#include "clapack.h" /* Table of constant values */ static integer c__2 = 2; static integer c__1 = 1; static doublereal c_b24 = 1.; static doublereal c_b26 = 0.; /* Subroutine */ int dlaeda_(integer *n, integer *tlvls, integer *curlvl, integer *curpbm, integer *prmptr, integer *perm, integer *givptr, integer *givcol, doublereal *givnum, doublereal *q, integer *qptr, doublereal *z__, doublereal *ztemp, integer *info) { /* System generated locals */ integer i__1, i__2, i__3; /* Builtin functions */ integer pow_ii(integer *, integer *); double sqrt(doublereal); /* Local variables */ integer i__, k, mid, ptr; extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *); integer curr, bsiz1, bsiz2, psiz1, psiz2, zptr1; extern /* Subroutine */ int dgemv_(char *, integer *, integer *, doublereal *, doublereal *, integer *, doublereal *, integer *, doublereal *, doublereal *, integer *), dcopy_(integer *, doublereal *, integer *, doublereal *, integer *), xerbla_(char *, integer *); /* -- LAPACK routine (version 3.1) -- */ /* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ /* November 2006 */ /* .. Scalar Arguments .. */ /* .. */ /* .. Array Arguments .. */ /* .. */ /* Purpose */ /* ======= */ /* DLAEDA computes the Z vector corresponding to the merge step in the */ /* CURLVLth step of the merge process with TLVLS steps for the CURPBMth */ /* problem. */ /* Arguments */ /* ========= */ /* N (input) INTEGER */ /* The dimension of the symmetric tridiagonal matrix. N >= 0. */ /* TLVLS (input) INTEGER */ /* The total number of merging levels in the overall divide and */ /* conquer tree. */ /* CURLVL (input) INTEGER */ /* The current level in the overall merge routine, */ /* 0 <= curlvl <= tlvls. */ /* CURPBM (input) INTEGER */ /* The current problem in the current level in the overall */ /* merge routine (counting from upper left to lower right). */ /* PRMPTR (input) INTEGER array, dimension (N lg N) */ /* Contains a list of pointers which indicate where in PERM a */ /* level's permutation is stored. PRMPTR(i+1) - PRMPTR(i) */ /* indicates the size of the permutation and incidentally the */ /* size of the full, non-deflated problem. */ /* PERM (input) INTEGER array, dimension (N lg N) */ /* Contains the permutations (from deflation and sorting) to be */ /* applied to each eigenblock. */ /* GIVPTR (input) INTEGER array, dimension (N lg N) */ /* Contains a list of pointers which indicate where in GIVCOL a */ /* level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i) */ /* indicates the number of Givens rotations. */ /* GIVCOL (input) INTEGER array, dimension (2, N lg N) */ /* Each pair of numbers indicates a pair of columns to take place */ /* in a Givens rotation. */ /* GIVNUM (input) DOUBLE PRECISION array, dimension (2, N lg N) */ /* Each number indicates the S value to be used in the */ /* corresponding Givens rotation. */ /* Q (input) DOUBLE PRECISION array, dimension (N**2) */ /* Contains the square eigenblocks from previous levels, the */ /* starting positions for blocks are given by QPTR. */ /* QPTR (input) INTEGER array, dimension (N+2) */ /* Contains a list of pointers which indicate where in Q an */ /* eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates */ /* the size of the block. */ /* Z (output) DOUBLE PRECISION array, dimension (N) */ /* On output this vector contains the updating vector (the last */ /* row of the first sub-eigenvector matrix and the first row of */ /* the second sub-eigenvector matrix). */ /* ZTEMP (workspace) DOUBLE PRECISION array, dimension (N) */ /* INFO (output) INTEGER */ /* = 0: successful exit. */ /* < 0: if INFO = -i, the i-th argument had an illegal value. */ /* Further Details */ /* =============== */ /* Based on contributions by */ /* Jeff Rutter, Computer Science Division, University of California */ /* at Berkeley, USA */ /* ===================================================================== */ /* .. Parameters .. */ /* .. */ /* .. Local Scalars .. */ /* .. */ /* .. External Subroutines .. */ /* .. */ /* .. Intrinsic Functions .. */ /* .. */ /* .. Executable Statements .. */ /* Test the input parameters. */ /* Parameter adjustments */ --ztemp; --z__; --qptr; --q; givnum -= 3; givcol -= 3; --givptr; --perm; --prmptr; /* Function Body */ *info = 0; if (*n < 0) { *info = -1; } if (*info != 0) { i__1 = -(*info); xerbla_("DLAEDA", &i__1); return 0; } /* Quick return if possible */ if (*n == 0) { return 0; } /* Determine location of first number in second half. */ mid = *n / 2 + 1; /* Gather last/first rows of appropriate eigenblocks into center of Z */ ptr = 1; /* Determine location of lowest level subproblem in the full storage */ /* scheme */ i__1 = *curlvl - 1; curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1; /* Determine size of these matrices. We add HALF to the value of */ /* the SQRT in case the machine underestimates one of these square */ /* roots. */ bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5); bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1])) + .5); i__1 = mid - bsiz1 - 1; for (k = 1; k <= i__1; ++k) { z__[k] = 0.; /* L10: */ } dcopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], & c__1); dcopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1); i__1 = *n; for (k = mid + bsiz2; k <= i__1; ++k) { z__[k] = 0.; /* L20: */ } /* Loop thru remaining levels 1 -> CURLVL applying the Givens */ /* rotations and permutation and then multiplying the center matrices */ /* against the current Z. */ ptr = pow_ii(&c__2, tlvls) + 1; i__1 = *curlvl - 1; for (k = 1; k <= i__1; ++k) { i__2 = *curlvl - k; i__3 = *curlvl - k - 1; curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 1; psiz1 = prmptr[curr + 1] - prmptr[curr]; psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; zptr1 = mid - psiz1; /* Apply Givens at CURR and CURR+1 */ i__2 = givptr[curr + 1] - 1; for (i__ = givptr[curr]; i__ <= i__2; ++i__) { drot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, & z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[( i__ << 1) + 1], &givnum[(i__ << 1) + 2]); /* L30: */ } i__2 = givptr[curr + 2] - 1; for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) { drot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[ mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << 1) + 1], &givnum[(i__ << 1) + 2]); /* L40: */ } psiz1 = prmptr[curr + 1] - prmptr[curr]; psiz2 = prmptr[curr + 2] - prmptr[curr + 1]; i__2 = psiz1 - 1; for (i__ = 0; i__ <= i__2; ++i__) { ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1]; /* L50: */ } i__2 = psiz2 - 1; for (i__ = 0; i__ <= i__2; ++i__) { ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 1]; /* L60: */ } /* Multiply Blocks at CURR and CURR+1 */ /* Determine size of these matrices. We add HALF to the value of */ /* the SQRT in case the machine underestimates one of these */ /* square roots. */ bsiz1 = (integer) (sqrt((doublereal) (qptr[curr + 1] - qptr[curr])) + .5); bsiz2 = (integer) (sqrt((doublereal) (qptr[curr + 2] - qptr[curr + 1]) ) + .5); if (bsiz1 > 0) { dgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, & ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1); } i__2 = psiz1 - bsiz1; dcopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1); if (bsiz2 > 0) { dgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, & ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1); } i__2 = psiz2 - bsiz2; dcopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], & c__1); i__2 = *tlvls - k; ptr += pow_ii(&c__2, &i__2); /* L70: */ } return 0; /* End of DLAEDA */ } /* dlaeda_ */