/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include "yuv420sp2rgb.h" #include #include /* this source file should only be compiled by Android.mk when targeting * the armeabi-v7a ABI, and should be built in NEON mode */ void fir_filter_neon_intrinsics(short *output, const short* input, const short* kernel, int width, int kernelSize) { #if 1 int nn, offset = -kernelSize / 2; for (nn = 0; nn < width; nn++) { int mm, sum = 0; int32x4_t sum_vec = vdupq_n_s32(0); for (mm = 0; mm < kernelSize / 4; mm++) { int16x4_t kernel_vec = vld1_s16(kernel + mm * 4); int16x4_t input_vec = vld1_s16(input + (nn + offset + mm * 4)); sum_vec = vmlal_s16(sum_vec, kernel_vec, input_vec); } sum += vgetq_lane_s32(sum_vec, 0); sum += vgetq_lane_s32(sum_vec, 1); sum += vgetq_lane_s32(sum_vec, 2); sum += vgetq_lane_s32(sum_vec, 3); if (kernelSize & 3) { for (mm = kernelSize - (kernelSize & 3); mm < kernelSize; mm++) sum += kernel[mm] * input[nn + offset + mm]; } output[nn] = (short)((sum + 0x8000) >> 16); } #else /* for comparison purposes only */ int nn, offset = -kernelSize/2; for (nn = 0; nn < width; nn++) { int sum = 0; int mm; for (mm = 0; mm < kernelSize; mm++) { sum += kernel[mm]*input[nn+offset+mm]; } output[n] = (short)((sum + 0x8000) >> 16); } #endif } /* YUV 4:2:0 image with a plane of 8 bit Y samples followed by an interleaved U/V plane containing 8 bit 2x2 subsampled chroma samples. except the interleave order of U and V is reversed. H V Y Sample Period 1 1 U (Cb) Sample Period 2 2 V (Cr) Sample Period 2 2 */ /* size of a char: find . -name limits.h -exec grep CHAR_BIT {} \; */ #ifndef max #define max(a,b) ({typeof(a) _a = (a); typeof(b) _b = (b); _a > _b ? _a : _b; }) #define min(a,b) ({typeof(a) _a = (a); typeof(b) _b = (b); _a < _b ? _a : _b; }) #endif #define bytes_per_pixel 2 #define LOAD_Y(i,j) (pY + i * width + j) #define LOAD_V(i,j) (pUV + (i / 2) * width + bytes_per_pixel * (j / 2)) #define LOAD_U(i,j) (pUV + (i / 2) * width + bytes_per_pixel * (j / 2)+1) const uint8_t ZEROS[8] = {220,220, 220, 220, 220, 220, 220, 220}; const uint8_t Y_SUBS[8] = {16, 16, 16, 16, 16, 16, 16, 16}; const uint8_t UV_SUBS[8] = {128, 128, 128, 128, 128, 128, 128, 128}; const uint32_t UV_MULS[] = {833, 400, 833, 400}; void color_convert_common(unsigned char *pY, unsigned char *pUV, int width, int height, unsigned char *buffer, int grey) { int i, j; int nR, nG, nB; int nY, nU, nV; unsigned char *out = buffer; int offset = 0; uint8x8_t Y_SUBvec = vld1_u8(Y_SUBS); uint8x8_t UV_SUBvec = vld1_u8(UV_SUBS); // v,u,v,u v,u,v,u uint32x4_t UV_MULSvec = vld1q_u32(UV_MULS); uint8x8_t ZEROSvec =vld1_u8(ZEROS); uint32_t UVvec_int[8]; if (grey) { memcpy(out, pY, width * height * sizeof(unsigned char)); } else // YUV 4:2:0 for (i = 0; i < height; i++) { for (j = 0; j < width; j += 8) { // nY = *(pY + i * width + j); // nV = *(pUV + (i / 2) * width + bytes_per_pixel * (j / 2)); // nU = *(pUV + (i / 2) * width + bytes_per_pixel * (j / 2) + 1); uint8x8_t nYvec = vld1_u8(LOAD_Y(i,j)); uint8x8_t nUVvec = vld1_u8(LOAD_V(i,j)); // v,u,v,u v,u,v,u nYvec = vmul_u8(nYvec, vcle_u8(nYvec,ZEROSvec)); // Yuv Convert // nY -= 16; // nU -= 128; // nV -= 128; // nYvec = vsub_u8(nYvec, Y_SUBvec); // nUVvec = vsub_u8(nYvec, UV_SUBvec); uint16x8_t nYvec16 = vmovl_u8(vsub_u8(nYvec, Y_SUBvec)); uint16x8_t nUVvec16 = vmovl_u8(vsub_u8(nYvec, UV_SUBvec)); uint16x4_t Y_low4 = vget_low_u16(nYvec16); uint16x4_t Y_high4 = vget_high_u16(nYvec16); uint16x4_t UV_low4 = vget_low_u16(nUVvec16); uint16x4_t UV_high4 = vget_high_u16(nUVvec16); uint32x4_t UV_low4_int = vmovl_u16(UV_low4); uint32x4_t UV_high4_int = vmovl_u16(UV_high4); uint32x4_t Y_low4_int = vmull_n_u16(Y_low4, 1192); uint32x4_t Y_high4_int = vmull_n_u16(Y_high4, 1192); uint32x4x2_t UV_uzp = vuzpq_u32(UV_low4_int, UV_high4_int); uint32x2_t Vl = vget_low_u32(UV_uzp.val[0]);// vld1_u32(UVvec_int); uint32x2_t Vh = vget_high_u32(UV_uzp.val[0]);//vld1_u32(UVvec_int + 2); uint32x2x2_t Vll_ = vzip_u32(Vl, Vl); uint32x4_t* Vll = (uint32x4_t*)(&Vll_); uint32x2x2_t Vhh_ = vzip_u32(Vh, Vh); uint32x4_t* Vhh = (uint32x4_t*)(&Vhh_); uint32x2_t Ul = vget_low_u32(UV_uzp.val[1]); uint32x2_t Uh = vget_high_u32(UV_uzp.val[1]); uint32x2x2_t Ull_ = vzip_u32(Ul, Ul); uint32x4_t* Ull = (uint32x4_t*)(&Ull_); uint32x2x2_t Uhh_ = vzip_u32(Uh, Uh); uint32x4_t* Uhh = (uint32x4_t*)(&Uhh_); uint32x4_t B_int_low = vmlaq_n_u32(Y_low4_int, *Ull, 2066); //multiply by scalar accum uint32x4_t B_int_high = vmlaq_n_u32(Y_high4_int, *Uhh, 2066); //multiply by scalar accum uint32x4_t G_int_low = vsubq_u32(Y_low4_int, vmlaq_n_u32(vmulq_n_u32(*Vll, 833), *Ull, 400)); uint32x4_t G_int_high = vsubq_u32(Y_high4_int, vmlaq_n_u32(vmulq_n_u32(*Vhh, 833), *Uhh, 400)); uint32x4_t R_int_low = vmlaq_n_u32(Y_low4_int, *Vll, 1634); //multiply by scalar accum uint32x4_t R_int_high = vmlaq_n_u32(Y_high4_int, *Vhh, 1634); //multiply by scalar accum B_int_low = vshrq_n_u32 (B_int_low, 10); B_int_high = vshrq_n_u32 (B_int_high, 10); G_int_low = vshrq_n_u32 (G_int_low, 10); G_int_high = vshrq_n_u32 (G_int_high, 10); R_int_low = vshrq_n_u32 (R_int_low, 10); R_int_high = vshrq_n_u32 (R_int_high, 10); uint8x8x3_t RGB; RGB.val[0] = vmovn_u16(vcombine_u16(vqmovn_u32 (R_int_low),vqmovn_u32 (R_int_high))); RGB.val[1] = vmovn_u16(vcombine_u16(vqmovn_u32 (G_int_low),vqmovn_u32 (G_int_high))); RGB.val[2] = vmovn_u16(vcombine_u16(vqmovn_u32 (B_int_low),vqmovn_u32 (B_int_high))); vst3_u8 (out+i*width*3 + j*3, RGB); } } }