// demo.cpp // // Here is an example on how to use the descriptor presented in the following paper: // A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. In IEEE Conference on Computer Vision and Pattern Recognition, 2012. // CVPR 2012 Open Source Award winner // // Copyright (C) 2011-2012 Signal processing laboratory 2, EPFL, // Kirell Benzi (kirell.benzi@epfl.ch), // Raphael Ortiz (raphael.ortiz@a3.epfl.ch), // Alexandre Alahi (alexandre.alahi@epfl.ch) // and Pierre Vandergheynst (pierre.vandergheynst@epfl.ch) // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. #include #include #include #include #include "opencv2/core/utility.hpp" #include #include #include using namespace cv; static void help( char** argv ) { std::cout << "\nUsage: " << argv[0] << " [path/to/image1] [path/to/image2] \n" << "This is an example on how to use the keypoint descriptor presented in the following paper: \n" << "A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint. \n" << "In IEEE Conference on Computer Vision and Pattern Recognition, 2012. CVPR 2012 Open Source Award winner \n" << std::endl; } int main( int argc, char** argv ) { // check http://docs.opencv.org/doc/tutorials/features2d/table_of_content_features2d/table_of_content_features2d.html // for OpenCV general detection/matching framework details if( argc != 3 ) { help(argv); return -1; } // Load images Mat imgA = imread(argv[1], IMREAD_GRAYSCALE ); if( !imgA.data ) { std::cout<< " --(!) Error reading image " << argv[1] << std::endl; return -1; } Mat imgB = imread(argv[2], IMREAD_GRAYSCALE ); if( !imgB.data ) { std::cout << " --(!) Error reading image " << argv[2] << std::endl; return -1; } std::vector keypointsA, keypointsB; Mat descriptorsA, descriptorsB; std::vector matches; // DETECTION // Any openCV detector such as SurfFeatureDetector detector(2000,4); // DESCRIPTOR // Our proposed FREAK descriptor // (roation invariance, scale invariance, pattern radius corresponding to SMALLEST_KP_SIZE, // number of octaves, optional vector containing the selected pairs) // FREAK extractor(true, true, 22, 4, std::vector()); FREAK extractor; // MATCHER // The standard Hamming distance can be used such as // BFMatcher matcher(NORM_HAMMING); // or the proposed cascade of hamming distance using SSSE3 BFMatcher matcher(NORM_HAMMING); // detect double t = (double)getTickCount(); detector.detect( imgA, keypointsA ); detector.detect( imgB, keypointsB ); t = ((double)getTickCount() - t)/getTickFrequency(); std::cout << "detection time [s]: " << t/1.0 << std::endl; // extract t = (double)getTickCount(); extractor.compute( imgA, keypointsA, descriptorsA ); extractor.compute( imgB, keypointsB, descriptorsB ); t = ((double)getTickCount() - t)/getTickFrequency(); std::cout << "extraction time [s]: " << t << std::endl; // match t = (double)getTickCount(); matcher.match(descriptorsA, descriptorsB, matches); t = ((double)getTickCount() - t)/getTickFrequency(); std::cout << "matching time [s]: " << t << std::endl; // Draw matches Mat imgMatch; drawMatches(imgA, keypointsA, imgB, keypointsB, matches, imgMatch); namedWindow("matches", WINDOW_KEEPRATIO); imshow("matches", imgMatch); waitKey(0); }