/////////////////////////////////////////////////////////////////////////// // // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas // Digital Ltd. LLC // // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Industrial Light & Magic nor the names of // its contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // /////////////////////////////////////////////////////////////////////////// #ifndef INCLUDED_IMATHSPHERE_H #define INCLUDED_IMATHSPHERE_H //------------------------------------- // // A 3D sphere class template // //------------------------------------- #include "ImathVec.h" #include "ImathBox.h" #include "ImathLine.h" namespace Imath { template class Sphere3 { public: Vec3 center; T radius; //--------------- // Constructors //--------------- Sphere3() : center(0,0,0), radius(0) {} Sphere3(const Vec3 &c, T r) : center(c), radius(r) {} //------------------------------------------------------------------- // Utilities: // // s.circumscribe(b) sets center and radius of sphere s // so that the s tightly encloses box b. // // s.intersectT (l, t) If sphere s and line l intersect, then // intersectT() computes the smallest t, // t >= 0, so that l(t) is a point on the // sphere. intersectT() then returns true. // // If s and l do not intersect, intersectT() // returns false. // // s.intersect (l, i) If sphere s and line l intersect, then // intersect() calls s.intersectT(l,t) and // computes i = l(t). // // If s and l do not intersect, intersect() // returns false. // //------------------------------------------------------------------- void circumscribe(const Box > &box); bool intersect(const Line3 &l, Vec3 &intersection) const; bool intersectT(const Line3 &l, T &t) const; }; //-------------------- // Convenient typedefs //-------------------- typedef Sphere3 Sphere3f; typedef Sphere3 Sphere3d; //--------------- // Implementation //--------------- template void Sphere3::circumscribe(const Box > &box) { center = T(0.5) * (box.min + box.max); radius = (box.max - center).length(); } template bool Sphere3::intersectT(const Line3 &line, T &t) const { bool doesIntersect = true; Vec3 v = line.pos - center; T B = 2.0 * (line.dir ^ v); T C = (v ^ v) - (radius * radius); // compute discriminant // if negative, there is no intersection T discr = B*B - 4.0*C; if (discr < 0.0) { // line and Sphere3 do not intersect doesIntersect = false; } else { // t0: (-B - sqrt(B^2 - 4AC)) / 2A (A = 1) T sqroot = Math::sqrt(discr); t = (-B - sqroot) * 0.5; if (t < 0.0) { // no intersection, try t1: (-B + sqrt(B^2 - 4AC)) / 2A (A = 1) t = (-B + sqroot) * 0.5; } if (t < 0.0) doesIntersect = false; } return doesIntersect; } template bool Sphere3::intersect(const Line3 &line, Vec3 &intersection) const { T t; if (intersectT (line, t)) { intersection = line(t); return true; } else { return false; } } } //namespace Imath #endif