import cv2 as cv import argparse import numpy as np from common import * backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV) targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD) parser = argparse.ArgumentParser(add_help=False) parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'), help='An optional path to file with preprocessing parameters.') parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.') parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'], help='Optional name of an origin framework of the model. ' 'Detect it automatically if it does not set.') parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int, help="Choose one of computation backends: " "%d: automatically (by default), " "%d: Halide language (http://halide-lang.org/), " "%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "%d: OpenCV implementation" % backends) parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int, help='Choose one of target computation devices: ' '%d: CPU target (by default), ' '%d: OpenCL, ' '%d: OpenCL fp16 (half-float precision), ' '%d: VPU' % targets) args, _ = parser.parse_known_args() add_preproc_args(args.zoo, parser, 'classification') parser = argparse.ArgumentParser(parents=[parser], description='Use this script to run classification deep learning networks using OpenCV.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) args = parser.parse_args() args.model = findFile(args.model) args.config = findFile(args.config) args.classes = findFile(args.classes) # Load names of classes classes = None if args.classes: with open(args.classes, 'rt') as f: classes = f.read().rstrip('\n').split('\n') # Load a network net = cv.dnn.readNet(args.model, args.config, args.framework) net.setPreferableBackend(args.backend) net.setPreferableTarget(args.target) winName = 'Deep learning image classification in OpenCV' cv.namedWindow(winName, cv.WINDOW_NORMAL) cap = cv.VideoCapture(args.input if args.input else 0) while cv.waitKey(1) < 0: hasFrame, frame = cap.read() if not hasFrame: cv.waitKey() break # Create a 4D blob from a frame. inpWidth = args.width if args.width else frame.shape[1] inpHeight = args.height if args.height else frame.shape[0] blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False) # Run a model net.setInput(blob) out = net.forward() # Get a class with a highest score. out = out.flatten() classId = np.argmax(out) confidence = out[classId] # Put efficiency information. t, _ = net.getPerfProfile() label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency()) cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) # Print predicted class. label = '%s: %.4f' % (classes[classId] if classes else 'Class #%d' % classId, confidence) cv.putText(frame, label, (0, 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0)) cv.imshow(winName, frame)