// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2018, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. #include "../precomp.hpp" #ifdef HAVE_PROTOBUF #include "tf_graph_simplifier.hpp" namespace cv { namespace dnn { CV__DNN_INLINE_NS_BEGIN using ::google::protobuf::RepeatedField; using ::google::protobuf::MapPair; class Subgraph // Interface to match and replace TensorFlow subgraphs. { public: // Add a node to be matched in the origin graph. Specify ids of nodes that // are expected to be inputs. Returns id of a newly added node. // TODO: Replace inputs to std::vector in C++11 int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1, int input_2 = -1, int input_3 = -1) { int nodeInputs[] = {input_0, input_1, input_2, input_3}; int numInputs = 0; for (int i = 0; i < 4; ++i) { numInputs += (int)(nodeInputs[i] != -1); } return addNodeToMatch(op, std::vector(&nodeInputs[0], &nodeInputs[0] + numInputs)); } int addNodeToMatch(const std::string& op, const std::vector& inputs_) { for (int i = 0; i < inputs_.size(); ++i) { CV_Assert(inputs_[i] < (int)nodes.size()); } nodes.push_back(op); inputs.push_back(inputs_); return nodes.size() - 1; } // Specify resulting node. All the matched nodes in subgraph excluding // input nodes will be fused into this single node. // TODO: Replace inputs to std::vector in C++11 void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1, int input_2 = -1, int input_3 = -1, int input_4 = -1, int input_5 = -1) { int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5}; int numInputs = 0; for (int i = 0; i < 6; ++i) { CV_Assert(nodeInputs[i] < (int)nodes.size()); numInputs += (int)(nodeInputs[i] != -1); } setFusedNode(op, std::vector(&nodeInputs[0], &nodeInputs[0] + numInputs)); } void setFusedNode(const std::string& op, const std::vector& inputs_) { fusedNodeInputs = inputs_; fusedNodeOp = op; nodesToFuse.clear(); for (int i = 0; i < nodes.size(); ++i) { if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end() && nodes[i] != "Const") nodesToFuse.push_back(i); } } static const tensorflow::NodeDef& getInputNode(const tensorflow::GraphDef& net, const tensorflow::NodeDef& node, int inpId) { CV_Assert(inpId < node.input_size()); std::string name = node.input(inpId); // If operation produces several tensors, they are specified by index // after ':' character. In example, "input:0". name = name.substr(0, name.rfind(':')); const int numNodes = net.node_size(); for (int i = 0; i < numNodes; ++i) { if (net.node(i).name() == name) return net.node(i); } CV_Error(Error::StsParseError, "Input node with name " + name + " not found"); } // Match TensorFlow subgraph starting from with a set of nodes to be fused. // Const nodes are skipped during matching. Returns true if nodes are matched and can be fused. virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector& matchedNodesIds) { matchedNodesIds.clear(); matchedNodesIds.reserve(nodesToFuse.size()); int numNodes = net.node_size(); for (int i = 0; i < nodesToFuse.size(); ++i) { while (nodeId < numNodes && net.node(nodeId).op() == "Const") { nodeId += 1; } if (nodeId > numNodes - 1) return false; const tensorflow::NodeDef& node = net.node(nodeId); if (node.op() != nodes[nodesToFuse[i]]) return false; std::vector& inputNodes = inputs[nodesToFuse[i]]; if (inputNodes.size() != node.input_size()) return false; for (int j = 0; j < inputNodes.size(); ++j) { if (nodes[inputNodes[j]].empty()) // Unknown input node type. continue; const tensorflow::NodeDef& inpNode = getInputNode(net, node, j); if (inpNode.op() != nodes[inputNodes[j]]) return false; } matchedNodesIds.push_back(nodeId); nodeId += 1; } return true; } // Fuse matched subgraph. void replace(tensorflow::GraphDef& net, const std::vector& matchedNodesIds) { // Extract names of input nodes. std::vector inputsNames(fusedNodeInputs.size()); for (int i = 0; i < fusedNodeInputs.size(); ++i) { std::string inpName; // Find input node name looking at inputs of fused nodes. for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j) { const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]); std::vector& inpIndices = inputs[nodesToFuse[j]]; CV_Assert(node.input_size() == inpIndices.size()); for (int k = 0; k < inpIndices.size(); ++k) { if (inpIndices[k] == fusedNodeInputs[i]) { inpName = node.input(k); break; } } } CV_Assert(!inpName.empty()); inputsNames[i] = inpName; } // Remove matched nodes except the last one. Indices in ascending order are expected. tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back()); for (int i = matchedNodesIds.size() - 2; i >= 0; --i) net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1); // Modify the last node to be a fused one. node->set_op(fusedNodeOp); node->clear_input(); for (int i = 0; i < inputsNames.size(); ++i) { node->add_input(inputsNames[i]); } std::vector inputNodes(inputsNames.size()); for (int i = 0; i < inputsNames.size(); ++i) { inputNodes[i] = (tensorflow::NodeDef*)&getInputNode(net, *node, i); } finalize(net, node, inputNodes); } virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*, std::vector&) {} private: std::vector nodes; // Nodes to be matched in the origin graph. std::vector > inputs; // Connections of an every node to it's inputs. std::string fusedNodeOp; // Operation name of resulting fused node. std::vector nodesToFuse; // Set of nodes to be fused. std::vector fusedNodeInputs; // Inputs of fused node. }; class BatchNormSubgraph : public Subgraph { public: BatchNormSubgraph() { int input = addNodeToMatch(""); int epsilon = addNodeToMatch("Const"); int moving_variance = addNodeToMatch("Const"); int moving_mean = addNodeToMatch("Const"); int beta = addNodeToMatch("Const"); int gamma = addNodeToMatch("Const"); int add = addNodeToMatch("Add", moving_variance, epsilon); int rsqrt = addNodeToMatch("Rsqrt", add); int mul = addNodeToMatch("Mul", rsqrt, gamma); int mul_1 = addNodeToMatch("Mul", input, mul); int mul_2 = addNodeToMatch("Mul", moving_mean, mul); int sub = addNodeToMatch("Sub", beta, mul_2); addNodeToMatch("Add", mul_1, sub); setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon); } virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, std::vector& inputNodes) CV_OVERRIDE { Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); fusedNode->mutable_input()->RemoveLast(); fusedNode->clear_attr(); tensorflow::AttrValue epsilon; epsilon.set_f(epsMat.at(0)); fusedNode->mutable_attr()->insert(MapPair("epsilon", epsilon)); } }; class BatchNormNoGammaSubgraph : public Subgraph { public: BatchNormNoGammaSubgraph() { int input = addNodeToMatch(""); int epsilon = addNodeToMatch("Const"); int moving_variance = addNodeToMatch("Const"); int moving_mean = addNodeToMatch("Const"); int beta = addNodeToMatch("Const"); int add = addNodeToMatch("Add", moving_variance, epsilon); int rsqrt = addNodeToMatch("Rsqrt", add); int mul = addNodeToMatch("Mul", input, rsqrt); int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt); int sub = addNodeToMatch("Sub", beta, mul_1); addNodeToMatch("Add", mul, sub); // There is a fake reference to beta that will be replaced to a new gamma tensor. setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon); } virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode, std::vector& inputNodes) CV_OVERRIDE { Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); fusedNode->mutable_input()->RemoveLast(); fusedNode->clear_attr(); tensorflow::AttrValue epsilon; epsilon.set_f(epsMat.at(0)); fusedNode->mutable_attr()->insert(MapPair("epsilon", epsilon)); tensorflow::NodeDef* gamma = net.add_node(); gamma->set_op("Const"); gamma->set_name(fusedNode->name() + "/gamma"); // Just put a single value to recognize this node as Const. gamma->mutable_attr()->insert(MapPair("value", epsilon)); fusedNode->set_input(1, gamma->name()); } }; // tf.contrib.layers.flatten class FlattenSubgraph : public Subgraph { public: FlattenSubgraph() { int input = addNodeToMatch(""); int shape = addNodeToMatch("Const"); int stack = addNodeToMatch("Const"); int stack_1 = addNodeToMatch("Const"); int stack_2 = addNodeToMatch("Const"); int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); int shape_pack = addNodeToMatch("Const"); int pack = addNodeToMatch("Pack", strided_slice, shape_pack); addNodeToMatch("Reshape", input, pack); setFusedNode("Flatten", input); } }; // tf.contrib.layers.flatten in case of unknown batch size class FlattenShapeSubgraph : public Subgraph { public: FlattenShapeSubgraph() { int input = addNodeToMatch(""); int shape = addNodeToMatch("Shape", input); int stack = addNodeToMatch("Const"); int stack_1 = addNodeToMatch("Const"); int stack_2 = addNodeToMatch("Const"); int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); int shape_pack = addNodeToMatch("Const"); int pack = addNodeToMatch("Pack", strided_slice, shape_pack); addNodeToMatch("Reshape", input, pack); setFusedNode("Flatten", input); } }; // K.layers.Softmax class SoftMaxKerasSubgraph : public Subgraph { public: SoftMaxKerasSubgraph() { int input = addNodeToMatch(""); int maxReductionIndices = addNodeToMatch("Const"); int smMax = addNodeToMatch("Max", input, maxReductionIndices); int smSub = addNodeToMatch("Sub", input, smMax); int smExp = addNodeToMatch("Exp", smSub); int sumReductionIndices = addNodeToMatch("Const"); int smSum = addNodeToMatch("Sum", smExp, sumReductionIndices); addNodeToMatch("RealDiv", smExp, smSum); setFusedNode("Softmax", input); } }; class ReLU6KerasSubgraph : public Subgraph { public: ReLU6KerasSubgraph() { int input = addNodeToMatch(""); int relu = addNodeToMatch("Relu", input); int maxValue = addNodeToMatch("Const"); int clipValue = addNodeToMatch("Const"); int minimum = addNodeToMatch("Minimum", relu, maxValue); addNodeToMatch("Maximum", minimum, clipValue); setFusedNode("Relu6", input); } virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector& matchedNodesIds) CV_OVERRIDE { if (!Subgraph::match(net, nodeId, matchedNodesIds)) return false; Mat maxValue = getTensorContent(net.node(nodeId + 1).attr().at("value").tensor()); return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at(0) == 6; } }; // Keras' reshape stores output shape in separate Const nodes by one value. // Need to merge them into a single Const node. class ReshapeKerasSubgraph : public Subgraph { public: ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims) { int input = addNodeToMatch(""); int shape = addNodeToMatch("Shape", input); int stack = addNodeToMatch("Const"); int stack_1 = addNodeToMatch("Const"); int stack_2 = addNodeToMatch("Const"); int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); std::vector ids(1 + numOutDims); ids[0] = strided_slice; for (int i = 0; i < numOutDims; ++i) ids[1 + i] = addNodeToMatch("Const"); int pack = addNodeToMatch("Pack", ids); addNodeToMatch("Reshape", input, pack); ids[0] = input; setFusedNode("Reshape", ids); } virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, std::vector& inputNodes) CV_OVERRIDE { std::vector shape(numOutDims + 1); // batch size in Keras is implicit. shape[0] = -1; for (int i = 0; i < numOutDims; ++i) { shape[1 + i] = inputNodes[1 + i]->attr().at("value").tensor().int_val(0); } tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1); shapeTensor->clear_int_val(); for (int i = 0; i < shape.size(); ++i) { shapeTensor->add_int_val(shape[i]); } } private: int numOutDims; }; class L2NormalizeSubgraph : public Subgraph { public: L2NormalizeSubgraph() { int input = addNodeToMatch(""); int square = addNodeToMatch("Square", input); int reductionIndices = addNodeToMatch("Const"); int sum = addNodeToMatch("Sum", square, reductionIndices); int y = addNodeToMatch("Const"); int maximum = addNodeToMatch("Maximum", sum, y); int rsqrt = addNodeToMatch("Rsqrt", maximum); addNodeToMatch("Mul", input, rsqrt); setFusedNode("L2Normalize", input, reductionIndices); } }; class DeconvolutionValidKerasSubgraph : public Subgraph { public: DeconvolutionValidKerasSubgraph() { int input = addNodeToMatch(""); int shape = addNodeToMatch("Shape", input); int kernel = addNodeToMatch("Const"); int stack = addNodeToMatch("Const"); int stack_1 = addNodeToMatch("Const"); int stack_2 = addNodeToMatch("Const"); int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); stack = addNodeToMatch("Const"); stack_1 = addNodeToMatch("Const"); stack_2 = addNodeToMatch("Const"); int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); stack = addNodeToMatch("Const"); stack_1 = addNodeToMatch("Const"); stack_2 = addNodeToMatch("Const"); int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const")); int add = addNodeToMatch("Add", mul, addNodeToMatch("Const")); int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const")); int add_1 = addNodeToMatch("Add", mul_1, addNodeToMatch("Const")); int pack = addNodeToMatch("Pack", strided_slice, add, add_1, addNodeToMatch("Const")); addNodeToMatch("Conv2DBackpropInput", pack, kernel, input); // Put any unused Const op to the first input. setFusedNode("Conv2DBackpropInput", stack, kernel, input); } virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, std::vector& inputNodes) CV_OVERRIDE { // Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp) // adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX; // adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY; // Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW). std::string padMode = fusedNode->attr().at("padding").s(); CV_Assert(padMode == "VALID"); const tensorflow::TensorShapeProto& kernelShape = inputNodes[1]->mutable_attr()->at("value").tensor().tensor_shape(); CV_Assert(kernelShape.dim_size() == 4); const int kernelHeight = kernelShape.dim(0).size(); const int kernelWidth = kernelShape.dim(1).size(); tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor(); outShape->clear_int_val(); outShape->add_int_val(-1); outShape->add_int_val(kernelHeight); outShape->add_int_val(kernelWidth); outShape->add_int_val(-1); } }; class DeconvolutionSameKerasSubgraph : public Subgraph { public: DeconvolutionSameKerasSubgraph() { int input = addNodeToMatch(""); int shape = addNodeToMatch("Shape", input); int kernel = addNodeToMatch("Const"); int stack = addNodeToMatch("Const"); int stack_1 = addNodeToMatch("Const"); int stack_2 = addNodeToMatch("Const"); int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); stack = addNodeToMatch("Const"); stack_1 = addNodeToMatch("Const"); stack_2 = addNodeToMatch("Const"); int strided_slice_1 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); stack = addNodeToMatch("Const"); stack_1 = addNodeToMatch("Const"); stack_2 = addNodeToMatch("Const"); int strided_slice_2 = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); int mul = addNodeToMatch("Mul", strided_slice_1, addNodeToMatch("Const")); int mul_1 = addNodeToMatch("Mul", strided_slice_2, addNodeToMatch("Const")); int pack = addNodeToMatch("Pack", strided_slice, mul, mul_1, addNodeToMatch("Const")); addNodeToMatch("Conv2DBackpropInput", pack, kernel, input); // Put any unused Const op to the first input. setFusedNode("Conv2DBackpropInput", stack, kernel, input); } virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, std::vector& inputNodes) CV_OVERRIDE { // Disable adjusted paddings (see Conv2DBackpropInput layer at tf_importer.cpp) // adj_w = (outW - (pad == "SAME") ? 1 : kernelW) % strideX; // adj_h = (outH - (pad == "SAME") ? 1 : kernelH) % strideY; // Where outH and outW are 1st and 2nd dimensions (NHWC) or 2nd and third (NCHW). std::string padMode = fusedNode->attr().at("padding").s(); CV_Assert(padMode == "SAME"); const tensorflow::AttrValue_ListValue& strides = fusedNode->attr().at("strides").list(); CV_Assert(strides.i_size() == 4); const int strideY = strides.i(1); const int strideX = strides.i(2); tensorflow::TensorProto* outShape = inputNodes[0]->mutable_attr()->at("value").mutable_tensor(); outShape->clear_int_val(); outShape->add_int_val(-1); outShape->add_int_val(strideY); outShape->add_int_val(strideX); outShape->add_int_val(-1); } }; // In case of resizing by factor. class ResizeBilinearSubgraph : public Subgraph { public: ResizeBilinearSubgraph() { int input = addNodeToMatch(""); int shape = addNodeToMatch("Shape", input); int stack = addNodeToMatch("Const"); int stack_1 = addNodeToMatch("Const"); int stack_2 = addNodeToMatch("Const"); int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); int factorY = addNodeToMatch("Const"); int mul = addNodeToMatch("Mul", strided_slice, factorY); shape = addNodeToMatch("Shape", input); stack = addNodeToMatch("Const"); stack_1 = addNodeToMatch("Const"); stack_2 = addNodeToMatch("Const"); strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); int factorX = addNodeToMatch("Const"); int mul_1 = addNodeToMatch("Mul", strided_slice, factorX); int pack = addNodeToMatch("Pack", mul, mul_1); addNodeToMatch("ResizeBilinear", input, pack); setFusedNode("ResizeBilinear", input, factorY, factorX); } }; // In case of resizing by factor. class UpsamplingKerasSubgraph : public Subgraph { public: UpsamplingKerasSubgraph() { int input = addNodeToMatch(""); int shape = addNodeToMatch("Shape", input); int stack = addNodeToMatch("Const"); int stack_1 = addNodeToMatch("Const"); int stack_2 = addNodeToMatch("Const"); int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); int factors = addNodeToMatch("Const"); int mul = addNodeToMatch("Mul", strided_slice, factors); addNodeToMatch("ResizeNearestNeighbor", input, mul); setFusedNode("ResizeNearestNeighbor", input, factors); } virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode, std::vector& inputNodes) CV_OVERRIDE { Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor()); CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, ""); // Height scale factor tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); factorY->clear_int_val(); factorY->clear_tensor_content(); factorY->add_int_val(factorsMat.at(0, 0)); // Width scale factor. tensorflow::NodeDef* factorXNode = net.add_node(); factorXNode->set_op("Const"); factorXNode->set_name(fusedNode->name() + "/factor_y"); tensorflow::AttrValue factorX; factorX.mutable_tensor()->set_dtype(tensorflow::DT_INT32); factorX.mutable_tensor()->add_int_val(factorsMat.at(0, 1)); factorXNode->mutable_attr()->insert(MapPair("value", factorX)); fusedNode->add_input(factorXNode->name()); } }; class ReshapeAsShapeSubgraph : public Subgraph { public: ReshapeAsShapeSubgraph() { int input = addNodeToMatch(""); int shapeSrc = addNodeToMatch(""); int shape = addNodeToMatch("Shape", shapeSrc); addNodeToMatch("Reshape", input, shape); setFusedNode("Reshape", input, shapeSrc); } }; void simplifySubgraphs(tensorflow::GraphDef& net) { std::vector > subgraphs; subgraphs.push_back(Ptr(new BatchNormSubgraph())); subgraphs.push_back(Ptr(new BatchNormNoGammaSubgraph())); subgraphs.push_back(Ptr(new FlattenSubgraph())); subgraphs.push_back(Ptr(new FlattenShapeSubgraph())); subgraphs.push_back(Ptr(new SoftMaxKerasSubgraph())); subgraphs.push_back(Ptr(new ReLU6KerasSubgraph())); subgraphs.push_back(Ptr(new ReshapeKerasSubgraph(3))); subgraphs.push_back(Ptr(new L2NormalizeSubgraph())); subgraphs.push_back(Ptr(new DeconvolutionValidKerasSubgraph())); subgraphs.push_back(Ptr(new DeconvolutionSameKerasSubgraph())); subgraphs.push_back(Ptr(new ResizeBilinearSubgraph())); subgraphs.push_back(Ptr(new UpsamplingKerasSubgraph())); subgraphs.push_back(Ptr(new ReshapeAsShapeSubgraph())); int numNodes = net.node_size(); std::vector matchedNodesIds; for (int i = 0; i < numNodes; ++i) { for (int j = 0; j < subgraphs.size(); ++j) { if (subgraphs[j]->match(net, i, matchedNodesIds)) { subgraphs[j]->replace(net, matchedNodesIds); numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added. break; } } } } void RemoveIdentityOps(tensorflow::GraphDef& net) { typedef std::map IdentityOpsMap; IdentityOpsMap identity_ops; std::vector identity_ops_idx; int layersCount = net.node_size(); for (int li = 0; li < layersCount; li++) { const tensorflow::NodeDef &layer = net.node(li); String type = layer.op(); if (type == "Identity" || type == "Dropout") { identity_ops_idx.push_back(li); identity_ops[layer.name()] = layer.input(0); } } for (int li = 0; li < layersCount; li++) { tensorflow::NodeDef* layer = net.mutable_node(li); for (int input_id = 0; input_id < layer->input_size(); input_id++) { String input_op_name = layer->input(input_id); IdentityOpsMap::iterator it = identity_ops.find(input_op_name); if (it != identity_ops.end()) { layer->set_input(input_id, it->second); } } } std::sort(identity_ops_idx.begin(), identity_ops_idx.end()); int removed_nodes = 0; for(size_t i = 0; i < identity_ops_idx.size(); i++) { int start_id = identity_ops_idx[i] - removed_nodes; net.mutable_node()->DeleteSubrange(start_id, 1); removed_nodes++; } } Mat getTensorContent(const tensorflow::TensorProto &tensor) { const std::string& content = tensor.tensor_content(); switch (tensor.dtype()) { case tensorflow::DT_FLOAT: { if (!content.empty()) return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone(); else { const RepeatedField& field = tensor.float_val(); CV_Assert(!field.empty()); return Mat(1, field.size(), CV_32FC1, (void*)field.data()).clone(); } } case tensorflow::DT_DOUBLE: { if (!content.empty()) return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone(); else { const RepeatedField& field = tensor.double_val(); CV_Assert(!field.empty()); return Mat(1, field.size(), CV_64FC1, (void*)field.data()).clone(); } } case tensorflow::DT_INT32: { if (!content.empty()) return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone(); else { const RepeatedField& field = tensor.int_val(); CV_Assert(!field.empty()); return Mat(1, field.size(), CV_32SC1, (void*)field.data()).clone(); } } case tensorflow::DT_HALF: { Mat halfs; if (!content.empty()) { static const int kHalfSize = 2; halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str()); } else { const RepeatedField& field = tensor.half_val(); CV_Assert(!field.empty()); Mat ints(1, field.size(), CV_32SC1, (void*)field.data()); ints.convertTo(halfs, CV_16UC1); } // Reinterpret as a signed shorts just for a convertFp16 call. Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data); Mat floats(halfs.size(), CV_32FC1); convertFp16(halfsSigned, floats); return floats; } case tensorflow::DT_QUINT8: { CV_Assert(!content.empty()); return Mat(1, content.size(), CV_8UC1, (void*)content.c_str()).clone(); } default: CV_Error(Error::StsError, "Tensor's data type is not supported"); break; } return Mat(); } void releaseTensor(tensorflow::TensorProto* tensor) { if (!tensor->mutable_tensor_content()->empty()) { delete tensor->release_tensor_content(); } } static void permute(google::protobuf::RepeatedPtrField* data, const std::vector& indices) { const int num = data->size(); CV_Assert(num == indices.size()); std::vector elemIdToPos(num); std::vector posToElemId(num); for (int i = 0; i < num; ++i) { elemIdToPos[i] = i; posToElemId[i] = i; } for (int i = 0; i < num; ++i) { int elemId = indices[i]; int pos = elemIdToPos[elemId]; if (pos != i) { data->SwapElements(i, pos); const int swappedElemId = posToElemId[i]; elemIdToPos[elemId] = i; elemIdToPos[swappedElemId] = pos; posToElemId[i] = elemId; posToElemId[pos] = swappedElemId; } } } // Is based on tensorflow::graph_transforms::SortByExecutionOrder void sortByExecutionOrder(tensorflow::GraphDef& net) { // Maps node's name to index at net.node() list. std::map nodesMap; std::map::iterator nodesMapIt; for (int i = 0; i < net.node_size(); ++i) { const tensorflow::NodeDef& node = net.node(i); nodesMap.insert(std::make_pair(node.name(), i)); } // Indices of nodes which use specific node as input. std::vector > edges(nodesMap.size()); std::vector numRefsToAdd(nodesMap.size(), 0); std::vector nodesToAdd; for (int i = 0; i < net.node_size(); ++i) { const tensorflow::NodeDef& node = net.node(i); for (int j = 0; j < node.input_size(); ++j) { std::string inpName = node.input(j); inpName = inpName.substr(0, inpName.rfind(':')); inpName = inpName.substr(inpName.find('^') + 1); nodesMapIt = nodesMap.find(inpName); CV_Assert(nodesMapIt != nodesMap.end()); edges[nodesMapIt->second].push_back(i); } if (node.input_size() == 0) nodesToAdd.push_back(i); else { if (node.op() == "Merge" || node.op() == "RefMerge") { int numControlEdges = 0; for (int j = 0; j < node.input_size(); ++j) numControlEdges += node.input(j)[0] == '^'; numRefsToAdd[i] = numControlEdges + 1; } else numRefsToAdd[i] = node.input_size(); } } std::vector permIds; permIds.reserve(net.node_size()); while (!nodesToAdd.empty()) { int nodeToAdd = nodesToAdd.back(); nodesToAdd.pop_back(); permIds.push_back(nodeToAdd); // std::cout << net.node(nodeToAdd).name() << '\n'; for (int i = 0; i < edges[nodeToAdd].size(); ++i) { int consumerId = edges[nodeToAdd][i]; if (numRefsToAdd[consumerId] > 0) { if (numRefsToAdd[consumerId] == 1) nodesToAdd.push_back(consumerId); else CV_Assert(numRefsToAdd[consumerId] >= 0); numRefsToAdd[consumerId] -= 1; } } } CV_Assert(permIds.size() == net.node_size()); permute(net.mutable_node(), permIds); } CV__DNN_INLINE_NS_END }} // namespace dnn, namespace cv #endif // HAVE_PROTOBUF