/* * Copyright (c) 2011. Philipp Wagner . * Released to public domain under terms of the BSD Simplified license. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the organization nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * See */ #include "precomp.hpp" #include #include #include namespace cv { // Removes duplicate elements in a given vector. template inline std::vector<_Tp> remove_dups(const std::vector<_Tp>& src) { typedef typename std::set<_Tp>::const_iterator constSetIterator; typedef typename std::vector<_Tp>::const_iterator constVecIterator; std::set<_Tp> set_elems; for (constVecIterator it = src.begin(); it != src.end(); ++it) set_elems.insert(*it); std::vector<_Tp> elems; for (constSetIterator it = set_elems.begin(); it != set_elems.end(); ++it) elems.push_back(*it); return elems; } static Mat argsort(InputArray _src, bool ascending=true) { Mat src = _src.getMat(); if (src.rows != 1 && src.cols != 1) { std::string error_message = "Wrong shape of input matrix! Expected a matrix with one row or column."; CV_Error(CV_StsBadArg, error_message); } int flags = CV_SORT_EVERY_ROW+(ascending ? CV_SORT_ASCENDING : CV_SORT_DESCENDING); Mat sorted_indices; sortIdx(src.reshape(1,1),sorted_indices,flags); return sorted_indices; } static Mat asRowMatrix(InputArrayOfArrays src, int rtype, double alpha=1, double beta=0) { // make sure the input data is a vector of matrices or vector of vector if(src.kind() != _InputArray::STD_VECTOR_MAT && src.kind() != _InputArray::STD_VECTOR_VECTOR) { std::string error_message = "The data is expected as InputArray::STD_VECTOR_MAT (a std::vector) or _InputArray::STD_VECTOR_VECTOR (a std::vector< std::vector<...> >)."; CV_Error(CV_StsBadArg, error_message); } // number of samples size_t n = src.total(); // return empty matrix if no matrices given if(n == 0) return Mat(); // dimensionality of (reshaped) samples size_t d = src.getMat(0).total(); // create data matrix Mat data((int)n, (int)d, rtype); // now copy data for(int i = 0; i < (int)n; i++) { // make sure data can be reshaped, throw exception if not! if(src.getMat(i).total() != d) { std::string error_message = format("Wrong number of elements in matrix #%d! Expected %d was %d.", i, (int)d, (int)src.getMat(i).total()); CV_Error(CV_StsBadArg, error_message); } // get a hold of the current row Mat xi = data.row(i); // make reshape happy by cloning for non-continuous matrices if(src.getMat(i).isContinuous()) { src.getMat(i).reshape(1, 1).convertTo(xi, rtype, alpha, beta); } else { src.getMat(i).clone().reshape(1, 1).convertTo(xi, rtype, alpha, beta); } } return data; } static void sortMatrixColumnsByIndices(InputArray _src, InputArray _indices, OutputArray _dst) { if(_indices.getMat().type() != CV_32SC1) { CV_Error(CV_StsUnsupportedFormat, "cv::sortColumnsByIndices only works on integer indices!"); } Mat src = _src.getMat(); std::vector indices = _indices.getMat(); _dst.create(src.rows, src.cols, src.type()); Mat dst = _dst.getMat(); for(size_t idx = 0; idx < indices.size(); idx++) { Mat originalCol = src.col(indices[idx]); Mat sortedCol = dst.col((int)idx); originalCol.copyTo(sortedCol); } } static Mat sortMatrixColumnsByIndices(InputArray src, InputArray indices) { Mat dst; sortMatrixColumnsByIndices(src, indices, dst); return dst; } template static bool isSymmetric_(InputArray src) { Mat _src = src.getMat(); if(_src.cols != _src.rows) return false; for (int i = 0; i < _src.rows; i++) { for (int j = 0; j < _src.cols; j++) { _Tp a = _src.at<_Tp> (i, j); _Tp b = _src.at<_Tp> (j, i); if (a != b) { return false; } } } return true; } template static bool isSymmetric_(InputArray src, double eps) { Mat _src = src.getMat(); if(_src.cols != _src.rows) return false; for (int i = 0; i < _src.rows; i++) { for (int j = 0; j < _src.cols; j++) { _Tp a = _src.at<_Tp> (i, j); _Tp b = _src.at<_Tp> (j, i); if (std::abs(a - b) > eps) { return false; } } } return true; } static bool isSymmetric(InputArray src, double eps=1e-16) { Mat m = src.getMat(); switch (m.type()) { case CV_8SC1: return isSymmetric_(m); break; case CV_8UC1: return isSymmetric_(m); break; case CV_16SC1: return isSymmetric_(m); break; case CV_16UC1: return isSymmetric_(m); break; case CV_32SC1: return isSymmetric_(m); break; case CV_32FC1: return isSymmetric_(m, eps); break; case CV_64FC1: return isSymmetric_(m, eps); break; default: break; } return false; } //------------------------------------------------------------------------------ // cv::subspaceProject //------------------------------------------------------------------------------ Mat subspaceProject(InputArray _W, InputArray _mean, InputArray _src) { // get data matrices Mat W = _W.getMat(); Mat mean = _mean.getMat(); Mat src = _src.getMat(); // get number of samples and dimension int n = src.rows; int d = src.cols; // make sure the data has the correct shape if(W.rows != d) { std::string error_message = format("Wrong shapes for given matrices. Was size(src) = (%d,%d), size(W) = (%d,%d).", src.rows, src.cols, W.rows, W.cols); CV_Error(CV_StsBadArg, error_message); } // make sure mean is correct if not empty if(!mean.empty() && (mean.total() != (size_t) d)) { std::string error_message = format("Wrong mean shape for the given data matrix. Expected %d, but was %d.", d, mean.total()); CV_Error(CV_StsBadArg, error_message); } // create temporary matrices Mat X, Y; // make sure you operate on correct type src.convertTo(X, W.type()); // safe to do, because of above assertion if(!mean.empty()) { for(int i=0; i _Tp *alloc_1d(int m) { return new _Tp[m]; } // Allocates memory. template _Tp *alloc_1d(int m, _Tp val) { _Tp *arr = alloc_1d<_Tp> (m); for (int i = 0; i < m; i++) arr[i] = val; return arr; } // Allocates memory. template _Tp **alloc_2d(int m, int _n) { _Tp **arr = new _Tp*[m]; for (int i = 0; i < m; i++) arr[i] = new _Tp[_n]; return arr; } // Allocates memory. template _Tp **alloc_2d(int m, int _n, _Tp val) { _Tp **arr = alloc_2d<_Tp> (m, _n); for (int i = 0; i < m; i++) { for (int j = 0; j < _n; j++) { arr[i][j] = val; } } return arr; } void cdiv(double xr, double xi, double yr, double yi) { double r, dv; if (std::abs(yr) > std::abs(yi)) { r = yi / yr; dv = yr + r * yi; cdivr = (xr + r * xi) / dv; cdivi = (xi - r * xr) / dv; } else { r = yr / yi; dv = yi + r * yr; cdivr = (r * xr + xi) / dv; cdivi = (r * xi - xr) / dv; } } // Nonsymmetric reduction from Hessenberg to real Schur form. void hqr2() { // This is derived from the Algol procedure hqr2, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutine in EISPACK. // Initialize int nn = this->n; int n1 = nn - 1; int low = 0; int high = nn - 1; double eps = std::pow(2.0, -52.0); double exshift = 0.0; double p = 0, q = 0, r = 0, s = 0, z = 0, t, w, x, y; // Store roots isolated by balanc and compute matrix norm double norm = 0.0; for (int i = 0; i < nn; i++) { if (i < low || i > high) { d[i] = H[i][i]; e[i] = 0.0; } for (int j = std::max(i - 1, 0); j < nn; j++) { norm = norm + std::abs(H[i][j]); } } // Outer loop over eigenvalue index int iter = 0; while (n1 >= low) { // Look for single small sub-diagonal element int l = n1; while (l > low) { s = std::abs(H[l - 1][l - 1]) + std::abs(H[l][l]); if (s == 0.0) { s = norm; } if (std::abs(H[l][l - 1]) < eps * s) { break; } l--; } // Check for convergence // One root found if (l == n1) { H[n1][n1] = H[n1][n1] + exshift; d[n1] = H[n1][n1]; e[n1] = 0.0; n1--; iter = 0; // Two roots found } else if (l == n1 - 1) { w = H[n1][n1 - 1] * H[n1 - 1][n1]; p = (H[n1 - 1][n1 - 1] - H[n1][n1]) / 2.0; q = p * p + w; z = std::sqrt(std::abs(q)); H[n1][n1] = H[n1][n1] + exshift; H[n1 - 1][n1 - 1] = H[n1 - 1][n1 - 1] + exshift; x = H[n1][n1]; // Real pair if (q >= 0) { if (p >= 0) { z = p + z; } else { z = p - z; } d[n1 - 1] = x + z; d[n1] = d[n1 - 1]; if (z != 0.0) { d[n1] = x - w / z; } e[n1 - 1] = 0.0; e[n1] = 0.0; x = H[n1][n1 - 1]; s = std::abs(x) + std::abs(z); p = x / s; q = z / s; r = std::sqrt(p * p + q * q); p = p / r; q = q / r; // Row modification for (int j = n1 - 1; j < nn; j++) { z = H[n1 - 1][j]; H[n1 - 1][j] = q * z + p * H[n1][j]; H[n1][j] = q * H[n1][j] - p * z; } // Column modification for (int i = 0; i <= n1; i++) { z = H[i][n1 - 1]; H[i][n1 - 1] = q * z + p * H[i][n1]; H[i][n1] = q * H[i][n1] - p * z; } // Accumulate transformations for (int i = low; i <= high; i++) { z = V[i][n1 - 1]; V[i][n1 - 1] = q * z + p * V[i][n1]; V[i][n1] = q * V[i][n1] - p * z; } // Complex pair } else { d[n1 - 1] = x + p; d[n1] = x + p; e[n1 - 1] = z; e[n1] = -z; } n1 = n1 - 2; iter = 0; // No convergence yet } else { // Form shift x = H[n1][n1]; y = 0.0; w = 0.0; if (l < n1) { y = H[n1 - 1][n1 - 1]; w = H[n1][n1 - 1] * H[n1 - 1][n1]; } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n1; i++) { H[i][i] -= x; } s = std::abs(H[n1][n1 - 1]) + std::abs(H[n1 - 1][n1 - 2]); x = y = 0.75 * s; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = std::sqrt(s); if (y < x) { s = -s; } s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n1; i++) { H[i][i] -= s; } exshift += s; x = y = w = 0.964; } } iter = iter + 1; // (Could check iteration count here.) // Look for two consecutive small sub-diagonal elements int m = n1 - 2; while (m >= l) { z = H[m][m]; r = x - z; s = y - z; p = (r * s - w) / H[m + 1][m] + H[m][m + 1]; q = H[m + 1][m + 1] - z - r - s; r = H[m + 2][m + 1]; s = std::abs(p) + std::abs(q) + std::abs(r); p = p / s; q = q / s; r = r / s; if (m == l) { break; } if (std::abs(H[m][m - 1]) * (std::abs(q) + std::abs(r)) < eps * (std::abs(p) * (std::abs(H[m - 1][m - 1]) + std::abs(z) + std::abs( H[m + 1][m + 1])))) { break; } m--; } for (int i = m + 2; i <= n1; i++) { H[i][i - 2] = 0.0; if (i > m + 2) { H[i][i - 3] = 0.0; } } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n1 - 1; k++) { bool notlast = (k != n1 - 1); if (k != m) { p = H[k][k - 1]; q = H[k + 1][k - 1]; r = (notlast ? H[k + 2][k - 1] : 0.0); x = std::abs(p) + std::abs(q) + std::abs(r); if (x != 0.0) { p = p / x; q = q / x; r = r / x; } } if (x == 0.0) { break; } s = std::sqrt(p * p + q * q + r * r); if (p < 0) { s = -s; } if (s != 0) { if (k != m) { H[k][k - 1] = -s * x; } else if (l != m) { H[k][k - 1] = -H[k][k - 1]; } p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // Row modification for (int j = k; j < nn; j++) { p = H[k][j] + q * H[k + 1][j]; if (notlast) { p = p + r * H[k + 2][j]; H[k + 2][j] = H[k + 2][j] - p * z; } H[k][j] = H[k][j] - p * x; H[k + 1][j] = H[k + 1][j] - p * y; } // Column modification for (int i = 0; i <= std::min(n1, k + 3); i++) { p = x * H[i][k] + y * H[i][k + 1]; if (notlast) { p = p + z * H[i][k + 2]; H[i][k + 2] = H[i][k + 2] - p * r; } H[i][k] = H[i][k] - p; H[i][k + 1] = H[i][k + 1] - p * q; } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * V[i][k] + y * V[i][k + 1]; if (notlast) { p = p + z * V[i][k + 2]; V[i][k + 2] = V[i][k + 2] - p * r; } V[i][k] = V[i][k] - p; V[i][k + 1] = V[i][k + 1] - p * q; } } // (s != 0) } // k loop } // check convergence } // while (n1 >= low) // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n1 = nn - 1; n1 >= 0; n1--) { p = d[n1]; q = e[n1]; // Real vector if (q == 0) { int l = n1; H[n1][n1] = 1.0; for (int i = n1 - 1; i >= 0; i--) { w = H[i][i] - p; r = 0.0; for (int j = l; j <= n1; j++) { r = r + H[i][j] * H[j][n1]; } if (e[i] < 0.0) { z = w; s = r; } else { l = i; if (e[i] == 0.0) { if (w != 0.0) { H[i][n1] = -r / w; } else { H[i][n1] = -r / (eps * norm); } // Solve real equations } else { x = H[i][i + 1]; y = H[i + 1][i]; q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; t = (x * s - z * r) / q; H[i][n1] = t; if (std::abs(x) > std::abs(z)) { H[i + 1][n1] = (-r - w * t) / x; } else { H[i + 1][n1] = (-s - y * t) / z; } } // Overflow control t = std::abs(H[i][n1]); if ((eps * t) * t > 1) { for (int j = i; j <= n1; j++) { H[j][n1] = H[j][n1] / t; } } } } // Complex vector } else if (q < 0) { int l = n1 - 1; // Last vector component imaginary so matrix is triangular if (std::abs(H[n1][n1 - 1]) > std::abs(H[n1 - 1][n1])) { H[n1 - 1][n1 - 1] = q / H[n1][n1 - 1]; H[n1 - 1][n1] = -(H[n1][n1] - p) / H[n1][n1 - 1]; } else { cdiv(0.0, -H[n1 - 1][n1], H[n1 - 1][n1 - 1] - p, q); H[n1 - 1][n1 - 1] = cdivr; H[n1 - 1][n1] = cdivi; } H[n1][n1 - 1] = 0.0; H[n1][n1] = 1.0; for (int i = n1 - 2; i >= 0; i--) { double ra, sa, vr, vi; ra = 0.0; sa = 0.0; for (int j = l; j <= n1; j++) { ra = ra + H[i][j] * H[j][n1 - 1]; sa = sa + H[i][j] * H[j][n1]; } w = H[i][i] - p; if (e[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e[i] == 0) { cdiv(-ra, -sa, w, q); H[i][n1 - 1] = cdivr; H[i][n1] = cdivi; } else { // Solve complex equations x = H[i][i + 1]; y = H[i + 1][i]; vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; vi = (d[i] - p) * 2.0 * q; if (vr == 0.0 && vi == 0.0) { vr = eps * norm * (std::abs(w) + std::abs(q) + std::abs(x) + std::abs(y) + std::abs(z)); } cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); H[i][n1 - 1] = cdivr; H[i][n1] = cdivi; if (std::abs(x) > (std::abs(z) + std::abs(q))) { H[i + 1][n1 - 1] = (-ra - w * H[i][n1 - 1] + q * H[i][n1]) / x; H[i + 1][n1] = (-sa - w * H[i][n1] - q * H[i][n1 - 1]) / x; } else { cdiv(-r - y * H[i][n1 - 1], -s - y * H[i][n1], z, q); H[i + 1][n1 - 1] = cdivr; H[i + 1][n1] = cdivi; } } // Overflow control t = std::max(std::abs(H[i][n1 - 1]), std::abs(H[i][n1])); if ((eps * t) * t > 1) { for (int j = i; j <= n1; j++) { H[j][n1 - 1] = H[j][n1 - 1] / t; H[j][n1] = H[j][n1] / t; } } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) { if (i < low || i > high) { for (int j = i; j < nn; j++) { V[i][j] = H[i][j]; } } } // Back transformation to get eigenvectors of original matrix for (int j = nn - 1; j >= low; j--) { for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= std::min(j, high); k++) { z = z + V[i][k] * H[k][j]; } V[i][j] = z; } } } // Nonsymmetric reduction to Hessenberg form. void orthes() { // This is derived from the Algol procedures orthes and ortran, // by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding // Fortran subroutines in EISPACK. int low = 0; int high = n - 1; for (int m = low + 1; m <= high - 1; m++) { // Scale column. double scale = 0.0; for (int i = m; i <= high; i++) { scale = scale + std::abs(H[i][m - 1]); } if (scale != 0.0) { // Compute Householder transformation. double h = 0.0; for (int i = high; i >= m; i--) { ort[i] = H[i][m - 1] / scale; h += ort[i] * ort[i]; } double g = std::sqrt(h); if (ort[m] > 0) { g = -g; } h = h - ort[m] * g; ort[m] = ort[m] - g; // Apply Householder similarity transformation // H = (I-u*u'/h)*H*(I-u*u')/h) for (int j = m; j < n; j++) { double f = 0.0; for (int i = high; i >= m; i--) { f += ort[i] * H[i][j]; } f = f / h; for (int i = m; i <= high; i++) { H[i][j] -= f * ort[i]; } } for (int i = 0; i <= high; i++) { double f = 0.0; for (int j = high; j >= m; j--) { f += ort[j] * H[i][j]; } f = f / h; for (int j = m; j <= high; j++) { H[i][j] -= f * ort[j]; } } ort[m] = scale * ort[m]; H[m][m - 1] = scale * g; } } // Accumulate transformations (Algol's ortran). for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { V[i][j] = (i == j ? 1.0 : 0.0); } } for (int m = high - 1; m >= low + 1; m--) { if (H[m][m - 1] != 0.0) { for (int i = m + 1; i <= high; i++) { ort[i] = H[i][m - 1]; } for (int j = m; j <= high; j++) { double g = 0.0; for (int i = m; i <= high; i++) { g += ort[i] * V[i][j]; } // Double division avoids possible underflow g = (g / ort[m]) / H[m][m - 1]; for (int i = m; i <= high; i++) { V[i][j] += g * ort[i]; } } } } } // Releases all internal working memory. void release() { // releases the working data delete[] d; delete[] e; delete[] ort; for (int i = 0; i < n; i++) { delete[] H[i]; delete[] V[i]; } delete[] H; delete[] V; } // Computes the Eigenvalue Decomposition for a matrix given in H. void compute() { // Allocate memory for the working data. V = alloc_2d (n, n, 0.0); d = alloc_1d (n); e = alloc_1d (n); ort = alloc_1d (n); // Reduce to Hessenberg form. orthes(); // Reduce Hessenberg to real Schur form. hqr2(); // Copy eigenvalues to OpenCV Matrix. _eigenvalues.create(1, n, CV_64FC1); for (int i = 0; i < n; i++) { _eigenvalues.at (0, i) = d[i]; } // Copy eigenvectors to OpenCV Matrix. _eigenvectors.create(n, n, CV_64FC1); for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) _eigenvectors.at (i, j) = V[i][j]; // Deallocate the memory by releasing all internal working data. release(); } public: EigenvalueDecomposition() : n(0) { } // Initializes & computes the Eigenvalue Decomposition for a general matrix // given in src. This function is a port of the EigenvalueSolver in JAMA, // which has been released to public domain by The MathWorks and the // National Institute of Standards and Technology (NIST). EigenvalueDecomposition(InputArray src) { compute(src); } // This function computes the Eigenvalue Decomposition for a general matrix // given in src. This function is a port of the EigenvalueSolver in JAMA, // which has been released to public domain by The MathWorks and the // National Institute of Standards and Technology (NIST). void compute(InputArray src) { if(isSymmetric(src)) { // Fall back to OpenCV for a symmetric matrix! cv::eigen(src, _eigenvalues, _eigenvectors); } else { Mat tmp; // Convert the given input matrix to double. Is there any way to // prevent allocating the temporary memory? Only used for copying // into working memory and deallocated after. src.getMat().convertTo(tmp, CV_64FC1); // Get dimension of the matrix. this->n = tmp.cols; // Allocate the matrix data to work on. this->H = alloc_2d (n, n); // Now safely copy the data. for (int i = 0; i < tmp.rows; i++) { for (int j = 0; j < tmp.cols; j++) { this->H[i][j] = tmp.at(i, j); } } // Deallocates the temporary matrix before computing. tmp.release(); // Performs the eigenvalue decomposition of H. compute(); } } ~EigenvalueDecomposition() {} // Returns the eigenvalues of the Eigenvalue Decomposition. Mat eigenvalues() { return _eigenvalues; } // Returns the eigenvectors of the Eigenvalue Decomposition. Mat eigenvectors() { return _eigenvectors; } }; //------------------------------------------------------------------------------ // Linear Discriminant Analysis implementation //------------------------------------------------------------------------------ void LDA::save(const std::string& filename) const { FileStorage fs(filename, FileStorage::WRITE); if (!fs.isOpened()) { CV_Error(CV_StsError, "File can't be opened for writing!"); } this->save(fs); fs.release(); } // Deserializes this object from a given filename. void LDA::load(const std::string& filename) { FileStorage fs(filename, FileStorage::READ); if (!fs.isOpened()) CV_Error(CV_StsError, "File can't be opened for writing!"); this->load(fs); fs.release(); } // Serializes this object to a given FileStorage. void LDA::save(FileStorage& fs) const { // write matrices fs << "num_components" << _num_components; fs << "eigenvalues" << _eigenvalues; fs << "eigenvectors" << _eigenvectors; } // Deserializes this object from a given FileStorage. void LDA::load(const FileStorage& fs) { //read matrices fs["num_components"] >> _num_components; fs["eigenvalues"] >> _eigenvalues; fs["eigenvectors"] >> _eigenvectors; } void LDA::lda(InputArrayOfArrays _src, InputArray _lbls) { // get data Mat src = _src.getMat(); std::vector labels; // safely copy the labels { Mat tmp = _lbls.getMat(); for(unsigned int i = 0; i < tmp.total(); i++) { labels.push_back(tmp.at(i)); } } // turn into row sampled matrix Mat data; // ensure working matrix is double precision src.convertTo(data, CV_64FC1); // maps the labels, so they're ascending: [0,1,...,C] std::vector mapped_labels(labels.size()); std::vector num2label = remove_dups(labels); std::map label2num; for (int i = 0; i < (int)num2label.size(); i++) label2num[num2label[i]] = i; for (size_t i = 0; i < labels.size(); i++) mapped_labels[i] = label2num[labels[i]]; // get sample size, dimension int N = data.rows; int D = data.cols; // number of unique labels int C = (int)num2label.size(); // we can't do a LDA on one class, what do you // want to separate from each other then? if(C == 1) { std::string error_message = "At least two classes are needed to perform a LDA. Reason: Only one class was given!"; CV_Error(CV_StsBadArg, error_message); } // throw error if less labels, than samples if (labels.size() != static_cast(N)) { std::string error_message = format("The number of samples must equal the number of labels. Given %d labels, %d samples. ", labels.size(), N); CV_Error(CV_StsBadArg, error_message); } // warn if within-classes scatter matrix becomes singular if (N < D) { std::cout << "Warning: Less observations than feature dimension given!" << "Computation will probably fail." << std::endl; } // clip number of components to be a valid number if ((_num_components <= 0) || (_num_components > (C - 1))) { _num_components = (C - 1); } // holds the mean over all classes Mat meanTotal = Mat::zeros(1, D, data.type()); // holds the mean for each class std::vector meanClass(C); std::vector numClass(C); // initialize for (int i = 0; i < C; i++) { numClass[i] = 0; meanClass[i] = Mat::zeros(1, D, data.type()); //! Dx1 image vector } // calculate sums for (int i = 0; i < N; i++) { Mat instance = data.row(i); int classIdx = mapped_labels[i]; add(meanTotal, instance, meanTotal); add(meanClass[classIdx], instance, meanClass[classIdx]); numClass[classIdx]++; } // calculate total mean meanTotal.convertTo(meanTotal, meanTotal.type(), 1.0 / static_cast (N)); // calculate class means for (int i = 0; i < C; i++) { meanClass[i].convertTo(meanClass[i], meanClass[i].type(), 1.0 / static_cast (numClass[i])); } // subtract class means for (int i = 0; i < N; i++) { int classIdx = mapped_labels[i]; Mat instance = data.row(i); subtract(instance, meanClass[classIdx], instance); } // calculate within-classes scatter Mat Sw = Mat::zeros(D, D, data.type()); mulTransposed(data, Sw, true); // calculate between-classes scatter Mat Sb = Mat::zeros(D, D, data.type()); for (int i = 0; i < C; i++) { Mat tmp; subtract(meanClass[i], meanTotal, tmp); mulTransposed(tmp, tmp, true); add(Sb, tmp, Sb); } // invert Sw Mat Swi = Sw.inv(); // M = inv(Sw)*Sb Mat M; gemm(Swi, Sb, 1.0, Mat(), 0.0, M); EigenvalueDecomposition es(M); _eigenvalues = es.eigenvalues(); _eigenvectors = es.eigenvectors(); // reshape eigenvalues, so they are stored by column _eigenvalues = _eigenvalues.reshape(1, 1); // get sorted indices descending by their eigenvalue std::vector sorted_indices = argsort(_eigenvalues, false); // now sort eigenvalues and eigenvectors accordingly _eigenvalues = sortMatrixColumnsByIndices(_eigenvalues, sorted_indices); _eigenvectors = sortMatrixColumnsByIndices(_eigenvectors, sorted_indices); // and now take only the num_components and we're out! _eigenvalues = Mat(_eigenvalues, Range::all(), Range(0, _num_components)); _eigenvectors = Mat(_eigenvectors, Range::all(), Range(0, _num_components)); } void LDA::compute(InputArrayOfArrays _src, InputArray _lbls) { switch(_src.kind()) { case _InputArray::STD_VECTOR_MAT: lda(asRowMatrix(_src, CV_64FC1), _lbls); break; case _InputArray::MAT: lda(_src.getMat(), _lbls); break; default: std::string error_message= format("InputArray Datatype %d is not supported.", _src.kind()); CV_Error(CV_StsBadArg, error_message); break; } } // Projects samples into the LDA subspace. Mat LDA::project(InputArray src) { return subspaceProject(_eigenvectors, Mat(), _dataAsRow ? src : src.getMat().t()); } // Reconstructs projections from the LDA subspace. Mat LDA::reconstruct(InputArray src) { return subspaceReconstruct(_eigenvectors, Mat(), _dataAsRow ? src : src.getMat().t()); } }