from __future__ import print_function # Script to evaluate MobileNet-SSD object detection model trained in TensorFlow # using both TensorFlow and OpenCV. Example: # # python mobilenet_ssd_accuracy.py \ # --weights=frozen_inference_graph.pb \ # --prototxt=ssd_mobilenet_v1_coco.pbtxt \ # --images=val2017 \ # --annotations=annotations/instances_val2017.json # # Tested on COCO 2017 object detection dataset, http://cocodataset.org/#download import os import cv2 as cv import json import argparse parser = argparse.ArgumentParser( description='Evaluate MobileNet-SSD model using both TensorFlow and OpenCV. ' 'COCO evaluation framework is required: http://cocodataset.org') parser.add_argument('--weights', required=True, help='Path to frozen_inference_graph.pb of MobileNet-SSD model. ' 'Download it from http://download.tensorflow.org/models/object_detection/ssd_mobilenet_v1_coco_11_06_2017.tar.gz') parser.add_argument('--prototxt', help='Path to ssd_mobilenet_v1_coco.pbtxt from opencv_extra.', required=True) parser.add_argument('--images', help='Path to COCO validation images directory.', required=True) parser.add_argument('--annotations', help='Path to COCO annotations file.', required=True) args = parser.parse_args() ### Get OpenCV predictions ##################################################### net = cv.dnn.readNetFromTensorflow(cv.samples.findFile(args.weights), cv.samples.findFile(args.prototxt)) net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV); detections = [] for imgName in os.listdir(args.images): inp = cv.imread(cv.samples.findFile(os.path.join(args.images, imgName))) rows = inp.shape[0] cols = inp.shape[1] inp = cv.resize(inp, (300, 300)) net.setInput(cv.dnn.blobFromImage(inp, 1.0/127.5, (300, 300), (127.5, 127.5, 127.5), True)) out = net.forward() for i in range(out.shape[2]): score = float(out[0, 0, i, 2]) # Confidence threshold is in prototxt. classId = int(out[0, 0, i, 1]) x = out[0, 0, i, 3] * cols y = out[0, 0, i, 4] * rows w = out[0, 0, i, 5] * cols - x h = out[0, 0, i, 6] * rows - y detections.append({ "image_id": int(imgName.rstrip('0')[:imgName.rfind('.')]), "category_id": classId, "bbox": [x, y, w, h], "score": score }) with open('cv_result.json', 'wt') as f: json.dump(detections, f) ### Get TensorFlow predictions ################################################# import tensorflow as tf with tf.gfile.FastGFile(args.weights) as f: # Load the model graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) with tf.Session() as sess: # Restore session sess.graph.as_default() tf.import_graph_def(graph_def, name='') detections = [] for imgName in os.listdir(args.images): inp = cv.imread(os.path.join(args.images, imgName)) rows = inp.shape[0] cols = inp.shape[1] inp = cv.resize(inp, (300, 300)) inp = inp[:, :, [2, 1, 0]] # BGR2RGB out = sess.run([sess.graph.get_tensor_by_name('num_detections:0'), sess.graph.get_tensor_by_name('detection_scores:0'), sess.graph.get_tensor_by_name('detection_boxes:0'), sess.graph.get_tensor_by_name('detection_classes:0')], feed_dict={'image_tensor:0': inp.reshape(1, inp.shape[0], inp.shape[1], 3)}) num_detections = int(out[0][0]) for i in range(num_detections): classId = int(out[3][0][i]) score = float(out[1][0][i]) bbox = [float(v) for v in out[2][0][i]] if score > 0.01: x = bbox[1] * cols y = bbox[0] * rows w = bbox[3] * cols - x h = bbox[2] * rows - y detections.append({ "image_id": int(imgName.rstrip('0')[:imgName.rfind('.')]), "category_id": classId, "bbox": [x, y, w, h], "score": score }) with open('tf_result.json', 'wt') as f: json.dump(detections, f) ### Evaluation part ############################################################ # %matplotlib inline import matplotlib.pyplot as plt from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval import numpy as np import skimage.io as io import pylab pylab.rcParams['figure.figsize'] = (10.0, 8.0) annType = ['segm','bbox','keypoints'] annType = annType[1] #specify type here prefix = 'person_keypoints' if annType=='keypoints' else 'instances' print('Running demo for *%s* results.'%(annType)) #initialize COCO ground truth api cocoGt=COCO(args.annotations) #initialize COCO detections api for resFile in ['tf_result.json', 'cv_result.json']: print(resFile) cocoDt=cocoGt.loadRes(resFile) cocoEval = COCOeval(cocoGt,cocoDt,annType) cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize()