/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Fangfang Bai, fangfang@multicorewareinc.com // Jin Ma, jin@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "perf_precomp.hpp" using namespace perf; using std::tr1::tuple; using std::tr1::get; ///////////// WarpAffine //////////////////////// typedef Size_MatType WarpAffineFixture; PERF_TEST_P(WarpAffineFixture, WarpAffine, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4))) { static const double coeffs[2][3] = { { cos(CV_PI / 6), -sin(CV_PI / 6), 100.0 }, { sin(CV_PI / 6), cos(CV_PI / 6), -100.0 } }; Mat M(2, 3, CV_64F, (void *)coeffs); const int interpolation = INTER_NEAREST; const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type), dst(srcSize, type); declare.in(src, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, type); OCL_TEST_CYCLE() cv::ocl::warpAffine(oclSrc, oclDst, M, srcSize, interpolation); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::warpAffine(src, dst, M, srcSize, interpolation); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// WarpPerspective //////////////////////// typedef Size_MatType WarpPerspectiveFixture; PERF_TEST_P(WarpPerspectiveFixture, WarpPerspective, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4))) { static const double coeffs[3][3] = { {cos(CV_PI / 6), -sin(CV_PI / 6), 100.0}, {sin(CV_PI / 6), cos(CV_PI / 6), -100.0}, {0.0, 0.0, 1.0} }; Mat M(3, 3, CV_64F, (void *)coeffs); const int interpolation = INTER_LINEAR; const Size_MatType_t params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); Mat src(srcSize, type), dst(srcSize, type); declare.in(src, WARMUP_RNG).out(dst) .time(srcSize == OCL_SIZE_4000 ? 18 : srcSize == OCL_SIZE_2000 ? 5 : 2); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, type); OCL_TEST_CYCLE() cv::ocl::warpPerspective(oclSrc, oclDst, M, srcSize, interpolation); oclDst.download(dst); SANITY_CHECK(dst); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::warpPerspective(src, dst, M, srcSize, interpolation); SANITY_CHECK(dst); } else OCL_PERF_ELSE } ///////////// resize //////////////////////// CV_ENUM(resizeInterType, INTER_NEAREST, INTER_LINEAR) typedef tuple resizeParams; typedef TestBaseWithParam resizeFixture; PERF_TEST_P(resizeFixture, resize, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4), resizeInterType::all(), ::testing::Values(0.5, 2.0))) { const resizeParams params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params), interType = get<2>(params); double scale = get<3>(params); const Size dstSize(cvRound(srcSize.width * scale), cvRound(srcSize.height * scale)); checkDeviceMaxMemoryAllocSize(srcSize, type); checkDeviceMaxMemoryAllocSize(dstSize, type); Mat src(srcSize, type), dst; dst.create(dstSize, type); declare.in(src, WARMUP_RNG).out(dst); if (interType == INTER_LINEAR && type == CV_8UC4 && OCL_SIZE_4000 == srcSize) declare.time(11); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(dstSize, type); OCL_TEST_CYCLE() cv::ocl::resize(oclSrc, oclDst, Size(), scale, scale, interType); oclDst.download(dst); SANITY_CHECK(dst, 1 + DBL_EPSILON); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::resize(src, dst, Size(), scale, scale, interType); SANITY_CHECK(dst, 1 + DBL_EPSILON); } else OCL_PERF_ELSE } typedef tuple resizeAreaParams; typedef TestBaseWithParam resizeAreaFixture; PERF_TEST_P(resizeAreaFixture, resize, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4), ::testing::Values(0.3, 0.5, 0.6))) { const resizeAreaParams params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params); double scale = get<2>(params); const Size dstSize(cvRound(srcSize.width * scale), cvRound(srcSize.height * scale)); checkDeviceMaxMemoryAllocSize(srcSize, type); Mat src(srcSize, type), dst; dst.create(dstSize, type); declare.in(src, WARMUP_RNG).out(dst); if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(dstSize, type); OCL_TEST_CYCLE() cv::ocl::resize(oclSrc, oclDst, Size(), scale, scale, cv::INTER_AREA); oclDst.download(dst); SANITY_CHECK(dst, 1 + DBL_EPSILON); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::resize(src, dst, Size(), scale, scale, cv::INTER_AREA); SANITY_CHECK(dst, 1 + DBL_EPSILON); } else OCL_PERF_ELSE } ///////////// remap//////////////////////// CV_ENUM(RemapInterType, INTER_NEAREST, INTER_LINEAR) typedef tuple remapParams; typedef TestBaseWithParam remapFixture; PERF_TEST_P(remapFixture, remap, ::testing::Combine(OCL_TYPICAL_MAT_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_8UC4), RemapInterType::all())) { const remapParams params = GetParam(); const Size srcSize = get<0>(params); const int type = get<1>(params), interpolation = get<2>(params); Mat src(srcSize, type), dst(srcSize, type); declare.in(src, WARMUP_RNG).out(dst); if (srcSize == OCL_SIZE_4000 && interpolation == INTER_LINEAR) declare.time(9); Mat xmap, ymap; xmap.create(srcSize, CV_32FC1); ymap.create(srcSize, CV_32FC1); for (int i = 0; i < srcSize.height; ++i) { float * const xmap_row = xmap.ptr(i); float * const ymap_row = ymap.ptr(i); for (int j = 0; j < srcSize.width; ++j) { xmap_row[j] = (j - srcSize.width * 0.5f) * 0.75f + srcSize.width * 0.5f; ymap_row[j] = (i - srcSize.height * 0.5f) * 0.75f + srcSize.height * 0.5f; } } const int borderMode = BORDER_CONSTANT; if (RUN_OCL_IMPL) { ocl::oclMat oclSrc(src), oclDst(srcSize, type); ocl::oclMat oclXMap(xmap), oclYMap(ymap); OCL_TEST_CYCLE() cv::ocl::remap(oclSrc, oclDst, oclXMap, oclYMap, interpolation, borderMode); oclDst.download(dst); SANITY_CHECK(dst, 1 + DBL_EPSILON); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() cv::remap(src, dst, xmap, ymap, interpolation, borderMode); SANITY_CHECK(dst, 1 + DBL_EPSILON); } else OCL_PERF_ELSE } ///////////// buildWarpPerspectiveMaps //////////////////////// static void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, Mat &xmap, Mat &ymap) { CV_Assert(M.rows == 3 && M.cols == 3); CV_Assert(dsize.area() > 0); xmap.create(dsize, CV_32FC1); ymap.create(dsize, CV_32FC1); float coeffs[3 * 3]; Mat coeffsMat(3, 3, CV_32F, (void *)coeffs); if (inverse) M.convertTo(coeffsMat, coeffsMat.type()); else { cv::Mat iM; invert(M, iM); iM.convertTo(coeffsMat, coeffsMat.type()); } for (int y = 0; y < dsize.height; ++y) { float * const xmap_ptr = xmap.ptr(y); float * const ymap_ptr = ymap.ptr(y); for (int x = 0; x < dsize.width; ++x) { float coeff = 1.0f / (x * coeffs[6] + y * coeffs[7] + coeffs[8]); xmap_ptr[x] = (x * coeffs[0] + y * coeffs[1] + coeffs[2]) * coeff; ymap_ptr[x] = (x * coeffs[3] + y * coeffs[4] + coeffs[5]) * coeff; } } } typedef TestBaseWithParam buildWarpPerspectiveMapsFixture; PERF_TEST_P(buildWarpPerspectiveMapsFixture, Inverse, OCL_TYPICAL_MAT_SIZES) { static const double coeffs[3][3] = { {cos(CV_PI / 6), -sin(CV_PI / 6), 100.0}, {sin(CV_PI / 6), cos(CV_PI / 6), -100.0}, {0.0, 0.0, 1.0} }; Mat M(3, 3, CV_64F, (void *)coeffs); const Size dsize = GetParam(); const double eps = 5e-4; Mat xmap(dsize, CV_32FC1), ymap(dsize, CV_32FC1); declare.in(M).out(xmap, ymap); if (RUN_OCL_IMPL) { ocl::oclMat oclXMap(dsize, CV_32FC1), oclYMap(dsize, CV_32FC1); OCL_TEST_CYCLE() cv::ocl::buildWarpPerspectiveMaps(M, true, dsize, oclXMap, oclYMap); oclXMap.download(xmap); oclYMap.download(ymap); SANITY_CHECK(xmap, eps); SANITY_CHECK(ymap, eps); } else if (RUN_PLAIN_IMPL) { TEST_CYCLE() buildWarpPerspectiveMaps(M, true, dsize, xmap, ymap); SANITY_CHECK(xmap, eps); SANITY_CHECK(ymap, eps); } else OCL_PERF_ELSE }