""" DaSiamRPN tracker. Original paper: https://arxiv.org/abs/1808.06048 Link to original repo: https://github.com/foolwood/DaSiamRPN Links to onnx models: network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0 kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0 kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0 """ import numpy as np import cv2 as cv import argparse import sys class DaSiamRPNTracker: #initialization of used values, initial bounding box, used network def __init__(self, im, target_pos, target_sz, net, kernel_r1, kernel_cls1): self.windowing = "cosine" self.exemplar_size = 127 self.instance_size = 271 self.total_stride = 8 self.score_size = (self.instance_size - self.exemplar_size) // self.total_stride + 1 self.context_amount = 0.5 self.ratios = [0.33, 0.5, 1, 2, 3] self.scales = [8, ] self.anchor_num = len(self.ratios) * len(self.scales) self.penalty_k = 0.055 self.window_influence = 0.42 self.lr = 0.295 self.im_h = im.shape[0] self.im_w = im.shape[1] self.target_pos = target_pos self.target_sz = target_sz self.avg_chans = np.mean(im, axis=(0, 1)) self.net = net self.score = [] if ((self.target_sz[0] * self.target_sz[1]) / float(self.im_h * self.im_w)) < 0.004: raise AssertionError("Initializing BB is too small-try to restart tracker with larger BB") self.anchor = self.__generate_anchor() wc_z = self.target_sz[0] + self.context_amount * sum(self.target_sz) hc_z = self.target_sz[1] + self.context_amount * sum(self.target_sz) s_z = round(np.sqrt(wc_z * hc_z)) z_crop = self.__get_subwindow_tracking(im, self.exemplar_size, s_z) z_crop = z_crop.transpose(2, 0, 1).reshape(1, 3, 127, 127).astype(np.float32) self.net.setInput(z_crop) z_f = self.net.forward('63') kernel_r1.setInput(z_f) r1 = kernel_r1.forward() kernel_cls1.setInput(z_f) cls1 = kernel_cls1.forward() r1 = r1.reshape(20, 256, 4, 4) cls1 = cls1.reshape(10, 256 , 4, 4) self.net.setParam(self.net.getLayerId('65'), 0, r1) self.net.setParam(self.net.getLayerId('68'), 0, cls1) if self.windowing == "cosine": self.window = np.outer(np.hanning(self.score_size), np.hanning(self.score_size)) elif self.windowing == "uniform": self.window = np.ones((self.score_size, self.score_size)) self.window = np.tile(self.window.flatten(), self.anchor_num) #creating anchor for tracking bounding box def __generate_anchor(self): self.anchor = np.zeros((self.anchor_num, 4), dtype = np.float32) size = self.total_stride * self.total_stride count = 0 for ratio in self.ratios: ws = int(np.sqrt(size / ratio)) hs = int(ws * ratio) for scale in self.scales: wws = ws * scale hhs = hs * scale self.anchor[count] = [0, 0, wws, hhs] count += 1 score_sz = int(self.score_size) self.anchor = np.tile(self.anchor, score_sz * score_sz).reshape((-1, 4)) ori = - (score_sz / 2) * self.total_stride xx, yy = np.meshgrid([ori + self.total_stride * dx for dx in range(score_sz)], [ori + self.total_stride * dy for dy in range(score_sz)]) xx, yy = np.tile(xx.flatten(), (self.anchor_num, 1)).flatten(), np.tile(yy.flatten(), (self.anchor_num, 1)).flatten() self.anchor[:, 0], self.anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32) return self.anchor #track function def track(self, im): wc_z = self.target_sz[1] + self.context_amount * sum(self.target_sz) hc_z = self.target_sz[0] + self.context_amount * sum(self.target_sz) s_z = np.sqrt(wc_z * hc_z) scale_z = self.exemplar_size / s_z d_search = (self.instance_size - self.exemplar_size) / 2 pad = d_search / scale_z s_x = round(s_z + 2 * pad) #region preprocessing x_crop = self.__get_subwindow_tracking(im, self.instance_size, s_x) x_crop = x_crop.transpose(2, 0, 1).reshape(1, 3, 271, 271).astype(np.float32) self.score = self.__tracker_eval(x_crop, scale_z) self.target_pos[0] = max(0, min(self.im_w, self.target_pos[0])) self.target_pos[1] = max(0, min(self.im_h, self.target_pos[1])) self.target_sz[0] = max(10, min(self.im_w, self.target_sz[0])) self.target_sz[1] = max(10, min(self.im_h, self.target_sz[1])) #update bounding box position def __tracker_eval(self, x_crop, scale_z): target_size = self.target_sz * scale_z self.net.setInput(x_crop) outNames = self.net.getUnconnectedOutLayersNames() outNames = ['66', '68'] delta, score = self.net.forward(outNames) delta = np.transpose(delta, (1, 2, 3, 0)) delta = np.ascontiguousarray(delta, dtype = np.float32) delta = np.reshape(delta, (4, -1)) score = np.transpose(score, (1, 2, 3, 0)) score = np.ascontiguousarray(score, dtype = np.float32) score = np.reshape(score, (2, -1)) score = self.__softmax(score)[1, :] delta[0, :] = delta[0, :] * self.anchor[:, 2] + self.anchor[:, 0] delta[1, :] = delta[1, :] * self.anchor[:, 3] + self.anchor[:, 1] delta[2, :] = np.exp(delta[2, :]) * self.anchor[:, 2] delta[3, :] = np.exp(delta[3, :]) * self.anchor[:, 3] def __change(r): return np.maximum(r, 1./r) def __sz(w, h): pad = (w + h) * 0.5 sz2 = (w + pad) * (h + pad) return np.sqrt(sz2) def __sz_wh(wh): pad = (wh[0] + wh[1]) * 0.5 sz2 = (wh[0] + pad) * (wh[1] + pad) return np.sqrt(sz2) s_c = __change(__sz(delta[2, :], delta[3, :]) / (__sz_wh(target_size))) r_c = __change((target_size[0] / target_size[1]) / (delta[2, :] / delta[3, :])) penalty = np.exp(-(r_c * s_c - 1.) * self.penalty_k) pscore = penalty * score pscore = pscore * (1 - self.window_influence) + self.window * self.window_influence best_pscore_id = np.argmax(pscore) target = delta[:, best_pscore_id] / scale_z target_size /= scale_z lr = penalty[best_pscore_id] * score[best_pscore_id] * self.lr res_x = target[0] + self.target_pos[0] res_y = target[1] + self.target_pos[1] res_w = target_size[0] * (1 - lr) + target[2] * lr res_h = target_size[1] * (1 - lr) + target[3] * lr self.target_pos = np.array([res_x, res_y]) self.target_sz = np.array([res_w, res_h]) return score[best_pscore_id] def __softmax(self, x): x_max = x.max(0) e_x = np.exp(x - x_max) y = e_x / e_x.sum(axis = 0) return y #evaluations with cropped image def __get_subwindow_tracking(self, im, model_size, original_sz): im_sz = im.shape c = (original_sz + 1) / 2 context_xmin = round(self.target_pos[0] - c) context_xmax = context_xmin + original_sz - 1 context_ymin = round(self.target_pos[1] - c) context_ymax = context_ymin + original_sz - 1 left_pad = int(max(0., -context_xmin)) top_pad = int(max(0., -context_ymin)) right_pad = int(max(0., context_xmax - im_sz[1] + 1)) bottom_pad = int(max(0., context_ymax - im_sz[0] + 1)) context_xmin += left_pad context_xmax += left_pad context_ymin += top_pad context_ymax += top_pad r, c, k = im.shape if any([top_pad, bottom_pad, left_pad, right_pad]): te_im = np.zeros((r + top_pad + bottom_pad, c + left_pad + right_pad, k), np.uint8) te_im[top_pad:top_pad + r, left_pad:left_pad + c, :] = im if top_pad: te_im[0:top_pad, left_pad:left_pad + c, :] = self.avg_chans if bottom_pad: te_im[r + top_pad:, left_pad:left_pad + c, :] = self.avg_chans if left_pad: te_im[:, 0:left_pad, :] = self.avg_chans if right_pad: te_im[:, c + left_pad:, :] = self.avg_chans im_patch_original = te_im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :] else: im_patch_original = im[int(context_ymin):int(context_ymax + 1), int(context_xmin):int(context_xmax + 1), :] if not np.array_equal(model_size, original_sz): im_patch_original = cv.resize(im_patch_original, (model_size, model_size)) return im_patch_original #function for reading paths, bounding box drawing, showing results def main(): parser = argparse.ArgumentParser(description="Run tracker") parser.add_argument("--net", type=str, default="dasiamrpn_model.onnx", help="Full path to onnx model of net") parser.add_argument("--kernel_r1", type=str, default="dasiamrpn_kernel_r1.onnx", help="Full path to onnx model of kernel_r1") parser.add_argument("--kernel_cls1", type=str, default="dasiamrpn_kernel_cls1.onnx", help="Full path to onnx model of kernel_cls1") parser.add_argument("--input", type=str, help="Full path to input. Do not use if input is camera") args = parser.parse_args() point1 = () point2 = () mark = True drawing = False cx, cy, w, h = 0.0, 0.0, 0, 0 def get_bb(event, x, y, flag, param): nonlocal point1, point2, cx, cy, w, h, drawing, mark if event == cv.EVENT_LBUTTONDOWN: if not drawing: drawing = True point1 = (x, y) else: drawing = False elif event == cv.EVENT_MOUSEMOVE: if drawing: point2 = (x, y) elif event == cv.EVENT_LBUTTONUP: cx = point1[0] - (point1[0] - point2[0]) / 2 cy = point1[1] - (point1[1] - point2[1]) / 2 w = abs(point1[0] - point2[0]) h = abs(point1[1] - point2[1]) mark = False #loading network`s and kernel`s models net = cv.dnn.readNet(args.net) kernel_r1 = cv.dnn.readNet(args.kernel_r1) kernel_cls1 = cv.dnn.readNet(args.kernel_cls1) #initializing bounding box cap = cv.VideoCapture(args.input if args.input else 0) cv.namedWindow("DaSiamRPN") cv.setMouseCallback("DaSiamRPN", get_bb) whitespace_key = 32 while cv.waitKey(40) != whitespace_key: has_frame, frame = cap.read() if not has_frame: sys.exit(0) cv.imshow("DaSiamRPN", frame) while mark: twin = np.copy(frame) if point1 and point2: cv.rectangle(twin, point1, point2, (0, 255, 255), 3) cv.imshow("DaSiamRPN", twin) cv.waitKey(40) target_pos, target_sz = np.array([cx, cy]), np.array([w, h]) tracker = DaSiamRPNTracker(frame, target_pos, target_sz, net, kernel_r1, kernel_cls1) #tracking loop while cap.isOpened(): has_frame, frame = cap.read() if not has_frame: sys.exit(0) tracker.track(frame) w, h = tracker.target_sz cx, cy = tracker.target_pos cv.rectangle(frame, (int(cx - w // 2), int(cy - h // 2)), (int(cx - w // 2) + int(w), int(cy - h // 2) + int(h)),(0, 255, 255), 3) cv.imshow("DaSiamRPN", frame) key = cv.waitKey(1) if key == ord("q"): break cap.release() cv.destroyAllWindows() if __name__ == "__main__": main()