#include "clapack.h" /* Table of constant values */ static integer c__1 = 1; doublereal slansy_(char *norm, char *uplo, integer *n, real *a, integer *lda, real *work) { /* System generated locals */ integer a_dim1, a_offset, i__1, i__2; real ret_val, r__1, r__2, r__3; /* Builtin functions */ double sqrt(doublereal); /* Local variables */ integer i__, j; real sum, absa, scale; extern logical lsame_(char *, char *); real value; extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, real *); /* -- LAPACK auxiliary routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* SLANSY returns the value of the one norm, or the Frobenius norm, or */ /* the infinity norm, or the element of largest absolute value of a */ /* real symmetric matrix A. */ /* Description */ /* =========== */ /* SLANSY returns the value */ /* SLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ /* ( */ /* ( norm1(A), NORM = '1', 'O' or 'o' */ /* ( */ /* ( normI(A), NORM = 'I' or 'i' */ /* ( */ /* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ /* where norm1 denotes the one norm of a matrix (maximum column sum), */ /* normI denotes the infinity norm of a matrix (maximum row sum) and */ /* normF denotes the Frobenius norm of a matrix (square root of sum of */ /* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ /* Arguments */ /* ========= */ /* NORM (input) CHARACTER*1 */ /* Specifies the value to be returned in SLANSY as described */ /* above. */ /* UPLO (input) CHARACTER*1 */ /* Specifies whether the upper or lower triangular part of the */ /* symmetric matrix A is to be referenced. */ /* = 'U': Upper triangular part of A is referenced */ /* = 'L': Lower triangular part of A is referenced */ /* N (input) INTEGER */ /* The order of the matrix A. N >= 0. When N = 0, SLANSY is */ /* set to zero. */ /* A (input) REAL array, dimension (LDA,N) */ /* The symmetric matrix A. If UPLO = 'U', the leading n by n */ /* upper triangular part of A contains the upper triangular part */ /* of the matrix A, and the strictly lower triangular part of A */ /* is not referenced. If UPLO = 'L', the leading n by n lower */ /* triangular part of A contains the lower triangular part of */ /* the matrix A, and the strictly upper triangular part of A is */ /* not referenced. */ /* LDA (input) INTEGER */ /* The leading dimension of the array A. LDA >= max(N,1). */ /* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */ /* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */ /* WORK is not referenced. */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. External Functions .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Parameter adjustments */ a_dim1 = *lda; a_offset = 1 + a_dim1; a -= a_offset; --work; /* Function Body */ if (*n == 0) { value = 0.f; } else if (lsame_(norm, "M")) { /* Find max(abs(A(i,j))). */ value = 0.f; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = j; for (i__ = 1; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = value, r__3 = (r__1 = a[i__ + j * a_dim1], dabs( r__1)); value = dmax(r__2,r__3); /* L10: */ } /* L20: */ } } else { i__1 = *n; for (j = 1; j <= i__1; ++j) { i__2 = *n; for (i__ = j; i__ <= i__2; ++i__) { /* Computing MAX */ r__2 = value, r__3 = (r__1 = a[i__ + j * a_dim1], dabs( r__1)); value = dmax(r__2,r__3); /* L30: */ } /* L40: */ } } } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') { /* Find normI(A) ( = norm1(A), since A is symmetric). */ value = 0.f; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = 0.f; i__2 = j - 1; for (i__ = 1; i__ <= i__2; ++i__) { absa = (r__1 = a[i__ + j * a_dim1], dabs(r__1)); sum += absa; work[i__] += absa; /* L50: */ } work[j] = sum + (r__1 = a[j + j * a_dim1], dabs(r__1)); /* L60: */ } i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { /* Computing MAX */ r__1 = value, r__2 = work[i__]; value = dmax(r__1,r__2); /* L70: */ } } else { i__1 = *n; for (i__ = 1; i__ <= i__1; ++i__) { work[i__] = 0.f; /* L80: */ } i__1 = *n; for (j = 1; j <= i__1; ++j) { sum = work[j] + (r__1 = a[j + j * a_dim1], dabs(r__1)); i__2 = *n; for (i__ = j + 1; i__ <= i__2; ++i__) { absa = (r__1 = a[i__ + j * a_dim1], dabs(r__1)); sum += absa; work[i__] += absa; /* L90: */ } value = dmax(value,sum); /* L100: */ } } } else if (lsame_(norm, "F") || lsame_(norm, "E")) { /* Find normF(A). */ scale = 0.f; sum = 1.f; if (lsame_(uplo, "U")) { i__1 = *n; for (j = 2; j <= i__1; ++j) { i__2 = j - 1; slassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum); /* L110: */ } } else { i__1 = *n - 1; for (j = 1; j <= i__1; ++j) { i__2 = *n - j; slassq_(&i__2, &a[j + 1 + j * a_dim1], &c__1, &scale, &sum); /* L120: */ } } sum *= 2; i__1 = *lda + 1; slassq_(n, &a[a_offset], &i__1, &scale, &sum); value = scale * sqrt(sum); } ret_val = value; return ret_val; /* End of SLANSY */ } /* slansy_ */