/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" #include // to make sure we can use these short names #undef K #undef L #undef T // This is based on the "An Improved Adaptive Background Mixture Model for // Real-time Tracking with Shadow Detection" by P. KaewTraKulPong and R. Bowden // http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf // // The windowing method is used, but not the shadow detection. I make some of my // own modifications which make more sense. There are some errors in some of their // equations. // namespace cv { static const int defaultNMixtures = 5; static const int defaultHistory = 200; static const double defaultBackgroundRatio = 0.7; static const double defaultVarThreshold = 2.5*2.5; static const double defaultNoiseSigma = 30*0.5; static const double defaultInitialWeight = 0.05; class BackgroundSubtractorMOGImpl : public BackgroundSubtractorMOG { public: //! the default constructor BackgroundSubtractorMOGImpl() { frameSize = Size(0,0); frameType = 0; nframes = 0; nmixtures = defaultNMixtures; history = defaultHistory; varThreshold = defaultVarThreshold; backgroundRatio = defaultBackgroundRatio; noiseSigma = defaultNoiseSigma; name_ = "BackgroundSubtractor.MOG"; } // the full constructor that takes the length of the history, // the number of gaussian mixtures, the background ratio parameter and the noise strength BackgroundSubtractorMOGImpl(int _history, int _nmixtures, double _backgroundRatio, double _noiseSigma=0) { frameSize = Size(0,0); frameType = 0; nframes = 0; nmixtures = std::min(_nmixtures > 0 ? _nmixtures : defaultNMixtures, 8); history = _history > 0 ? _history : defaultHistory; varThreshold = defaultVarThreshold; backgroundRatio = std::min(_backgroundRatio > 0 ? _backgroundRatio : 0.95, 1.); noiseSigma = _noiseSigma <= 0 ? defaultNoiseSigma : _noiseSigma; } //! the update operator virtual void apply(InputArray image, OutputArray fgmask, double learningRate=0); //! re-initiaization method virtual void initialize(Size _frameSize, int _frameType) { frameSize = _frameSize; frameType = _frameType; nframes = 0; int nchannels = CV_MAT_CN(frameType); CV_Assert( CV_MAT_DEPTH(frameType) == CV_8U ); // for each gaussian mixture of each pixel bg model we store ... // the mixture sort key (w/sum_of_variances), the mixture weight (w), // the mean (nchannels values) and // the diagonal covariance matrix (another nchannels values) bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + 2*nchannels), CV_32F ); bgmodel = Scalar::all(0); } virtual AlgorithmInfo* info() const { return 0; } virtual void getBackgroundImage(OutputArray) const { CV_Error( Error::StsNotImplemented, "" ); } virtual int getHistory() const { return history; } virtual void setHistory(int _nframes) { history = _nframes; } virtual int getNMixtures() const { return nmixtures; } virtual void setNMixtures(int nmix) { nmixtures = nmix; } virtual double getBackgroundRatio() const { return backgroundRatio; } virtual void setBackgroundRatio(double _backgroundRatio) { backgroundRatio = _backgroundRatio; } virtual double getNoiseSigma() const { return noiseSigma; } virtual void setNoiseSigma(double _noiseSigma) { noiseSigma = _noiseSigma; } virtual void write(FileStorage& fs) const { fs << "name" << name_ << "history" << history << "nmixtures" << nmixtures << "backgroundRatio" << backgroundRatio << "noiseSigma" << noiseSigma; } virtual void read(const FileNode& fn) { CV_Assert( (String)fn["name"] == name_ ); history = (int)fn["history"]; nmixtures = (int)fn["nmixtures"]; backgroundRatio = (double)fn["backgroundRatio"]; noiseSigma = (double)fn["noiseSigma"]; } protected: Size frameSize; int frameType; Mat bgmodel; int nframes; int history; int nmixtures; double varThreshold; double backgroundRatio; double noiseSigma; String name_; }; template struct MixData { float sortKey; float weight; VT mean; VT var; }; static void process8uC1( const Mat& image, Mat& fgmask, double learningRate, Mat& bgmodel, int nmixtures, double backgroundRatio, double varThreshold, double noiseSigma ) { int x, y, k, k1, rows = image.rows, cols = image.cols; float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold; int K = nmixtures; MixData* mptr = (MixData*)bgmodel.data; const float w0 = (float)defaultInitialWeight; const float sk0 = (float)(w0/(defaultNoiseSigma*2)); const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4); const float minVar = (float)(noiseSigma*noiseSigma); for( y = 0; y < rows; y++ ) { const uchar* src = image.ptr(y); uchar* dst = fgmask.ptr(y); if( alpha > 0 ) { for( x = 0; x < cols; x++, mptr += K ) { float wsum = 0; float pix = src[x]; int kHit = -1, kForeground = -1; for( k = 0; k < K; k++ ) { float w = mptr[k].weight; wsum += w; if( w < FLT_EPSILON ) break; float mu = mptr[k].mean; float var = mptr[k].var; float diff = pix - mu; float d2 = diff*diff; if( d2 < vT*var ) { wsum -= w; float dw = alpha*(1.f - w); mptr[k].weight = w + dw; mptr[k].mean = mu + alpha*diff; var = std::max(var + alpha*(d2 - var), minVar); mptr[k].var = var; mptr[k].sortKey = w/std::sqrt(var); for( k1 = k-1; k1 >= 0; k1-- ) { if( mptr[k1].sortKey >= mptr[k1+1].sortKey ) break; std::swap( mptr[k1], mptr[k1+1] ); } kHit = k1+1; break; } } if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one { kHit = k = std::min(k, K-1); wsum += w0 - mptr[k].weight; mptr[k].weight = w0; mptr[k].mean = pix; mptr[k].var = var0; mptr[k].sortKey = sk0; } else for( ; k < K; k++ ) wsum += mptr[k].weight; float wscale = 1.f/wsum; wsum = 0; for( k = 0; k < K; k++ ) { wsum += mptr[k].weight *= wscale; mptr[k].sortKey *= wscale; if( wsum > T && kForeground < 0 ) kForeground = k+1; } dst[x] = (uchar)(-(kHit >= kForeground)); } } else { for( x = 0; x < cols; x++, mptr += K ) { float pix = src[x]; int kHit = -1, kForeground = -1; for( k = 0; k < K; k++ ) { if( mptr[k].weight < FLT_EPSILON ) break; float mu = mptr[k].mean; float var = mptr[k].var; float diff = pix - mu; float d2 = diff*diff; if( d2 < vT*var ) { kHit = k; break; } } if( kHit >= 0 ) { float wsum = 0; for( k = 0; k < K; k++ ) { wsum += mptr[k].weight; if( wsum > T ) { kForeground = k+1; break; } } } dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0); } } } } static void process8uC3( const Mat& image, Mat& fgmask, double learningRate, Mat& bgmodel, int nmixtures, double backgroundRatio, double varThreshold, double noiseSigma ) { int x, y, k, k1, rows = image.rows, cols = image.cols; float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold; int K = nmixtures; const float w0 = (float)defaultInitialWeight; const float sk0 = (float)(w0/(defaultNoiseSigma*2*std::sqrt(3.))); const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4); const float minVar = (float)(noiseSigma*noiseSigma); MixData* mptr = (MixData*)bgmodel.data; for( y = 0; y < rows; y++ ) { const uchar* src = image.ptr(y); uchar* dst = fgmask.ptr(y); if( alpha > 0 ) { for( x = 0; x < cols; x++, mptr += K ) { float wsum = 0; Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]); int kHit = -1, kForeground = -1; for( k = 0; k < K; k++ ) { float w = mptr[k].weight; wsum += w; if( w < FLT_EPSILON ) break; Vec3f mu = mptr[k].mean; Vec3f var = mptr[k].var; Vec3f diff = pix - mu; float d2 = diff.dot(diff); if( d2 < vT*(var[0] + var[1] + var[2]) ) { wsum -= w; float dw = alpha*(1.f - w); mptr[k].weight = w + dw; mptr[k].mean = mu + alpha*diff; var = Vec3f(std::max(var[0] + alpha*(diff[0]*diff[0] - var[0]), minVar), std::max(var[1] + alpha*(diff[1]*diff[1] - var[1]), minVar), std::max(var[2] + alpha*(diff[2]*diff[2] - var[2]), minVar)); mptr[k].var = var; mptr[k].sortKey = w/std::sqrt(var[0] + var[1] + var[2]); for( k1 = k-1; k1 >= 0; k1-- ) { if( mptr[k1].sortKey >= mptr[k1+1].sortKey ) break; std::swap( mptr[k1], mptr[k1+1] ); } kHit = k1+1; break; } } if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one { kHit = k = std::min(k, K-1); wsum += w0 - mptr[k].weight; mptr[k].weight = w0; mptr[k].mean = pix; mptr[k].var = Vec3f(var0, var0, var0); mptr[k].sortKey = sk0; } else for( ; k < K; k++ ) wsum += mptr[k].weight; float wscale = 1.f/wsum; wsum = 0; for( k = 0; k < K; k++ ) { wsum += mptr[k].weight *= wscale; mptr[k].sortKey *= wscale; if( wsum > T && kForeground < 0 ) kForeground = k+1; } dst[x] = (uchar)(-(kHit >= kForeground)); } } else { for( x = 0; x < cols; x++, mptr += K ) { Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]); int kHit = -1, kForeground = -1; for( k = 0; k < K; k++ ) { if( mptr[k].weight < FLT_EPSILON ) break; Vec3f mu = mptr[k].mean; Vec3f var = mptr[k].var; Vec3f diff = pix - mu; float d2 = diff.dot(diff); if( d2 < vT*(var[0] + var[1] + var[2]) ) { kHit = k; break; } } if( kHit >= 0 ) { float wsum = 0; for( k = 0; k < K; k++ ) { wsum += mptr[k].weight; if( wsum > T ) { kForeground = k+1; break; } } } dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0); } } } } void BackgroundSubtractorMOGImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate) { Mat image = _image.getMat(); bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType; if( needToInitialize ) initialize(image.size(), image.type()); CV_Assert( image.depth() == CV_8U ); _fgmask.create( image.size(), CV_8U ); Mat fgmask = _fgmask.getMat(); ++nframes; learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( nframes, history ); CV_Assert(learningRate >= 0); if( image.type() == CV_8UC1 ) process8uC1( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma ); else if( image.type() == CV_8UC3 ) process8uC3( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma ); else CV_Error( Error::StsUnsupportedFormat, "Only 1- and 3-channel 8-bit images are supported in BackgroundSubtractorMOG" ); } Ptr createBackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma) { return makePtr(history, nmixtures, backgroundRatio, noiseSigma); } } /* End of file. */