#!/usr/bin/env python ''' Lucas-Kanade homography tracker test =============================== Uses goodFeaturesToTrack for track initialization and back-tracking for match verification between frames. Finds homography between reference and current views. ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 #local modules from tst_scene_render import TestSceneRender from tests_common import NewOpenCVTests, isPointInRect lk_params = dict( winSize = (19, 19), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) feature_params = dict( maxCorners = 1000, qualityLevel = 0.01, minDistance = 8, blockSize = 19 ) def checkedTrace(img0, img1, p0, back_threshold = 1.0): p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) d = abs(p0-p0r).reshape(-1, 2).max(-1) status = d < back_threshold return p1, status class lk_homography_test(NewOpenCVTests): render = None framesCounter = 0 frame = frame0 = None p0 = None p1 = None gray0 = gray1 = None numFeaturesInRectOnStart = 0 def test_lk_homography(self): self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'), noise = 0.1, speed = 1.0) frame = self.render.getNextFrame() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) self.frame0 = frame.copy() self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params) isForegroundHomographyFound = False if self.p0 is not None: self.p1 = self.p0 self.gray0 = frame_gray self.gray1 = frame_gray currRect = self.render.getCurrentRect() for (x,y) in self.p0[:,0]: if isPointInRect((x,y), currRect): self.numFeaturesInRectOnStart += 1 while self.framesCounter < 200: self.framesCounter += 1 frame = self.render.getNextFrame() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if self.p0 is not None: p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1) self.p1 = p2[trace_status].copy() self.p0 = self.p0[trace_status].copy() self.gray1 = frame_gray if len(self.p0) < 4: self.p0 = None continue H, status = cv2.findHomography(self.p0, self.p1, cv2.RANSAC, 5.0) goodPointsInRect = 0 goodPointsOutsideRect = 0 for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]): if good: if isPointInRect((x1,y1), self.render.getCurrentRect()): goodPointsInRect += 1 else: goodPointsOutsideRect += 1 if goodPointsOutsideRect < goodPointsInRect: isForegroundHomographyFound = True self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6) else: p = cv2.goodFeaturesToTrack(frame_gray, **feature_params) self.assertEqual(isForegroundHomographyFound, True)