/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include #include #include namespace cv { int RANSACUpdateNumIters( double p, double ep, int modelPoints, int maxIters ) { if( modelPoints <= 0 ) CV_Error( CV_StsOutOfRange, "the number of model points should be positive" ); p = MAX(p, 0.); p = MIN(p, 1.); ep = MAX(ep, 0.); ep = MIN(ep, 1.); // avoid inf's & nan's double num = MAX(1. - p, DBL_MIN); double denom = 1. - std::pow(1. - ep, modelPoints); if( denom < DBL_MIN ) return 0; num = std::log(num); denom = std::log(denom); return denom >= 0 || -num >= maxIters*(-denom) ? maxIters : cvRound(num/denom); } class RANSACPointSetRegistrator : public PointSetRegistrator { public: RANSACPointSetRegistrator(const Ptr& _cb=Ptr(), int _modelPoints=0, double _threshold=0, double _confidence=0.99, int _maxIters=1000) : cb(_cb), modelPoints(_modelPoints), threshold(_threshold), confidence(_confidence), maxIters(_maxIters) { checkPartialSubsets = true; } virtual ~RANSACPointSetRegistrator() {} int findInliers( const Mat& m1, const Mat& m2, const Mat& model, Mat& err, Mat& mask, double thresh ) const { cb->computeError( m1, m2, model, err ); mask.create(err.size(), CV_8U); CV_Assert( err.isContinuous() && err.type() == CV_32F && mask.isContinuous() && mask.type() == CV_8U); const float* errptr = err.ptr(); uchar* maskptr = mask.ptr(); float t = (float)(thresh*thresh); int i, n = (int)err.total(), nz = 0; for( i = 0; i < n; i++ ) { int f = errptr[i] <= t; maskptr[i] = (uchar)f; nz += f; } return nz; } bool getSubset( const Mat& m1, const Mat& m2, Mat& ms1, Mat& ms2, RNG& rng, int maxAttempts=1000 ) const { cv::AutoBuffer _idx(modelPoints); int* idx = _idx; int i = 0, j, k, iters = 0; int esz1 = (int)m1.elemSize(), esz2 = (int)m2.elemSize(); int d1 = m1.channels() > 1 ? m1.channels() : m1.cols; int d2 = m2.channels() > 1 ? m2.channels() : m2.cols; int count = m1.checkVector(d1), count2 = m2.checkVector(d2); const int *m1ptr = (const int*)m1.data, *m2ptr = (const int*)m2.data; ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1)); ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2)); int *ms1ptr = (int*)ms1.data, *ms2ptr = (int*)ms2.data; CV_Assert( count >= modelPoints && count == count2 ); CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 ); esz1 /= sizeof(int); esz2 /= sizeof(int); for(; iters < maxAttempts; iters++) { for( i = 0; i < modelPoints && iters < maxAttempts; ) { int idx_i = 0; for(;;) { idx_i = idx[i] = rng.uniform(0, count); for( j = 0; j < i; j++ ) if( idx_i == idx[j] ) break; if( j == i ) break; } for( k = 0; k < esz1; k++ ) ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k]; for( k = 0; k < esz2; k++ ) ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k]; if( checkPartialSubsets && !cb->checkSubset( ms1, ms2, i+1 )) { iters++; continue; } i++; } if( !checkPartialSubsets && i == modelPoints && !cb->checkSubset(ms1, ms2, i)) continue; break; } return i == modelPoints && iters < maxAttempts; } bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const { bool result = false; Mat m1 = _m1.getMat(), m2 = _m2.getMat(); Mat err, mask, model, bestModel, ms1, ms2; int iter, niters = MAX(maxIters, 1); int d1 = m1.channels() > 1 ? m1.channels() : m1.cols; int d2 = m2.channels() > 1 ? m2.channels() : m2.cols; int count = m1.checkVector(d1), count2 = m2.checkVector(d2), maxGoodCount = 0; RNG rng((uint64)-1); CV_Assert( !cb.empty() ); CV_Assert( confidence > 0 && confidence < 1 ); CV_Assert( count >= 0 && count2 == count ); if( count < modelPoints ) return false; Mat bestMask0, bestMask; if( _mask.needed() ) { if( !_mask.fixedSize() ) _mask.create(count, 1, CV_8U); bestMask0 = bestMask = _mask.getMat(); CV_Assert( (bestMask.cols == 1 || bestMask.rows == 1) && (int)bestMask.total() == count ); } else { bestMask.create(count, 1, CV_8U); bestMask0 = bestMask; } if( count == modelPoints ) { if( cb->runKernel(m1, m2, bestModel) <= 0 ) return false; bestModel.copyTo(_model); bestMask.setTo(Scalar::all(1)); return true; } for( iter = 0; iter < niters; iter++ ) { int i, goodCount, nmodels; if( count > modelPoints ) { bool found = getSubset( m1, m2, ms1, ms2, rng ); if( !found ) { if( iter == 0 ) return false; break; } } nmodels = cb->runKernel( ms1, ms2, model ); if( nmodels <= 0 ) continue; CV_Assert( model.rows % nmodels == 0 ); Size modelSize(model.cols, model.rows/nmodels); for( i = 0; i < nmodels; i++ ) { Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height ); goodCount = findInliers( m1, m2, model_i, err, mask, threshold ); if( goodCount > MAX(maxGoodCount, modelPoints-1) ) { std::swap(mask, bestMask); model_i.copyTo(bestModel); maxGoodCount = goodCount; niters = RANSACUpdateNumIters( confidence, (double)(count - goodCount)/count, modelPoints, niters ); } } } if( maxGoodCount > 0 ) { if( bestMask.data != bestMask0.data ) { if( bestMask.size() == bestMask0.size() ) bestMask.copyTo(bestMask0); else transpose(bestMask, bestMask0); } bestModel.copyTo(_model); result = true; } else _model.release(); return result; } void setCallback(const Ptr& _cb) { cb = _cb; } AlgorithmInfo* info() const; Ptr cb; int modelPoints; int maxBasicSolutions; bool checkPartialSubsets; double threshold; double confidence; int maxIters; }; static CV_IMPLEMENT_QSORT( sortDistances, int, CV_LT ) class LMeDSPointSetRegistrator : public RANSACPointSetRegistrator { public: LMeDSPointSetRegistrator(const Ptr& _cb=Ptr(), int _modelPoints=0, double _confidence=0.99, int _maxIters=1000) : RANSACPointSetRegistrator(_cb, _modelPoints, 0, _confidence, _maxIters) {} bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const { const double outlierRatio = 0.45; bool result = false; Mat m1 = _m1.getMat(), m2 = _m2.getMat(); Mat ms1, ms2, err, errf, model, bestModel, mask, mask0; int d1 = m1.channels() > 1 ? m1.channels() : m1.cols; int d2 = m2.channels() > 1 ? m2.channels() : m2.cols; int count = m1.checkVector(d1), count2 = m2.checkVector(d2); double minMedian = DBL_MAX, sigma; RNG rng((uint64)-1); CV_Assert( !cb.empty() ); CV_Assert( confidence > 0 && confidence < 1 ); CV_Assert( count >= 0 && count2 == count ); if( count < modelPoints ) return false; if( _mask.needed() ) { if( !_mask.fixedSize() ) _mask.create(count, 1, CV_8U); mask0 = mask = _mask.getMat(); CV_Assert( (mask.cols == 1 || mask.rows == 1) && (int)mask.total() == count ); } if( count == modelPoints ) { if( cb->runKernel(m1, m2, bestModel) <= 0 ) return false; bestModel.copyTo(_model); mask.setTo(Scalar::all(1)); return true; } int iter, niters = cvRound(std::log(1-confidence)/ std::log(1-std::pow(1-outlierRatio,(double)modelPoints))); niters = MIN( MAX(niters, 3), maxIters ); for( iter = 0; iter < niters; iter++ ) { int i, nmodels; if( count > modelPoints ) { bool found = getSubset( m1, m2, ms1, ms2, rng ); if( !found ) { if( iter == 0 ) return false; break; } } nmodels = cb->runKernel( ms1, ms2, model ); if( nmodels <= 0 ) continue; CV_Assert( model.rows % nmodels == 0 ); Size modelSize(model.cols, model.rows/nmodels); for( i = 0; i < nmodels; i++ ) { Mat model_i = model.rowRange( i*modelSize.height, (i+1)*modelSize.height ); cb->computeError( m1, m2, model_i, err ); if( err.depth() != CV_32F ) err.convertTo(errf, CV_32F); else errf = err; CV_Assert( errf.isContinuous() && errf.type() == CV_32F && (int)errf.total() == count ); sortDistances( (int*)errf.data, count, 0 ); double median = count % 2 != 0 ? errf.at(count/2) : (errf.at(count/2-1) + errf.at(count/2))*0.5; if( median < minMedian ) { minMedian = median; model_i.copyTo(bestModel); } } } if( minMedian < DBL_MAX ) { sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian); sigma = MAX( sigma, 0.001 ); count = findInliers( m1, m2, bestModel, err, mask, sigma ); if( _mask.needed() && mask0.data != mask.data ) { if( mask0.size() == mask.size() ) mask.copyTo(mask0); else transpose(mask, mask0); } bestModel.copyTo(_model); result = count >= modelPoints; } else _model.release(); return result; } AlgorithmInfo* info() const; }; CV_INIT_ALGORITHM(RANSACPointSetRegistrator, "PointSetRegistrator.RANSAC", obj.info()->addParam(obj, "threshold", obj.threshold); obj.info()->addParam(obj, "confidence", obj.confidence); obj.info()->addParam(obj, "maxIters", obj.maxIters)); CV_INIT_ALGORITHM(LMeDSPointSetRegistrator, "PointSetRegistrator.LMeDS", obj.info()->addParam(obj, "confidence", obj.confidence); obj.info()->addParam(obj, "maxIters", obj.maxIters)); Ptr createRANSACPointSetRegistrator(const Ptr& _cb, int _modelPoints, double _threshold, double _confidence, int _maxIters) { CV_Assert( !RANSACPointSetRegistrator_info_auto.name().empty() ); return new RANSACPointSetRegistrator(_cb, _modelPoints, _threshold, _confidence, _maxIters); } Ptr createLMeDSPointSetRegistrator(const Ptr& _cb, int _modelPoints, double _confidence, int _maxIters) { CV_Assert( !LMeDSPointSetRegistrator_info_auto.name().empty() ); return new LMeDSPointSetRegistrator(_cb, _modelPoints, _confidence, _maxIters); } class Affine3DEstimatorCallback : public PointSetRegistrator::Callback { public: int runKernel( InputArray _m1, InputArray _m2, OutputArray _model ) const { Mat m1 = _m1.getMat(), m2 = _m2.getMat(); const Point3f* from = m1.ptr(); const Point3f* to = m2.ptr(); const int N = 12; double buf[N*N + N + N]; Mat A(N, N, CV_64F, &buf[0]); Mat B(N, 1, CV_64F, &buf[0] + N*N); Mat X(N, 1, CV_64F, &buf[0] + N*N + N); double* Adata = A.ptr(); double* Bdata = B.ptr(); A = Scalar::all(0); for( int i = 0; i < (N/3); i++ ) { Bdata[i*3] = to[i].x; Bdata[i*3+1] = to[i].y; Bdata[i*3+2] = to[i].z; double *aptr = Adata + i*3*N; for(int k = 0; k < 3; ++k) { aptr[0] = from[i].x; aptr[1] = from[i].y; aptr[2] = from[i].z; aptr[3] = 1.0; aptr += 16; } } solve(A, B, X, DECOMP_SVD); X.reshape(1, 3).copyTo(_model); return 1; } void computeError( InputArray _m1, InputArray _m2, InputArray _model, OutputArray _err ) const { Mat m1 = _m1.getMat(), m2 = _m2.getMat(), model = _model.getMat(); const Point3f* from = m1.ptr(); const Point3f* to = m2.ptr(); const double* F = model.ptr(); int count = m1.checkVector(3); CV_Assert( count > 0 ); _err.create(count, 1, CV_32F); Mat err = _err.getMat(); float* errptr = err.ptr(); for(int i = 0; i < count; i++ ) { const Point3f& f = from[i]; const Point3f& t = to[i]; double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x; double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y; double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z; errptr[i] = (float)std::sqrt(a*a + b*b + c*c); } } bool checkSubset( InputArray _ms1, InputArray _ms2, int count ) const { const float threshold = 0.996f; Mat ms1 = _ms1.getMat(), ms2 = _ms2.getMat(); for( int inp = 1; inp <= 2; inp++ ) { int j, k, i = count - 1; const Mat* msi = inp == 1 ? &ms1 : &ms2; const Point3f* ptr = msi->ptr(); CV_Assert( count <= msi->rows ); // check that the i-th selected point does not belong // to a line connecting some previously selected points for(j = 0; j < i; ++j) { Point3f d1 = ptr[j] - ptr[i]; float n1 = d1.x*d1.x + d1.y*d1.y; for(k = 0; k < j; ++k) { Point3f d2 = ptr[k] - ptr[i]; float denom = (d2.x*d2.x + d2.y*d2.y)*n1; float num = d1.x*d2.x + d1.y*d2.y; if( num*num > threshold*threshold*denom ) return false; } } } return true; } }; } int cv::estimateAffine3D(InputArray _from, InputArray _to, OutputArray _out, OutputArray _inliers, double param1, double param2) { Mat from = _from.getMat(), to = _to.getMat(); int count = from.checkVector(3); CV_Assert( count >= 0 && to.checkVector(3) == count ); Mat dFrom, dTo; from.convertTo(dFrom, CV_32F); to.convertTo(dTo, CV_32F); dFrom = dFrom.reshape(3, count); dTo = dTo.reshape(3, count); const double epsilon = DBL_EPSILON; param1 = param1 <= 0 ? 3 : param1; param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2; return createRANSACPointSetRegistrator(new Affine3DEstimatorCallback, 4, param1, param2)->run(dFrom, dTo, _out, _inliers); }