#!/usr/bin/env python """ Tracking of rotating point. Point moves in a circle and is characterized by a 1D state. state_k+1 = state_k + speed + process_noise N(0, 1e-5) The speed is constant. Both state and measurements vectors are 1D (a point angle), Measurement is the real state + gaussian noise N(0, 1e-1). The real and the measured points are connected with red line segment, the real and the estimated points are connected with yellow line segment, the real and the corrected estimated points are connected with green line segment. (if Kalman filter works correctly, the yellow segment should be shorter than the red one and the green segment should be shorter than the yellow one). Pressing any key (except ESC) will reset the tracking. Pressing ESC will stop the program. """ # Python 2/3 compatibility import sys PY3 = sys.version_info[0] == 3 if PY3: long = int import numpy as np import cv2 as cv from math import cos, sin, sqrt, pi def main(): img_height = 500 img_width = 500 kalman = cv.KalmanFilter(2, 1, 0) code = long(-1) num_circle_steps = 12 while True: img = np.zeros((img_height, img_width, 3), np.uint8) state = np.array([[0.0],[(2 * pi) / num_circle_steps]]) # start state kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]]) # F. input kalman.measurementMatrix = 1. * np.eye(1, 2) # H. input kalman.processNoiseCov = 1e-5 * np.eye(2) # Q. input kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1)) # R. input kalman.errorCovPost = 1. * np.eye(2, 2) # P._k|k KF state var kalman.statePost = 0.1 * np.random.randn(2, 1) # x^_k|k KF state var while True: def calc_point(angle): return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int), np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int)) img = img * 1e-3 state_angle = state[0, 0] state_pt = calc_point(state_angle) # advance Kalman filter to next timestep # updates statePre, statePost, errorCovPre, errorCovPost # k-> k+1, x'(k) = A*x(k) # P'(k) = temp1*At + Q prediction = kalman.predict() predict_pt = calc_point(prediction[0, 0]) # equivalent to calc_point(kalman.statePre[0,0]) # generate measurement measurement = kalman.measurementNoiseCov * np.random.randn(1, 1) measurement = np.dot(kalman.measurementMatrix, state) + measurement measurement_angle = measurement[0, 0] measurement_pt = calc_point(measurement_angle) # correct the state estimates based on measurements # updates statePost & errorCovPost kalman.correct(measurement) improved_pt = calc_point(kalman.statePost[0, 0]) # plot points cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2) cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2) cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2) cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1) # forecast one step cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]), (255, 255, 0), cv.MARKER_SQUARE, 12, 1) cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0) # red measurement error cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0) # yellow pre-meas error cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0) # green post-meas error # update the real process process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1) state = np.dot(kalman.transitionMatrix, state) + process_noise # x_k+1 = F x_k + w_k cv.imshow("Kalman", img) code = cv.waitKey(1000) if code != -1: break if code in [27, ord('q'), ord('Q')]: break print('Done') if __name__ == '__main__': print(__doc__) main() cv.destroyAllWindows()