// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // Copyright (C) 2017, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. /* Test for Tensorflow models loading */ #include "test_precomp.hpp" #include "npy_blob.hpp" #include // CV_DNN_REGISTER_LAYER_CLASS namespace opencv_test { using namespace cv; using namespace cv::dnn; template static std::string _tf(TString filename) { return (getOpenCVExtraDir() + "/dnn/") + filename; } TEST(Test_TensorFlow, read_inception) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); net = readNetFromTensorflow(model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); Mat input; resize(sample, input, Size(224, 224)); input -= 128; // mean sub Mat inputBlob = blobFromImage(input); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); std::cout << out.dims << std::endl; } TEST(Test_TensorFlow, inception_accuracy) { Net net; { const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false); net = readNetFromTensorflow(model); ASSERT_FALSE(net.empty()); } Mat sample = imread(_tf("grace_hopper_227.png")); ASSERT_TRUE(!sample.empty()); resize(sample, sample, Size(224, 224)); Mat inputBlob = blobFromImage(sample); net.setInput(inputBlob, "input"); Mat out = net.forward("softmax2"); Mat ref = blobFromNPY(_tf("tf_inception_prob.npy")); normAssert(ref, out); } static std::string path(const std::string& file) { return findDataFile("dnn/tensorflow/" + file, false); } static void runTensorFlowNet(const std::string& prefix, int targetId = DNN_TARGET_CPU, bool hasText = false, double l1 = 1e-5, double lInf = 1e-4, bool memoryLoad = false) { std::string netPath = path(prefix + "_net.pb"); std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : ""); std::string inpPath = path(prefix + "_in.npy"); std::string outPath = path(prefix + "_out.npy"); Net net; if (memoryLoad) { // Load files into a memory buffers string dataModel; ASSERT_TRUE(readFileInMemory(netPath, dataModel)); string dataConfig; if (hasText) ASSERT_TRUE(readFileInMemory(netConfig, dataConfig)); net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(), dataConfig.c_str(), dataConfig.size()); } else net = readNetFromTensorflow(netPath, netConfig); ASSERT_FALSE(net.empty()); net.setPreferableBackend(DNN_BACKEND_DEFAULT); net.setPreferableTarget(targetId); cv::Mat input = blobFromNPY(inpPath); cv::Mat target = blobFromNPY(outPath); net.setInput(input); cv::Mat output = net.forward(); normAssert(target, output, "", l1, lInf); } typedef testing::TestWithParam Test_TensorFlow_layers; TEST_P(Test_TensorFlow_layers, conv) { int targetId = GetParam(); runTensorFlowNet("single_conv", targetId); runTensorFlowNet("atrous_conv2d_valid", targetId); runTensorFlowNet("atrous_conv2d_same", targetId); runTensorFlowNet("depthwise_conv2d", targetId); } TEST_P(Test_TensorFlow_layers, padding) { int targetId = GetParam(); runTensorFlowNet("padding_same", targetId); runTensorFlowNet("padding_valid", targetId); runTensorFlowNet("spatial_padding", targetId); } TEST_P(Test_TensorFlow_layers, eltwise_add_mul) { runTensorFlowNet("eltwise_add_mul", GetParam()); } TEST_P(Test_TensorFlow_layers, pad_and_concat) { runTensorFlowNet("pad_and_concat", GetParam()); } TEST_P(Test_TensorFlow_layers, batch_norm) { int targetId = GetParam(); runTensorFlowNet("batch_norm", targetId); runTensorFlowNet("fused_batch_norm", targetId); runTensorFlowNet("batch_norm_text", targetId, true); runTensorFlowNet("mvn_batch_norm", targetId); runTensorFlowNet("mvn_batch_norm_1x1", targetId); runTensorFlowNet("unfused_batch_norm", targetId); runTensorFlowNet("fused_batch_norm_no_gamma", targetId); runTensorFlowNet("unfused_batch_norm_no_gamma", targetId); } TEST_P(Test_TensorFlow_layers, pooling) { int targetId = GetParam(); runTensorFlowNet("max_pool_even", targetId); runTensorFlowNet("max_pool_odd_valid", targetId); runTensorFlowNet("ave_pool_same", targetId); runTensorFlowNet("max_pool_odd_same", targetId); runTensorFlowNet("reduce_mean", targetId); // an average pooling over all spatial dimensions. } TEST_P(Test_TensorFlow_layers, deconvolution) { int targetId = GetParam(); runTensorFlowNet("deconvolution", targetId); runTensorFlowNet("deconvolution_same", targetId); runTensorFlowNet("deconvolution_stride_2_same", targetId); runTensorFlowNet("deconvolution_adj_pad_valid", targetId); runTensorFlowNet("deconvolution_adj_pad_same", targetId); runTensorFlowNet("keras_deconv_valid", targetId); runTensorFlowNet("keras_deconv_same", targetId); } TEST_P(Test_TensorFlow_layers, matmul) { int targetId = GetParam(); runTensorFlowNet("matmul", targetId); runTensorFlowNet("nhwc_reshape_matmul", targetId); runTensorFlowNet("nhwc_transpose_reshape_matmul", targetId); } TEST_P(Test_TensorFlow_layers, reshape) { int targetId = GetParam(); runTensorFlowNet("shift_reshape_no_reorder", targetId); runTensorFlowNet("reshape_reduce", targetId); runTensorFlowNet("flatten", targetId, true); runTensorFlowNet("unfused_flatten", targetId); runTensorFlowNet("unfused_flatten_unknown_batch", targetId); } TEST_P(Test_TensorFlow_layers, l2_normalize) { int targetId = GetParam(); runTensorFlowNet("l2_normalize", targetId); runTensorFlowNet("l2_normalize_3d", targetId); } INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, availableDnnTargets()); typedef testing::TestWithParam Test_TensorFlow_nets; TEST_P(Test_TensorFlow_nets, MobileNet_SSD) { std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false); std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false); std::string imgPath = findDataFile("dnn/street.png", false); Mat inp; resize(imread(imgPath), inp, Size(300, 300)); inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true); std::vector outNames(3); outNames[0] = "concat"; outNames[1] = "concat_1"; outNames[2] = "detection_out"; std::vector target(outNames.size()); for (int i = 0; i < outNames.size(); ++i) { std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false); target[i] = blobFromNPY(path); } Net net = readNetFromTensorflow(netPath, netConfig); net.setPreferableTarget(GetParam()); net.setInput(inp); std::vector output; net.forward(output, outNames); normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4); normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4); normAssertDetections(target[2], output[2], "", 0.2); } TEST_P(Test_TensorFlow_nets, Inception_v2_SSD) { std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false); std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false); Net net = readNetFromTensorflow(model, proto); Mat img = imread(findDataFile("dnn/street.png", false)); Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false); net.setPreferableTarget(GetParam()); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); Mat ref = (Mat_(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729, 0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131, 0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015, 0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527, 0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384); normAssertDetections(ref, out, "", 0.5); } TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8) { std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt", false); std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false); Net net = readNetFromTensorflow(model, proto); Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false)); Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); net.setPreferableTarget(GetParam()); net.setInput(blob); // Output has shape 1x1xNx7 where N - number of detections. // An every detection is a vector of values [id, classId, confidence, left, top, right, bottom] Mat out = net.forward(); // References are from test for Caffe model. Mat ref = (Mat_(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631, 0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168, 0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290, 0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477, 0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494, 0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801); normAssertDetections(ref, out, "", 0.9, 3.4e-3, 1e-2); } INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets()); TEST(Test_TensorFlow, defun) { runTensorFlowNet("defun_dropout"); } TEST(Test_TensorFlow, fp16) { const float l1 = 1e-3; const float lInf = 1e-2; runTensorFlowNet("fp16_single_conv", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_deconvolution", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_max_pool_odd_same", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_padding_valid", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_eltwise_add_mul", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_max_pool_odd_valid", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_pad_and_concat", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_max_pool_even", DNN_TARGET_CPU, false, l1, lInf); runTensorFlowNet("fp16_padding_same", DNN_TARGET_CPU, false, l1, lInf); } TEST(Test_TensorFlow, quantized) { runTensorFlowNet("uint8_single_conv"); } TEST(Test_TensorFlow, lstm) { runTensorFlowNet("lstm", DNN_TARGET_CPU, true); } TEST(Test_TensorFlow, split) { runTensorFlowNet("split_equals"); } TEST(Test_TensorFlow, resize_nearest_neighbor) { runTensorFlowNet("resize_nearest_neighbor"); } TEST(Test_TensorFlow, slice) { runTensorFlowNet("slice_4d"); } TEST(Test_TensorFlow, softmax) { runTensorFlowNet("keras_softmax"); } TEST(Test_TensorFlow, relu6) { runTensorFlowNet("keras_relu6"); } TEST(Test_TensorFlow, keras_mobilenet_head) { runTensorFlowNet("keras_mobilenet_head"); } TEST(Test_TensorFlow, memory_read) { double l1 = 1e-5; double lInf = 1e-4; runTensorFlowNet("lstm", DNN_TARGET_CPU, true, l1, lInf, true); runTensorFlowNet("batch_norm", DNN_TARGET_CPU, false, l1, lInf, true); runTensorFlowNet("fused_batch_norm", DNN_TARGET_CPU, false, l1, lInf, true); runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true); } // Test a custom layer. class ResizeBilinearLayer CV_FINAL : public Layer { public: ResizeBilinearLayer(const LayerParams ¶ms) : Layer(params) { CV_Assert(!params.get("align_corners", false)); CV_Assert(blobs.size() == 1, blobs[0].type() == CV_32SC1); outHeight = blobs[0].at(0, 0); outWidth = blobs[0].at(0, 1); } static Ptr create(LayerParams& params) { return Ptr(new ResizeBilinearLayer(params)); } virtual bool getMemoryShapes(const std::vector > &inputs, const int requiredOutputs, std::vector > &outputs, std::vector > &internals) const CV_OVERRIDE { std::vector outShape(4); outShape[0] = inputs[0][0]; // batch size outShape[1] = inputs[0][1]; // number of channels outShape[2] = outHeight; outShape[3] = outWidth; outputs.assign(1, outShape); return false; } // This implementation is based on a reference implementation from // https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h virtual void forward(std::vector &inputs, std::vector &outputs, std::vector &internals) CV_OVERRIDE { Mat& inp = *inputs[0]; Mat& out = outputs[0]; const float* inpData = (float*)inp.data; float* outData = (float*)out.data; const int batchSize = inp.size[0]; const int numChannels = inp.size[1]; const int inpHeight = inp.size[2]; const int inpWidth = inp.size[3]; float heightScale = static_cast(inpHeight) / outHeight; float widthScale = static_cast(inpWidth) / outWidth; for (int b = 0; b < batchSize; ++b) { for (int y = 0; y < outHeight; ++y) { float input_y = y * heightScale; int y0 = static_cast(std::floor(input_y)); int y1 = std::min(y0 + 1, inpHeight - 1); for (int x = 0; x < outWidth; ++x) { float input_x = x * widthScale; int x0 = static_cast(std::floor(input_x)); int x1 = std::min(x0 + 1, inpWidth - 1); for (int c = 0; c < numChannels; ++c) { float interpolation = inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) + inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) + inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) + inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0); outData[offset(out.size, c, x, y, b)] = interpolation; } } } } } virtual void forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE {} private: static inline int offset(const MatSize& size, int c, int x, int y, int b) { return x + size[3] * (y + size[2] * (c + size[1] * b)); } int outWidth, outHeight; }; TEST(Test_TensorFlow, resize_bilinear) { CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer); runTensorFlowNet("resize_bilinear"); LayerFactory::unregisterLayer("ResizeBilinear"); } }