 4408 4100) #endif #include #include "opencv2/core/core.hpp" #include "opencv2/gpu/gpu.hpp" #if defined(__arm__) int main() { std::cout << "Unsupported for ARM CUDA library." << std::endl; return 0; } #else #include #include using namespace std; using namespace cv; using namespace cv::gpu; #define safeCall(expr) safeCall_(expr, #expr, __FILE__, __LINE__) inline void safeCall_(int code, const char* expr, const char* file, int line) { if (code != CUDA_SUCCESS) { std::cout << "CUDA driver API error: code " << code << ", expr " << expr << ", file " << file << ", line " << line << endl; exit(-1); } } struct Worker: public ParallelLoopBody { Worker(int num_devices) { count = num_devices; contexts = new CUcontext[num_devices]; for (int device_id = 0; device_id < num_devices; device_id++) { CUdevice device; safeCall(cuDeviceGet(&device, device_id)); safeCall(cuCtxCreate(&contexts[device_id], 0, device)); } } virtual void operator() (const Range& range) const { for (int device_id = range.start; device_id != range.end; ++device_id) { // Set the proper context safeCall(cuCtxPushCurrent(contexts[device_id])); Mat src(1000, 1000, CV_32F); Mat dst; RNG rng(0); rng.fill(src, RNG::UNIFORM, 0, 1); // CPU works transpose(src, dst); // GPU works GpuMat d_src(src); GpuMat d_dst; transpose(d_src, d_dst); // Check results bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3; std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): " << (passed ? "passed" : "FAILED") << endl; // Deallocate data here, otherwise deallocation will be performed // after context is extracted from the stack d_src.release(); d_dst.release(); CUcontext prev_context; safeCall(cuCtxPopCurrent(&prev_context)); } } ~Worker() { if ((contexts != NULL) && count != 0) { for (int device_id = 0; device_id < count; device_id++) { safeCall(cuCtxDestroy(contexts[device_id])); } delete[] contexts; } } CUcontext* contexts; int count; }; int main() { int num_devices = getCudaEnabledDeviceCount(); if (num_devices < 2) { std::cout << "Two or more GPUs are required\n"; return -1; } for (int i = 0; i < num_devices; ++i) { cv::gpu::printShortCudaDeviceInfo(i); DeviceInfo dev_info(i); if (!dev_info.isCompatible()) { std::cout << "GPU module isn't built for GPU #" << i << " (" << dev_info.name() << ", CC " << dev_info.majorVersion() << dev_info.minorVersion() << "\n"; return -1; } } // Init CUDA Driver API safeCall(cuInit(0)); // Execute calculation parallel_for_(cv::Range(0, num_devices), Worker(num_devices)); return 0; } #endif