// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "test_precomp.hpp" namespace opencv_test { namespace { TEST(ML_KMeans, accuracy) { const int iters = 100; int sizesArr[] = { 5000, 7000, 8000 }; int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; Mat data( pointsCount, 2, CV_32FC1 ), labels; vector sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); Mat means; vector covs; defaultDistribs( means, covs ); generateData( data, labels, sizes, means, covs, CV_32FC1, CV_32SC1 ); TermCriteria termCriteria( TermCriteria::COUNT, iters, 0.0); { SCOPED_TRACE("KMEANS_PP_CENTERS"); float err = 1000; Mat bestLabels; kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_PP_CENTERS, noArray() ); EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err , false )); EXPECT_LE(err, 0.01f); } { SCOPED_TRACE("KMEANS_RANDOM_CENTERS"); float err = 1000; Mat bestLabels; kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_RANDOM_CENTERS, noArray() ); EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err, false )); EXPECT_LE(err, 0.01f); } { SCOPED_TRACE("KMEANS_USE_INITIAL_LABELS"); float err = 1000; Mat bestLabels; labels.copyTo( bestLabels ); RNG &rng = cv::theRNG(); for( int i = 0; i < 0.5f * pointsCount; i++ ) bestLabels.at( rng.next() % pointsCount, 0 ) = rng.next() % 3; kmeans( data, 3, bestLabels, termCriteria, 0, KMEANS_USE_INITIAL_LABELS, noArray() ); EXPECT_TRUE(calcErr( bestLabels, labels, sizes, err, false )); EXPECT_LE(err, 0.01f); } } }} // namespace