/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace cv; using namespace std; // auxiliary functions // 1. nbayes void nbayes_check_data( CvMLData* _data ) { if( _data->get_missing() ) CV_Error( CV_StsBadArg, "missing values are not supported" ); const CvMat* var_types = _data->get_var_types(); bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL; if( ( fabs( cvNorm( var_types, 0, CV_L1 ) - (var_types->rows + var_types->cols - 2)*CV_VAR_ORDERED - CV_VAR_CATEGORICAL ) > FLT_EPSILON ) || !is_classifier ) CV_Error( CV_StsBadArg, "incorrect types of predictors or responses" ); } bool nbayes_train( CvNormalBayesClassifier* nbayes, CvMLData* _data ) { nbayes_check_data( _data ); const CvMat* values = _data->get_values(); const CvMat* responses = _data->get_responses(); const CvMat* train_sidx = _data->get_train_sample_idx(); const CvMat* var_idx = _data->get_var_idx(); return nbayes->train( values, responses, var_idx, train_sidx ); } float nbayes_calc_error( CvNormalBayesClassifier* nbayes, CvMLData* _data, int type, vector *resp ) { float err = 0; nbayes_check_data( _data ); const CvMat* values = _data->get_values(); const CvMat* response = _data->get_responses(); const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); int* sidx = sample_idx ? sample_idx->data.i : 0; int r_step = CV_IS_MAT_CONT(response->type) ? 1 : response->step / CV_ELEM_SIZE(response->type); int sample_count = sample_idx ? sample_idx->cols : 0; sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count; float* pred_resp = 0; if( resp && (sample_count > 0) ) { resp->resize( sample_count ); pred_resp = &((*resp)[0]); } for( int i = 0; i < sample_count; i++ ) { CvMat sample; int si = sidx ? sidx[i] : i; cvGetRow( values, &sample, si ); float r = (float)nbayes->predict( &sample, 0 ); if( pred_resp ) pred_resp[i] = r; int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; err += d; } err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; return err; } // 2. knearest void knearest_check_data_and_get_predictors( CvMLData* _data, CvMat* _predictors ) { const CvMat* values = _data->get_values(); const CvMat* var_idx = _data->get_var_idx(); if( var_idx->cols + var_idx->rows != values->cols ) CV_Error( CV_StsBadArg, "var_idx is not supported" ); if( _data->get_missing() ) CV_Error( CV_StsBadArg, "missing values are not supported" ); int resp_idx = _data->get_response_idx(); if( resp_idx == 0) cvGetCols( values, _predictors, 1, values->cols ); else if( resp_idx == values->cols - 1 ) cvGetCols( values, _predictors, 0, values->cols - 1 ); else CV_Error( CV_StsBadArg, "responses must be in the first or last column; other cases are not supported" ); } bool knearest_train( CvKNearest* knearest, CvMLData* _data ) { const CvMat* responses = _data->get_responses(); const CvMat* train_sidx = _data->get_train_sample_idx(); bool is_regression = _data->get_var_type( _data->get_response_idx() ) == CV_VAR_ORDERED; CvMat predictors; knearest_check_data_and_get_predictors( _data, &predictors ); return knearest->train( &predictors, responses, train_sidx, is_regression ); } float knearest_calc_error( CvKNearest* knearest, CvMLData* _data, int k, int type, vector *resp ) { float err = 0; const CvMat* response = _data->get_responses(); const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); int* sidx = sample_idx ? sample_idx->data.i : 0; int r_step = CV_IS_MAT_CONT(response->type) ? 1 : response->step / CV_ELEM_SIZE(response->type); bool is_regression = _data->get_var_type( _data->get_response_idx() ) == CV_VAR_ORDERED; CvMat predictors; knearest_check_data_and_get_predictors( _data, &predictors ); int sample_count = sample_idx ? sample_idx->cols : 0; sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? predictors.rows : sample_count; float* pred_resp = 0; if( resp && (sample_count > 0) ) { resp->resize( sample_count ); pred_resp = &((*resp)[0]); } if ( !is_regression ) { for( int i = 0; i < sample_count; i++ ) { CvMat sample; int si = sidx ? sidx[i] : i; cvGetRow( &predictors, &sample, si ); float r = knearest->find_nearest( &sample, k ); if( pred_resp ) pred_resp[i] = r; int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; err += d; } err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; } else { for( int i = 0; i < sample_count; i++ ) { CvMat sample; int si = sidx ? sidx[i] : i; cvGetRow( &predictors, &sample, si ); float r = knearest->find_nearest( &sample, k ); if( pred_resp ) pred_resp[i] = r; float d = r - response->data.fl[si*r_step]; err += d*d; } err = sample_count ? err / (float)sample_count : -FLT_MAX; } return err; } // 3. svm int str_to_svm_type(string& str) { if( !str.compare("C_SVC") ) return CvSVM::C_SVC; if( !str.compare("NU_SVC") ) return CvSVM::NU_SVC; if( !str.compare("ONE_CLASS") ) return CvSVM::ONE_CLASS; if( !str.compare("EPS_SVR") ) return CvSVM::EPS_SVR; if( !str.compare("NU_SVR") ) return CvSVM::NU_SVR; CV_Error( CV_StsBadArg, "incorrect svm type string" ); return -1; } int str_to_svm_kernel_type( string& str ) { if( !str.compare("LINEAR") ) return CvSVM::LINEAR; if( !str.compare("POLY") ) return CvSVM::POLY; if( !str.compare("RBF") ) return CvSVM::RBF; if( !str.compare("SIGMOID") ) return CvSVM::SIGMOID; CV_Error( CV_StsBadArg, "incorrect svm type string" ); return -1; } void svm_check_data( CvMLData* _data ) { if( _data->get_missing() ) CV_Error( CV_StsBadArg, "missing values are not supported" ); const CvMat* var_types = _data->get_var_types(); for( int i = 0; i < var_types->cols-1; i++ ) if (var_types->data.ptr[i] == CV_VAR_CATEGORICAL) { char msg[50]; sprintf( msg, "incorrect type of %d-predictor", i ); CV_Error( CV_StsBadArg, msg ); } } bool svm_train( CvSVM* svm, CvMLData* _data, CvSVMParams _params ) { svm_check_data(_data); const CvMat* _train_data = _data->get_values(); const CvMat* _responses = _data->get_responses(); const CvMat* _var_idx = _data->get_var_idx(); const CvMat* _sample_idx = _data->get_train_sample_idx(); return svm->train( _train_data, _responses, _var_idx, _sample_idx, _params ); } bool svm_train_auto( CvSVM* svm, CvMLData* _data, CvSVMParams _params, int k_fold, CvParamGrid C_grid, CvParamGrid gamma_grid, CvParamGrid p_grid, CvParamGrid nu_grid, CvParamGrid coef_grid, CvParamGrid degree_grid ) { svm_check_data(_data); const CvMat* _train_data = _data->get_values(); const CvMat* _responses = _data->get_responses(); const CvMat* _var_idx = _data->get_var_idx(); const CvMat* _sample_idx = _data->get_train_sample_idx(); return svm->train_auto( _train_data, _responses, _var_idx, _sample_idx, _params, k_fold, C_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid ); } float svm_calc_error( CvSVM* svm, CvMLData* _data, int type, vector *resp ) { svm_check_data(_data); float err = 0; const CvMat* values = _data->get_values(); const CvMat* response = _data->get_responses(); const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); const CvMat* var_types = _data->get_var_types(); int* sidx = sample_idx ? sample_idx->data.i : 0; int r_step = CV_IS_MAT_CONT(response->type) ? 1 : response->step / CV_ELEM_SIZE(response->type); bool is_classifier = var_types->data.ptr[var_types->cols-1] == CV_VAR_CATEGORICAL; int sample_count = sample_idx ? sample_idx->cols : 0; sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? values->rows : sample_count; float* pred_resp = 0; if( resp && (sample_count > 0) ) { resp->resize( sample_count ); pred_resp = &((*resp)[0]); } if ( is_classifier ) { for( int i = 0; i < sample_count; i++ ) { CvMat sample; int si = sidx ? sidx[i] : i; cvGetRow( values, &sample, si ); float r = svm->predict( &sample ); if( pred_resp ) pred_resp[i] = r; int d = fabs((double)r - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; err += d; } err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; } else { for( int i = 0; i < sample_count; i++ ) { CvMat sample; int si = sidx ? sidx[i] : i; cvGetRow( values, &sample, si ); float r = svm->predict( &sample ); if( pred_resp ) pred_resp[i] = r; float d = r - response->data.fl[si*r_step]; err += d*d; } err = sample_count ? err / (float)sample_count : -FLT_MAX; } return err; } // 4. em // 5. ann int str_to_ann_train_method( string& str ) { if( !str.compare("BACKPROP") ) return CvANN_MLP_TrainParams::BACKPROP; if( !str.compare("RPROP") ) return CvANN_MLP_TrainParams::RPROP; CV_Error( CV_StsBadArg, "incorrect ann train method string" ); return -1; } void ann_check_data_and_get_predictors( CvMLData* _data, CvMat* _inputs ) { const CvMat* values = _data->get_values(); const CvMat* var_idx = _data->get_var_idx(); if( var_idx->cols + var_idx->rows != values->cols ) CV_Error( CV_StsBadArg, "var_idx is not supported" ); if( _data->get_missing() ) CV_Error( CV_StsBadArg, "missing values are not supported" ); int resp_idx = _data->get_response_idx(); if( resp_idx == 0) cvGetCols( values, _inputs, 1, values->cols ); else if( resp_idx == values->cols - 1 ) cvGetCols( values, _inputs, 0, values->cols - 1 ); else CV_Error( CV_StsBadArg, "outputs must be in the first or last column; other cases are not supported" ); } void ann_get_new_responses( CvMLData* _data, Mat& new_responses, map& cls_map ) { const CvMat* train_sidx = _data->get_train_sample_idx(); int* train_sidx_ptr = train_sidx->data.i; const CvMat* responses = _data->get_responses(); float* responses_ptr = responses->data.fl; int r_step = CV_IS_MAT_CONT(responses->type) ? 1 : responses->step / CV_ELEM_SIZE(responses->type); int cls_count = 0; // construct cls_map cls_map.clear(); for( int si = 0; si < train_sidx->cols; si++ ) { int sidx = train_sidx_ptr[si]; int r = cvRound(responses_ptr[sidx*r_step]); CV_DbgAssert( fabs(responses_ptr[sidx*r_step]-r) < FLT_EPSILON ); int cls_map_size = (int)cls_map.size(); cls_map[r]; if ( (int)cls_map.size() > cls_map_size ) cls_map[r] = cls_count++; } new_responses.create( responses->rows, cls_count, CV_32F ); new_responses.setTo( 0 ); for( int si = 0; si < train_sidx->cols; si++ ) { int sidx = train_sidx_ptr[si]; int r = cvRound(responses_ptr[sidx*r_step]); int cidx = cls_map[r]; new_responses.ptr(sidx)[cidx] = 1; } } int ann_train( CvANN_MLP* ann, CvMLData* _data, Mat& new_responses, CvANN_MLP_TrainParams _params, int flags = 0 ) { const CvMat* train_sidx = _data->get_train_sample_idx(); CvMat predictors; ann_check_data_and_get_predictors( _data, &predictors ); CvMat _new_responses = CvMat( new_responses ); return ann->train( &predictors, &_new_responses, 0, train_sidx, _params, flags ); } float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, map& cls_map, int type , vector *resp_labels ) { float err = 0; const CvMat* responses = _data->get_responses(); const CvMat* sample_idx = (type == CV_TEST_ERROR) ? _data->get_test_sample_idx() : _data->get_train_sample_idx(); int* sidx = sample_idx ? sample_idx->data.i : 0; int r_step = CV_IS_MAT_CONT(responses->type) ? 1 : responses->step / CV_ELEM_SIZE(responses->type); CvMat predictors; ann_check_data_and_get_predictors( _data, &predictors ); int sample_count = sample_idx ? sample_idx->cols : 0; sample_count = (type == CV_TRAIN_ERROR && sample_count == 0) ? predictors.rows : sample_count; float* pred_resp = 0; vector innresp; if( sample_count > 0 ) { if( resp_labels ) { resp_labels->resize( sample_count ); pred_resp = &((*resp_labels)[0]); } else { innresp.resize( sample_count ); pred_resp = &(innresp[0]); } } int cls_count = (int)cls_map.size(); Mat output( 1, cls_count, CV_32FC1 ); CvMat _output = CvMat(output); for( int i = 0; i < sample_count; i++ ) { CvMat sample; int si = sidx ? sidx[i] : i; cvGetRow( &predictors, &sample, si ); ann->predict( &sample, &_output ); CvPoint best_cls = {0,0}; cvMinMaxLoc( &_output, 0, 0, 0, &best_cls, 0 ); int r = cvRound(responses->data.fl[si*r_step]); CV_DbgAssert( fabs(responses->data.fl[si*r_step]-r) < FLT_EPSILON ); r = cls_map[r]; int d = best_cls.x == r ? 0 : 1; err += d; pred_resp[i] = (float)best_cls.x; } err = sample_count ? err / (float)sample_count * 100 : -FLT_MAX; return err; } // 6. dtree // 7. boost int str_to_boost_type( string& str ) { if ( !str.compare("DISCRETE") ) return CvBoost::DISCRETE; if ( !str.compare("REAL") ) return CvBoost::REAL; if ( !str.compare("LOGIT") ) return CvBoost::LOGIT; if ( !str.compare("GENTLE") ) return CvBoost::GENTLE; CV_Error( CV_StsBadArg, "incorrect boost type string" ); return -1; } // 8. rtrees // 9. ertrees // ---------------------------------- MLBaseTest --------------------------------------------------- CV_MLBaseTest::CV_MLBaseTest(const char* _modelName) { int64 seeds[] = { CV_BIG_INT(0x00009fff4f9c8d52), CV_BIG_INT(0x0000a17166072c7c), CV_BIG_INT(0x0201b32115cd1f9a), CV_BIG_INT(0x0513cb37abcd1234), CV_BIG_INT(0x0001a2b3c4d5f678) }; int seedCount = sizeof(seeds)/sizeof(seeds[0]); RNG& rng = theRNG(); initSeed = rng.state; rng.state = seeds[rng(seedCount)]; modelName = _modelName; nbayes = 0; knearest = 0; svm = 0; em = 0; ann = 0; dtree = 0; boost = 0; rtrees = 0; ertrees = 0; if( !modelName.compare(CV_NBAYES) ) nbayes = new CvNormalBayesClassifier; else if( !modelName.compare(CV_KNEAREST) ) knearest = new CvKNearest; else if( !modelName.compare(CV_SVM) ) svm = new CvSVM; else if( !modelName.compare(CV_EM) ) em = new CvEM; else if( !modelName.compare(CV_ANN) ) ann = new CvANN_MLP; else if( !modelName.compare(CV_DTREE) ) dtree = new CvDTree; else if( !modelName.compare(CV_BOOST) ) boost = new CvBoost; else if( !modelName.compare(CV_RTREES) ) rtrees = new CvRTrees; else if( !modelName.compare(CV_ERTREES) ) ertrees = new CvERTrees; } CV_MLBaseTest::~CV_MLBaseTest() { if( validationFS.isOpened() ) validationFS.release(); if( nbayes ) delete nbayes; if( knearest ) delete knearest; if( svm ) delete svm; if( em ) delete em; if( ann ) delete ann; if( dtree ) delete dtree; if( boost ) delete boost; if( rtrees ) delete rtrees; if( ertrees ) delete ertrees; theRNG().state = initSeed; } int CV_MLBaseTest::read_params( CvFileStorage* _fs ) { if( !_fs ) test_case_count = -1; else { CvFileNode* fn = cvGetRootFileNode( _fs, 0 ); fn = (CvFileNode*)cvGetSeqElem( fn->data.seq, 0 ); fn = cvGetFileNodeByName( _fs, fn, "run_params" ); CvSeq* dataSetNamesSeq = cvGetFileNodeByName( _fs, fn, modelName.c_str() )->data.seq; test_case_count = dataSetNamesSeq ? dataSetNamesSeq->total : -1; if( test_case_count > 0 ) { dataSetNames.resize( test_case_count ); vector::iterator it = dataSetNames.begin(); for( int i = 0; i < test_case_count; i++, it++ ) *it = ((CvFileNode*)cvGetSeqElem( dataSetNamesSeq, i ))->data.str.ptr; } } return cvtest::TS::OK;; } void CV_MLBaseTest::run( int start_from ) { string filename = ts->get_data_path(); filename += get_validation_filename(); validationFS.open( filename, FileStorage::READ ); read_params( *validationFS ); int code = cvtest::TS::OK; start_from = 0; for (int i = 0; i < test_case_count; i++) { int temp_code = run_test_case( i ); if (temp_code == cvtest::TS::OK) temp_code = validate_test_results( i ); if (temp_code != cvtest::TS::OK) code = temp_code; } if ( test_case_count <= 0) { ts->printf( cvtest::TS::LOG, "validation file is not determined or not correct" ); code = cvtest::TS::FAIL_INVALID_TEST_DATA; } ts->set_failed_test_info( code ); } int CV_MLBaseTest::prepare_test_case( int test_case_idx ) { int trainSampleCount, respIdx; string varTypes; clear(); string dataPath = ts->get_data_path(); if ( dataPath.empty() ) { ts->printf( cvtest::TS::LOG, "data path is empty" ); return cvtest::TS::FAIL_INVALID_TEST_DATA; } string dataName = dataSetNames[test_case_idx], filename = dataPath + dataName + ".data"; if ( data.read_csv( filename.c_str() ) != 0) { char msg[100]; sprintf( msg, "file %s can not be read", filename.c_str() ); ts->printf( cvtest::TS::LOG, msg ); return cvtest::TS::FAIL_INVALID_TEST_DATA; } FileNode dataParamsNode = validationFS.getFirstTopLevelNode()["validation"][modelName][dataName]["data_params"]; CV_DbgAssert( !dataParamsNode.empty() ); CV_DbgAssert( !dataParamsNode["LS"].empty() ); dataParamsNode["LS"] >> trainSampleCount; CvTrainTestSplit spl( trainSampleCount ); data.set_train_test_split( &spl ); CV_DbgAssert( !dataParamsNode["resp_idx"].empty() ); dataParamsNode["resp_idx"] >> respIdx; data.set_response_idx( respIdx ); CV_DbgAssert( !dataParamsNode["types"].empty() ); dataParamsNode["types"] >> varTypes; data.set_var_types( varTypes.c_str() ); return cvtest::TS::OK; } string& CV_MLBaseTest::get_validation_filename() { return validationFN; } int CV_MLBaseTest::train( int testCaseIdx ) { bool is_trained = false; FileNode modelParamsNode = validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"]; if( !modelName.compare(CV_NBAYES) ) is_trained = nbayes_train( nbayes, &data ); else if( !modelName.compare(CV_KNEAREST) ) { assert( 0 ); //is_trained = knearest->train( &data ); } else if( !modelName.compare(CV_SVM) ) { string svm_type_str, kernel_type_str; modelParamsNode["svm_type"] >> svm_type_str; modelParamsNode["kernel_type"] >> kernel_type_str; CvSVMParams params; params.svm_type = str_to_svm_type( svm_type_str ); params.kernel_type = str_to_svm_kernel_type( kernel_type_str ); modelParamsNode["degree"] >> params.degree; modelParamsNode["gamma"] >> params.gamma; modelParamsNode["coef0"] >> params.coef0; modelParamsNode["C"] >> params.C; modelParamsNode["nu"] >> params.nu; modelParamsNode["p"] >> params.p; is_trained = svm_train( svm, &data, params ); } else if( !modelName.compare(CV_EM) ) { assert( 0 ); } else if( !modelName.compare(CV_ANN) ) { string train_method_str; double param1, param2; modelParamsNode["train_method"] >> train_method_str; modelParamsNode["param1"] >> param1; modelParamsNode["param2"] >> param2; Mat new_responses; ann_get_new_responses( &data, new_responses, cls_map ); int layer_sz[] = { data.get_values()->cols - 1, 100, 100, (int)cls_map.size() }; CvMat layer_sizes = cvMat( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz ); ann->create( &layer_sizes ); is_trained = ann_train( ann, &data, new_responses, CvANN_MLP_TrainParams(cvTermCriteria(CV_TERMCRIT_ITER,300,0.01), str_to_ann_train_method(train_method_str), param1, param2) ) >= 0; } else if( !modelName.compare(CV_DTREE) ) { int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS; float REG_ACCURACY = 0; bool USE_SURROGATE, IS_PRUNED; modelParamsNode["max_depth"] >> MAX_DEPTH; modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT; modelParamsNode["use_surrogate"] >> USE_SURROGATE; modelParamsNode["max_categories"] >> MAX_CATEGORIES; modelParamsNode["cv_folds"] >> CV_FOLDS; modelParamsNode["is_pruned"] >> IS_PRUNED; is_trained = dtree->train( &data, CvDTreeParams(MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, USE_SURROGATE, MAX_CATEGORIES, CV_FOLDS, false, IS_PRUNED, 0 )) != 0; } else if( !modelName.compare(CV_BOOST) ) { int BOOST_TYPE, WEAK_COUNT, MAX_DEPTH; float WEIGHT_TRIM_RATE; bool USE_SURROGATE; string typeStr; modelParamsNode["type"] >> typeStr; BOOST_TYPE = str_to_boost_type( typeStr ); modelParamsNode["weak_count"] >> WEAK_COUNT; modelParamsNode["weight_trim_rate"] >> WEIGHT_TRIM_RATE; modelParamsNode["max_depth"] >> MAX_DEPTH; modelParamsNode["use_surrogate"] >> USE_SURROGATE; is_trained = boost->train( &data, CvBoostParams(BOOST_TYPE, WEAK_COUNT, WEIGHT_TRIM_RATE, MAX_DEPTH, USE_SURROGATE, 0) ) != 0; } else if( !modelName.compare(CV_RTREES) ) { int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS, NACTIVE_VARS, MAX_TREES_NUM; float REG_ACCURACY = 0, OOB_EPS = 0.0; bool USE_SURROGATE, IS_PRUNED; modelParamsNode["max_depth"] >> MAX_DEPTH; modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT; modelParamsNode["use_surrogate"] >> USE_SURROGATE; modelParamsNode["max_categories"] >> MAX_CATEGORIES; modelParamsNode["cv_folds"] >> CV_FOLDS; modelParamsNode["is_pruned"] >> IS_PRUNED; modelParamsNode["nactive_vars"] >> NACTIVE_VARS; modelParamsNode["max_trees_num"] >> MAX_TREES_NUM; is_trained = rtrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, USE_SURROGATE, MAX_CATEGORIES, 0, true, // (calc_var_importance == true) <=> RF processes variable importance NACTIVE_VARS, MAX_TREES_NUM, OOB_EPS, CV_TERMCRIT_ITER)) != 0; } else if( !modelName.compare(CV_ERTREES) ) { int MAX_DEPTH, MIN_SAMPLE_COUNT, MAX_CATEGORIES, CV_FOLDS, NACTIVE_VARS, MAX_TREES_NUM; float REG_ACCURACY = 0, OOB_EPS = 0.0; bool USE_SURROGATE, IS_PRUNED; modelParamsNode["max_depth"] >> MAX_DEPTH; modelParamsNode["min_sample_count"] >> MIN_SAMPLE_COUNT; modelParamsNode["use_surrogate"] >> USE_SURROGATE; modelParamsNode["max_categories"] >> MAX_CATEGORIES; modelParamsNode["cv_folds"] >> CV_FOLDS; modelParamsNode["is_pruned"] >> IS_PRUNED; modelParamsNode["nactive_vars"] >> NACTIVE_VARS; modelParamsNode["max_trees_num"] >> MAX_TREES_NUM; is_trained = ertrees->train( &data, CvRTParams( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, USE_SURROGATE, MAX_CATEGORIES, 0, false, // (calc_var_importance == true) <=> RF processes variable importance NACTIVE_VARS, MAX_TREES_NUM, OOB_EPS, CV_TERMCRIT_ITER)) != 0; } if( !is_trained ) { ts->printf( cvtest::TS::LOG, "in test case %d model training was failed", testCaseIdx ); return cvtest::TS::FAIL_INVALID_OUTPUT; } return cvtest::TS::OK; } float CV_MLBaseTest::get_error( int testCaseIdx, int type, vector *resp ) { float err = 0; if( !modelName.compare(CV_NBAYES) ) err = nbayes_calc_error( nbayes, &data, type, resp ); else if( !modelName.compare(CV_KNEAREST) ) { assert( 0 ); testCaseIdx = 0; /*int k = 2; validationFS.getFirstTopLevelNode()["validation"][modelName][dataSetNames[testCaseIdx]]["model_params"]["k"] >> k; err = knearest->calc_error( &data, k, type, resp );*/ } else if( !modelName.compare(CV_SVM) ) err = svm_calc_error( svm, &data, type, resp ); else if( !modelName.compare(CV_EM) ) assert( 0 ); else if( !modelName.compare(CV_ANN) ) err = ann_calc_error( ann, &data, cls_map, type, resp ); else if( !modelName.compare(CV_DTREE) ) err = dtree->calc_error( &data, type, resp ); else if( !modelName.compare(CV_BOOST) ) err = boost->calc_error( &data, type, resp ); else if( !modelName.compare(CV_RTREES) ) err = rtrees->calc_error( &data, type, resp ); else if( !modelName.compare(CV_ERTREES) ) err = ertrees->calc_error( &data, type, resp ); return err; } void CV_MLBaseTest::save( const char* filename ) { if( !modelName.compare(CV_NBAYES) ) nbayes->save( filename ); else if( !modelName.compare(CV_KNEAREST) ) knearest->save( filename ); else if( !modelName.compare(CV_SVM) ) svm->save( filename ); else if( !modelName.compare(CV_EM) ) em->save( filename ); else if( !modelName.compare(CV_ANN) ) ann->save( filename ); else if( !modelName.compare(CV_DTREE) ) dtree->save( filename ); else if( !modelName.compare(CV_BOOST) ) boost->save( filename ); else if( !modelName.compare(CV_RTREES) ) rtrees->save( filename ); else if( !modelName.compare(CV_ERTREES) ) ertrees->save( filename ); } void CV_MLBaseTest::load( const char* filename ) { if( !modelName.compare(CV_NBAYES) ) nbayes->load( filename ); else if( !modelName.compare(CV_KNEAREST) ) knearest->load( filename ); else if( !modelName.compare(CV_SVM) ) svm->load( filename ); else if( !modelName.compare(CV_EM) ) em->load( filename ); else if( !modelName.compare(CV_ANN) ) ann->load( filename ); else if( !modelName.compare(CV_DTREE) ) dtree->load( filename ); else if( !modelName.compare(CV_BOOST) ) boost->load( filename ); else if( !modelName.compare(CV_RTREES) ) rtrees->load( filename ); else if( !modelName.compare(CV_ERTREES) ) ertrees->load( filename ); } /* End of file. */