/* * Copyright (c) 1990-1997 Sam Leffler * Copyright (c) 1991-1997 Silicon Graphics, Inc. * * Permission to use, copy, modify, distribute, and sell this software and * its documentation for any purpose is hereby granted without fee, provided * that (i) the above copyright notices and this permission notice appear in * all copies of the software and related documentation, and (ii) the names of * Sam Leffler and Silicon Graphics may not be used in any advertising or * publicity relating to the software without the specific, prior written * permission of Sam Leffler and Silicon Graphics. * * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. * * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE * OF THIS SOFTWARE. */ #include "tiffiop.h" #ifdef CCITT_SUPPORT /* * TIFF Library. * * CCITT Group 3 (T.4) and Group 4 (T.6) Compression Support. * * This file contains support for decoding and encoding TIFF * compression algorithms 2, 3, 4, and 32771. * * Decoder support is derived, with permission, from the code * in Frank Cringle's viewfax program; * Copyright (C) 1990, 1995 Frank D. Cringle. */ #include "tif_fax3.h" #define G3CODES #include "t4.h" #include /* * Compression+decompression state blocks are * derived from this ``base state'' block. */ typedef struct { int rw_mode; /* O_RDONLY for decode, else encode */ int mode; /* operating mode */ tmsize_t rowbytes; /* bytes in a decoded scanline */ uint32 rowpixels; /* pixels in a scanline */ uint16 cleanfaxdata; /* CleanFaxData tag */ uint32 badfaxrun; /* BadFaxRun tag */ uint32 badfaxlines; /* BadFaxLines tag */ uint32 groupoptions; /* Group 3/4 options tag */ TIFFVGetMethod vgetparent; /* super-class method */ TIFFVSetMethod vsetparent; /* super-class method */ TIFFPrintMethod printdir; /* super-class method */ } Fax3BaseState; #define Fax3State(tif) ((Fax3BaseState*) (tif)->tif_data) typedef enum { G3_1D, G3_2D } Ttag; typedef struct { Fax3BaseState b; /* Decoder state info */ const unsigned char* bitmap; /* bit reversal table */ uint32 data; /* current i/o byte/word */ int bit; /* current i/o bit in byte */ int EOLcnt; /* count of EOL codes recognized */ TIFFFaxFillFunc fill; /* fill routine */ uint32* runs; /* b&w runs for current/previous row */ uint32 nruns; /* size of the refruns / curruns arrays */ uint32* refruns; /* runs for reference line */ uint32* curruns; /* runs for current line */ /* Encoder state info */ Ttag tag; /* encoding state */ unsigned char* refline; /* reference line for 2d decoding */ int k; /* #rows left that can be 2d encoded */ int maxk; /* max #rows that can be 2d encoded */ int line; } Fax3CodecState; #define DecoderState(tif) ((Fax3CodecState*) Fax3State(tif)) #define EncoderState(tif) ((Fax3CodecState*) Fax3State(tif)) #define is2DEncoding(sp) (sp->b.groupoptions & GROUP3OPT_2DENCODING) #define isAligned(p,t) ((((size_t)(p)) & (sizeof (t)-1)) == 0) /* * Group 3 and Group 4 Decoding. */ /* * These macros glue the TIFF library state to * the state expected by Frank's decoder. */ #define DECLARE_STATE(tif, sp, mod) \ static const char module[] = mod; \ Fax3CodecState* sp = DecoderState(tif); \ int a0; /* reference element */ \ int lastx = sp->b.rowpixels; /* last element in row */ \ uint32 BitAcc; /* bit accumulator */ \ int BitsAvail; /* # valid bits in BitAcc */ \ int RunLength; /* length of current run */ \ unsigned char* cp; /* next byte of input data */ \ unsigned char* ep; /* end of input data */ \ uint32* pa; /* place to stuff next run */ \ uint32* thisrun; /* current row's run array */ \ int EOLcnt; /* # EOL codes recognized */ \ const unsigned char* bitmap = sp->bitmap; /* input data bit reverser */ \ const TIFFFaxTabEnt* TabEnt #define DECLARE_STATE_2D(tif, sp, mod) \ DECLARE_STATE(tif, sp, mod); \ int b1; /* next change on prev line */ \ uint32* pb /* next run in reference line */\ /* * Load any state that may be changed during decoding. */ #define CACHE_STATE(tif, sp) do { \ BitAcc = sp->data; \ BitsAvail = sp->bit; \ EOLcnt = sp->EOLcnt; \ cp = (unsigned char*) tif->tif_rawcp; \ ep = cp + tif->tif_rawcc; \ } while (0) /* * Save state possibly changed during decoding. */ #define UNCACHE_STATE(tif, sp) do { \ sp->bit = BitsAvail; \ sp->data = BitAcc; \ sp->EOLcnt = EOLcnt; \ tif->tif_rawcc -= (tmsize_t)((uint8*) cp - tif->tif_rawcp); \ tif->tif_rawcp = (uint8*) cp; \ } while (0) /* * Setup state for decoding a strip. */ static int Fax3PreDecode(TIFF* tif, uint16 s) { Fax3CodecState* sp = DecoderState(tif); (void) s; assert(sp != NULL); sp->bit = 0; /* force initial read */ sp->data = 0; sp->EOLcnt = 0; /* force initial scan for EOL */ /* * Decoder assumes lsb-to-msb bit order. Note that we select * this here rather than in Fax3SetupState so that viewers can * hold the image open, fiddle with the FillOrder tag value, * and then re-decode the image. Otherwise they'd need to close * and open the image to get the state reset. */ sp->bitmap = TIFFGetBitRevTable(tif->tif_dir.td_fillorder != FILLORDER_LSB2MSB); sp->curruns = sp->runs; if (sp->refruns) { /* init reference line to white */ sp->refruns = sp->runs + sp->nruns; sp->refruns[0] = (uint32) sp->b.rowpixels; sp->refruns[1] = 0; } sp->line = 0; return (1); } /* * Routine for handling various errors/conditions. * Note how they are "glued into the decoder" by * overriding the definitions used by the decoder. */ static void Fax3Unexpected(const char* module, TIFF* tif, uint32 line, uint32 a0) { TIFFErrorExt(tif->tif_clientdata, module, "Bad code word at line %u of %s %u (x %u)", line, isTiled(tif) ? "tile" : "strip", (isTiled(tif) ? tif->tif_curtile : tif->tif_curstrip), a0); } #define unexpected(table, a0) Fax3Unexpected(module, tif, sp->line, a0) static void Fax3Extension(const char* module, TIFF* tif, uint32 line, uint32 a0) { TIFFErrorExt(tif->tif_clientdata, module, "Uncompressed data (not supported) at line %u of %s %u (x %u)", line, isTiled(tif) ? "tile" : "strip", (isTiled(tif) ? tif->tif_curtile : tif->tif_curstrip), a0); } #define extension(a0) Fax3Extension(module, tif, sp->line, a0) static void Fax3BadLength(const char* module, TIFF* tif, uint32 line, uint32 a0, uint32 lastx) { TIFFWarningExt(tif->tif_clientdata, module, "%s at line %u of %s %u (got %u, expected %u)", a0 < lastx ? "Premature EOL" : "Line length mismatch", line, isTiled(tif) ? "tile" : "strip", (isTiled(tif) ? tif->tif_curtile : tif->tif_curstrip), a0, lastx); } #define badlength(a0,lastx) Fax3BadLength(module, tif, sp->line, a0, lastx) static void Fax3PrematureEOF(const char* module, TIFF* tif, uint32 line, uint32 a0) { TIFFWarningExt(tif->tif_clientdata, module, "Premature EOF at line %u of %s %u (x %u)", line, isTiled(tif) ? "tile" : "strip", (isTiled(tif) ? tif->tif_curtile : tif->tif_curstrip), a0); } #define prematureEOF(a0) Fax3PrematureEOF(module, tif, sp->line, a0) #define Nop /** * Decode the requested amount of G3 1D-encoded data. * @param buf destination buffer * @param occ available bytes in destination buffer * @param s number of planes (ignored) * @returns 1 for success, -1 in case of error */ static int Fax3Decode1D(TIFF* tif, uint8* buf, tmsize_t occ, uint16 s) { DECLARE_STATE(tif, sp, "Fax3Decode1D"); (void) s; if (occ % sp->b.rowbytes) { TIFFErrorExt(tif->tif_clientdata, module, "Fractional scanlines cannot be read"); return (-1); } CACHE_STATE(tif, sp); thisrun = sp->curruns; while (occ > 0) { a0 = 0; RunLength = 0; pa = thisrun; #ifdef FAX3_DEBUG printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc, BitsAvail); printf("-------------------- %d\n", tif->tif_row); fflush(stdout); #endif SYNC_EOL(EOF1D); EXPAND1D(EOF1Da); (*sp->fill)(buf, thisrun, pa, lastx); buf += sp->b.rowbytes; occ -= sp->b.rowbytes; sp->line++; continue; EOF1D: /* premature EOF */ CLEANUP_RUNS(); EOF1Da: /* premature EOF */ (*sp->fill)(buf, thisrun, pa, lastx); UNCACHE_STATE(tif, sp); return (-1); } UNCACHE_STATE(tif, sp); return (1); } #define SWAP(t,a,b) { t x; x = (a); (a) = (b); (b) = x; } /* * Decode the requested amount of G3 2D-encoded data. */ static int Fax3Decode2D(TIFF* tif, uint8* buf, tmsize_t occ, uint16 s) { DECLARE_STATE_2D(tif, sp, "Fax3Decode2D"); int is1D; /* current line is 1d/2d-encoded */ (void) s; if (occ % sp->b.rowbytes) { TIFFErrorExt(tif->tif_clientdata, module, "Fractional scanlines cannot be read"); return (-1); } CACHE_STATE(tif, sp); while (occ > 0) { a0 = 0; RunLength = 0; pa = thisrun = sp->curruns; #ifdef FAX3_DEBUG printf("\nBitAcc=%08X, BitsAvail = %d EOLcnt = %d", BitAcc, BitsAvail, EOLcnt); #endif SYNC_EOL(EOF2D); NeedBits8(1, EOF2D); is1D = GetBits(1); /* 1D/2D-encoding tag bit */ ClrBits(1); #ifdef FAX3_DEBUG printf(" %s\n-------------------- %d\n", is1D ? "1D" : "2D", tif->tif_row); fflush(stdout); #endif pb = sp->refruns; b1 = *pb++; if (is1D) EXPAND1D(EOF2Da); else EXPAND2D(EOF2Da); (*sp->fill)(buf, thisrun, pa, lastx); if (pa < thisrun + sp->nruns) { SETVALUE(0); /* imaginary change for reference */ } SWAP(uint32*, sp->curruns, sp->refruns); buf += sp->b.rowbytes; occ -= sp->b.rowbytes; sp->line++; continue; EOF2D: /* premature EOF */ CLEANUP_RUNS(); EOF2Da: /* premature EOF */ (*sp->fill)(buf, thisrun, pa, lastx); UNCACHE_STATE(tif, sp); return (-1); } UNCACHE_STATE(tif, sp); return (1); } #undef SWAP /* * The ZERO & FILL macros must handle spans < 2*sizeof(long) bytes. * For machines with 64-bit longs this is <16 bytes; otherwise * this is <8 bytes. We optimize the code here to reflect the * machine characteristics. */ #if SIZEOF_UNSIGNED_LONG == 8 # define FILL(n, cp) \ switch (n) { \ case 15:(cp)[14] = 0xff; /*-fallthrough*/ \ case 14:(cp)[13] = 0xff; /*-fallthrough*/ \ case 13:(cp)[12] = 0xff; /*-fallthrough*/ \ case 12:(cp)[11] = 0xff; /*-fallthrough*/ \ case 11:(cp)[10] = 0xff; /*-fallthrough*/ \ case 10: (cp)[9] = 0xff; /*-fallthrough*/ \ case 9: (cp)[8] = 0xff; /*-fallthrough*/ \ case 8: (cp)[7] = 0xff; /*-fallthrough*/ \ case 7: (cp)[6] = 0xff; /*-fallthrough*/ \ case 6: (cp)[5] = 0xff; /*-fallthrough*/ \ case 5: (cp)[4] = 0xff; /*-fallthrough*/ \ case 4: (cp)[3] = 0xff; /*-fallthrough*/ \ case 3: (cp)[2] = 0xff; /*-fallthrough*/ \ case 2: (cp)[1] = 0xff; /*-fallthrough*/ \ case 1: (cp)[0] = 0xff; (cp) += (n); /*-fallthrough*/ \ case 0: ; \ } # define ZERO(n, cp) \ switch (n) { \ case 15:(cp)[14] = 0; /*-fallthrough*/ \ case 14:(cp)[13] = 0; /*-fallthrough*/ \ case 13:(cp)[12] = 0; /*-fallthrough*/ \ case 12:(cp)[11] = 0; /*-fallthrough*/ \ case 11:(cp)[10] = 0; /*-fallthrough*/ \ case 10: (cp)[9] = 0; /*-fallthrough*/ \ case 9: (cp)[8] = 0; /*-fallthrough*/ \ case 8: (cp)[7] = 0; /*-fallthrough*/ \ case 7: (cp)[6] = 0; /*-fallthrough*/ \ case 6: (cp)[5] = 0; /*-fallthrough*/ \ case 5: (cp)[4] = 0; /*-fallthrough*/ \ case 4: (cp)[3] = 0; /*-fallthrough*/ \ case 3: (cp)[2] = 0; /*-fallthrough*/ \ case 2: (cp)[1] = 0; /*-fallthrough*/ \ case 1: (cp)[0] = 0; (cp) += (n); /*-fallthrough*/ \ case 0: ; \ } #else # define FILL(n, cp) \ switch (n) { \ case 7: (cp)[6] = 0xff; /*-fallthrough*/ \ case 6: (cp)[5] = 0xff; /*-fallthrough*/ \ case 5: (cp)[4] = 0xff; /*-fallthrough*/ \ case 4: (cp)[3] = 0xff; /*-fallthrough*/ \ case 3: (cp)[2] = 0xff; /*-fallthrough*/ \ case 2: (cp)[1] = 0xff; /*-fallthrough*/ \ case 1: (cp)[0] = 0xff; (cp) += (n); /*-fallthrough*/ \ case 0: ; \ } # define ZERO(n, cp) \ switch (n) { \ case 7: (cp)[6] = 0; /*-fallthrough*/ \ case 6: (cp)[5] = 0; /*-fallthrough*/ \ case 5: (cp)[4] = 0; /*-fallthrough*/ \ case 4: (cp)[3] = 0; /*-fallthrough*/ \ case 3: (cp)[2] = 0; /*-fallthrough*/ \ case 2: (cp)[1] = 0; /*-fallthrough*/ \ case 1: (cp)[0] = 0; (cp) += (n); /*-fallthrough*/ \ case 0: ; \ } #endif /* * Bit-fill a row according to the white/black * runs generated during G3/G4 decoding. */ void _TIFFFax3fillruns(unsigned char* buf, uint32* runs, uint32* erun, uint32 lastx) { static const unsigned char _fillmasks[] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff }; unsigned char* cp; uint32 x, bx, run; int32 n, nw; long* lp; if ((erun-runs)&1) *erun++ = 0; x = 0; for (; runs < erun; runs += 2) { run = runs[0]; if (x+run > lastx || run > lastx ) run = runs[0] = (uint32) (lastx - x); if (run) { cp = buf + (x>>3); bx = x&7; if (run > 8-bx) { if (bx) { /* align to byte boundary */ *cp++ &= 0xff << (8-bx); run -= 8-bx; } if( (n = run >> 3) != 0 ) { /* multiple bytes to fill */ if ((n/sizeof (long)) > 1) { /* * Align to longword boundary and fill. */ for (; n && !isAligned(cp, long); n--) *cp++ = 0x00; lp = (long*) cp; nw = (int32)(n / sizeof (long)); n -= nw * sizeof (long); do { *lp++ = 0L; } while (--nw); cp = (unsigned char*) lp; } ZERO(n, cp); run &= 7; } if (run) cp[0] &= 0xff >> run; } else cp[0] &= ~(_fillmasks[run]>>bx); x += runs[0]; } run = runs[1]; if (x+run > lastx || run > lastx ) run = runs[1] = lastx - x; if (run) { cp = buf + (x>>3); bx = x&7; if (run > 8-bx) { if (bx) { /* align to byte boundary */ *cp++ |= 0xff >> bx; run -= 8-bx; } if( (n = run>>3) != 0 ) { /* multiple bytes to fill */ if ((n/sizeof (long)) > 1) { /* * Align to longword boundary and fill. */ for (; n && !isAligned(cp, long); n--) *cp++ = 0xff; lp = (long*) cp; nw = (int32)(n / sizeof (long)); n -= nw * sizeof (long); do { *lp++ = -1L; } while (--nw); cp = (unsigned char*) lp; } FILL(n, cp); run &= 7; } /* Explicit 0xff masking to make icc -check=conversions happy */ if (run) cp[0] = (unsigned char)((cp[0] | (0xff00 >> run))&0xff); } else cp[0] |= _fillmasks[run]>>bx; x += runs[1]; } } assert(x == lastx); } #undef ZERO #undef FILL static int Fax3FixupTags(TIFF* tif) { (void) tif; return (1); } /* * Setup G3/G4-related compression/decompression state * before data is processed. This routine is called once * per image -- it sets up different state based on whether * or not decoding or encoding is being done and whether * 1D- or 2D-encoded data is involved. */ static int Fax3SetupState(TIFF* tif) { static const char module[] = "Fax3SetupState"; TIFFDirectory* td = &tif->tif_dir; Fax3BaseState* sp = Fax3State(tif); int needsRefLine; Fax3CodecState* dsp = (Fax3CodecState*) Fax3State(tif); tmsize_t rowbytes; uint32 rowpixels; if (td->td_bitspersample != 1) { TIFFErrorExt(tif->tif_clientdata, module, "Bits/sample must be 1 for Group 3/4 encoding/decoding"); return (0); } /* * Calculate the scanline/tile widths. */ if (isTiled(tif)) { rowbytes = TIFFTileRowSize(tif); rowpixels = td->td_tilewidth; } else { rowbytes = TIFFScanlineSize(tif); rowpixels = td->td_imagewidth; } if ((uint64)rowbytes < ((uint64)rowpixels + 7) / 8) { TIFFErrorExt(tif->tif_clientdata, module, "Inconsistent number of bytes per row : rowbytes=%lu rowpixels=%lu", (unsigned long)(rowbytes), (unsigned long)(rowpixels)); return (0); } sp->rowbytes = rowbytes; sp->rowpixels = rowpixels; /* * Allocate any additional space required for decoding/encoding. */ needsRefLine = ( (sp->groupoptions & GROUP3OPT_2DENCODING) || td->td_compression == COMPRESSION_CCITTFAX4 ); /* Assure that allocation computations do not overflow. TIFFroundup and TIFFSafeMultiply return zero on integer overflow */ dsp->runs=(uint32*) NULL; dsp->nruns = TIFFroundup_32(rowpixels,32); if (needsRefLine) { dsp->nruns = TIFFSafeMultiply(uint32,dsp->nruns,2); } if ((dsp->nruns == 0) || (TIFFSafeMultiply(uint32,dsp->nruns,2) == 0)) { TIFFErrorExt(tif->tif_clientdata, tif->tif_name, "Row pixels integer overflow (rowpixels %u)", rowpixels); return (0); } dsp->runs = (uint32*) _TIFFCheckMalloc(tif, TIFFSafeMultiply(uint32,dsp->nruns,2), sizeof (uint32), "for Group 3/4 run arrays"); if (dsp->runs == NULL) return (0); memset( dsp->runs, 0, TIFFSafeMultiply(uint32,dsp->nruns,2)*sizeof(uint32)); dsp->curruns = dsp->runs; if (needsRefLine) dsp->refruns = dsp->runs + dsp->nruns; else dsp->refruns = NULL; if (td->td_compression == COMPRESSION_CCITTFAX3 && is2DEncoding(dsp)) { /* NB: default is 1D routine */ tif->tif_decoderow = Fax3Decode2D; tif->tif_decodestrip = Fax3Decode2D; tif->tif_decodetile = Fax3Decode2D; } if (needsRefLine) { /* 2d encoding */ Fax3CodecState* esp = EncoderState(tif); /* * 2d encoding requires a scanline * buffer for the ``reference line''; the * scanline against which delta encoding * is referenced. The reference line must * be initialized to be ``white'' (done elsewhere). */ esp->refline = (unsigned char*) _TIFFmalloc(rowbytes); if (esp->refline == NULL) { TIFFErrorExt(tif->tif_clientdata, module, "No space for Group 3/4 reference line"); return (0); } } else /* 1d encoding */ EncoderState(tif)->refline = NULL; return (1); } /* * CCITT Group 3 FAX Encoding. */ #define Fax3FlushBits(tif, sp) { \ if ((tif)->tif_rawcc >= (tif)->tif_rawdatasize) { \ if( !TIFFFlushData1(tif) ) \ return 0; \ } \ *(tif)->tif_rawcp++ = (uint8) (sp)->data; \ (tif)->tif_rawcc++; \ (sp)->data = 0, (sp)->bit = 8; \ } #define _FlushBits(tif) { \ if ((tif)->tif_rawcc >= (tif)->tif_rawdatasize) { \ if( !TIFFFlushData1(tif) ) \ return 0; \ } \ *(tif)->tif_rawcp++ = (uint8) data; \ (tif)->tif_rawcc++; \ data = 0, bit = 8; \ } static const int _msbmask[9] = { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff }; #define _PutBits(tif, bits, length) { \ while (length > bit) { \ data |= bits >> (length - bit); \ length -= bit; \ _FlushBits(tif); \ } \ assert( length < 9 ); \ data |= (bits & _msbmask[length]) << (bit - length); \ bit -= length; \ if (bit == 0) \ _FlushBits(tif); \ } /* * Write a variable-length bit-value to * the output stream. Values are * assumed to be at most 16 bits. */ static int Fax3PutBits(TIFF* tif, unsigned int bits, unsigned int length) { Fax3CodecState* sp = EncoderState(tif); unsigned int bit = sp->bit; int data = sp->data; _PutBits(tif, bits, length); sp->data = data; sp->bit = bit; return 1; } /* * Write a code to the output stream. */ #define putcode(tif, te) Fax3PutBits(tif, (te)->code, (te)->length) #ifdef FAX3_DEBUG #define DEBUG_COLOR(w) (tab == TIFFFaxWhiteCodes ? w "W" : w "B") #define DEBUG_PRINT(what,len) { \ int t; \ printf("%08X/%-2d: %s%5d\t", data, bit, DEBUG_COLOR(what), len); \ for (t = length-1; t >= 0; t--) \ putchar(code & (1<bit; int data = sp->data; unsigned int code, length; while (span >= 2624) { const tableentry* te = &tab[63 + (2560>>6)]; code = te->code; length = te->length; #ifdef FAX3_DEBUG DEBUG_PRINT("MakeUp", te->runlen); #endif _PutBits(tif, code, length); span -= te->runlen; } if (span >= 64) { const tableentry* te = &tab[63 + (span>>6)]; assert(te->runlen == 64*(span>>6)); code = te->code; length = te->length; #ifdef FAX3_DEBUG DEBUG_PRINT("MakeUp", te->runlen); #endif _PutBits(tif, code, length); span -= te->runlen; } code = tab[span].code; length = tab[span].length; #ifdef FAX3_DEBUG DEBUG_PRINT(" Term", tab[span].runlen); #endif _PutBits(tif, code, length); sp->data = data; sp->bit = bit; return 1; } /* * Write an EOL code to the output stream. The zero-fill * logic for byte-aligning encoded scanlines is handled * here. We also handle writing the tag bit for the next * scanline when doing 2d encoding. */ static int Fax3PutEOL(TIFF* tif) { Fax3CodecState* sp = EncoderState(tif); unsigned int bit = sp->bit; int data = sp->data; unsigned int code, length, tparm; if (sp->b.groupoptions & GROUP3OPT_FILLBITS) { /* * Force bit alignment so EOL will terminate on * a byte boundary. That is, force the bit alignment * to 16-12 = 4 before putting out the EOL code. */ int align = 8 - 4; if (align != sp->bit) { if (align > sp->bit) align = sp->bit + (8 - align); else align = sp->bit - align; tparm=align; _PutBits(tif, 0, tparm); } } code = EOL; length = 12; if (is2DEncoding(sp)) { code = (code<<1) | (sp->tag == G3_1D); length++; } _PutBits(tif, code, length); sp->data = data; sp->bit = bit; return 1; } /* * Reset encoding state at the start of a strip. */ static int Fax3PreEncode(TIFF* tif, uint16 s) { Fax3CodecState* sp = EncoderState(tif); (void) s; assert(sp != NULL); sp->bit = 8; sp->data = 0; sp->tag = G3_1D; /* * This is necessary for Group 4; otherwise it isn't * needed because the first scanline of each strip ends * up being copied into the refline. */ if (sp->refline) _TIFFmemset(sp->refline, 0x00, sp->b.rowbytes); if (is2DEncoding(sp)) { float res = tif->tif_dir.td_yresolution; /* * The CCITT spec says that when doing 2d encoding, you * should only do it on K consecutive scanlines, where K * depends on the resolution of the image being encoded * (2 for <= 200 lpi, 4 for > 200 lpi). Since the directory * code initializes td_yresolution to 0, this code will * select a K of 2 unless the YResolution tag is set * appropriately. (Note also that we fudge a little here * and use 150 lpi to avoid problems with units conversion.) */ if (tif->tif_dir.td_resolutionunit == RESUNIT_CENTIMETER) res *= 2.54f; /* convert to inches */ sp->maxk = (res > 150 ? 4 : 2); sp->k = sp->maxk-1; } else sp->k = sp->maxk = 0; sp->line = 0; return (1); } static const unsigned char zeroruns[256] = { 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, /* 0x00 - 0x0f */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0x10 - 0x1f */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x20 - 0x2f */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0x30 - 0x3f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x4f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x5f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x6f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x7f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x80 - 0x8f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x90 - 0x9f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xa0 - 0xaf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xb0 - 0xbf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xc0 - 0xcf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xd0 - 0xdf */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xe0 - 0xef */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0xf0 - 0xff */ }; static const unsigned char oneruns[256] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x0f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x1f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x20 - 0x2f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x30 - 0x3f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x40 - 0x4f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x50 - 0x5f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x60 - 0x6f */ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0x70 - 0x7f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x80 - 0x8f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0x90 - 0x9f */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xa0 - 0xaf */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 0xb0 - 0xbf */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xc0 - 0xcf */ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, /* 0xd0 - 0xdf */ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, /* 0xe0 - 0xef */ 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 8, /* 0xf0 - 0xff */ }; /* * On certain systems it pays to inline * the routines that find pixel spans. */ #ifdef VAXC static int32 find0span(unsigned char*, int32, int32); static int32 find1span(unsigned char*, int32, int32); #pragma inline(find0span,find1span) #endif /* * Find a span of ones or zeros using the supplied * table. The ``base'' of the bit string is supplied * along with the start+end bit indices. */ inline static int32 find0span(unsigned char* bp, int32 bs, int32 be) { int32 bits = be - bs; int32 n, span; bp += bs>>3; /* * Check partial byte on lhs. */ if (bits > 0 && (n = (bs & 7)) != 0) { span = zeroruns[(*bp << n) & 0xff]; if (span > 8-n) /* table value too generous */ span = 8-n; if (span > bits) /* constrain span to bit range */ span = bits; if (n+span < 8) /* doesn't extend to edge of byte */ return (span); bits -= span; bp++; } else span = 0; if (bits >= (int32)(2 * 8 * sizeof(long))) { long* lp; /* * Align to longword boundary and check longwords. */ while (!isAligned(bp, long)) { if (*bp != 0x00) return (span + zeroruns[*bp]); span += 8; bits -= 8; bp++; } lp = (long*) bp; while ((bits >= (int32)(8 * sizeof(long))) && (0 == *lp)) { span += 8*sizeof (long); bits -= 8*sizeof (long); lp++; } bp = (unsigned char*) lp; } /* * Scan full bytes for all 0's. */ while (bits >= 8) { if (*bp != 0x00) /* end of run */ return (span + zeroruns[*bp]); span += 8; bits -= 8; bp++; } /* * Check partial byte on rhs. */ if (bits > 0) { n = zeroruns[*bp]; span += (n > bits ? bits : n); } return (span); } inline static int32 find1span(unsigned char* bp, int32 bs, int32 be) { int32 bits = be - bs; int32 n, span; bp += bs>>3; /* * Check partial byte on lhs. */ if (bits > 0 && (n = (bs & 7)) != 0) { span = oneruns[(*bp << n) & 0xff]; if (span > 8-n) /* table value too generous */ span = 8-n; if (span > bits) /* constrain span to bit range */ span = bits; if (n+span < 8) /* doesn't extend to edge of byte */ return (span); bits -= span; bp++; } else span = 0; if (bits >= (int32)(2 * 8 * sizeof(long))) { long* lp; /* * Align to longword boundary and check longwords. */ while (!isAligned(bp, long)) { if (*bp != 0xff) return (span + oneruns[*bp]); span += 8; bits -= 8; bp++; } lp = (long*) bp; while ((bits >= (int32)(8 * sizeof(long))) && (~0 == *lp)) { span += 8*sizeof (long); bits -= 8*sizeof (long); lp++; } bp = (unsigned char*) lp; } /* * Scan full bytes for all 1's. */ while (bits >= 8) { if (*bp != 0xff) /* end of run */ return (span + oneruns[*bp]); span += 8; bits -= 8; bp++; } /* * Check partial byte on rhs. */ if (bits > 0) { n = oneruns[*bp]; span += (n > bits ? bits : n); } return (span); } /* * Return the offset of the next bit in the range * [bs..be] that is different from the specified * color. The end, be, is returned if no such bit * exists. */ #define finddiff(_cp, _bs, _be, _color) \ (_bs + (_color ? find1span(_cp,_bs,_be) : find0span(_cp,_bs,_be))) /* * Like finddiff, but also check the starting bit * against the end in case start > end. */ #define finddiff2(_cp, _bs, _be, _color) \ (_bs < _be ? finddiff(_cp,_bs,_be,_color) : _be) /* * 1d-encode a row of pixels. The encoding is * a sequence of all-white or all-black spans * of pixels encoded with Huffman codes. */ static int Fax3Encode1DRow(TIFF* tif, unsigned char* bp, uint32 bits) { Fax3CodecState* sp = EncoderState(tif); int32 span; uint32 bs = 0; for (;;) { span = find0span(bp, bs, bits); /* white span */ if( !putspan(tif, span, TIFFFaxWhiteCodes) ) return 0; bs += span; if (bs >= bits) break; span = find1span(bp, bs, bits); /* black span */ if( !putspan(tif, span, TIFFFaxBlackCodes) ) return 0; bs += span; if (bs >= bits) break; } if (sp->b.mode & (FAXMODE_BYTEALIGN|FAXMODE_WORDALIGN)) { if (sp->bit != 8) /* byte-align */ Fax3FlushBits(tif, sp); if ((sp->b.mode&FAXMODE_WORDALIGN) && !isAligned(tif->tif_rawcp, uint16)) Fax3FlushBits(tif, sp); } return (1); } static const tableentry horizcode = { 3, 0x1, 0 }; /* 001 */ static const tableentry passcode = { 4, 0x1, 0 }; /* 0001 */ static const tableentry vcodes[7] = { { 7, 0x03, 0 }, /* 0000 011 */ { 6, 0x03, 0 }, /* 0000 11 */ { 3, 0x03, 0 }, /* 011 */ { 1, 0x1, 0 }, /* 1 */ { 3, 0x2, 0 }, /* 010 */ { 6, 0x02, 0 }, /* 0000 10 */ { 7, 0x02, 0 } /* 0000 010 */ }; /* * 2d-encode a row of pixels. Consult the CCITT * documentation for the algorithm. */ static int Fax3Encode2DRow(TIFF* tif, unsigned char* bp, unsigned char* rp, uint32 bits) { #define PIXEL(buf,ix) ((((buf)[(ix)>>3]) >> (7-((ix)&7))) & 1) uint32 a0 = 0; uint32 a1 = (PIXEL(bp, 0) != 0 ? 0 : finddiff(bp, 0, bits, 0)); uint32 b1 = (PIXEL(rp, 0) != 0 ? 0 : finddiff(rp, 0, bits, 0)); uint32 a2, b2; for (;;) { b2 = finddiff2(rp, b1, bits, PIXEL(rp,b1)); if (b2 >= a1) { /* Naive computation triggers -fsanitize=undefined,unsigned-integer-overflow */ /* although it is correct unless the difference between both is < 31 bit */ /* int32 d = b1 - a1; */ int32 d = (b1 >= a1 && b1 - a1 <= 3U) ? (int32)(b1 - a1): (b1 < a1 && a1 - b1 <= 3U) ? -(int32)(a1 - b1) : 0x7FFFFFFF; if (!(-3 <= d && d <= 3)) { /* horizontal mode */ a2 = finddiff2(bp, a1, bits, PIXEL(bp,a1)); if( !putcode(tif, &horizcode) ) return 0; if (a0+a1 == 0 || PIXEL(bp, a0) == 0) { if( !putspan(tif, a1-a0, TIFFFaxWhiteCodes) ) return 0; if( !putspan(tif, a2-a1, TIFFFaxBlackCodes) ) return 0; } else { if( !putspan(tif, a1-a0, TIFFFaxBlackCodes) ) return 0; if( !putspan(tif, a2-a1, TIFFFaxWhiteCodes) ) return 0; } a0 = a2; } else { /* vertical mode */ if( !putcode(tif, &vcodes[d+3]) ) return 0; a0 = a1; } } else { /* pass mode */ if( !putcode(tif, &passcode) ) return 0; a0 = b2; } if (a0 >= bits) break; a1 = finddiff(bp, a0, bits, PIXEL(bp,a0)); b1 = finddiff(rp, a0, bits, !PIXEL(bp,a0)); b1 = finddiff(rp, b1, bits, PIXEL(bp,a0)); } return (1); #undef PIXEL } /* * Encode a buffer of pixels. */ static int Fax3Encode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s) { static const char module[] = "Fax3Encode"; Fax3CodecState* sp = EncoderState(tif); (void) s; if (cc % sp->b.rowbytes) { TIFFErrorExt(tif->tif_clientdata, module, "Fractional scanlines cannot be written"); return (0); } while (cc > 0) { if ((sp->b.mode & FAXMODE_NOEOL) == 0) { if( !Fax3PutEOL(tif) ) return 0; } if (is2DEncoding(sp)) { if (sp->tag == G3_1D) { if (!Fax3Encode1DRow(tif, bp, sp->b.rowpixels)) return (0); sp->tag = G3_2D; } else { if (!Fax3Encode2DRow(tif, bp, sp->refline, sp->b.rowpixels)) return (0); sp->k--; } if (sp->k == 0) { sp->tag = G3_1D; sp->k = sp->maxk-1; } else _TIFFmemcpy(sp->refline, bp, sp->b.rowbytes); } else { if (!Fax3Encode1DRow(tif, bp, sp->b.rowpixels)) return (0); } bp += sp->b.rowbytes; cc -= sp->b.rowbytes; } return (1); } static int Fax3PostEncode(TIFF* tif) { Fax3CodecState* sp = EncoderState(tif); if (sp->bit != 8) Fax3FlushBits(tif, sp); return (1); } static int _Fax3Close(TIFF* tif) { if ((Fax3State(tif)->mode & FAXMODE_NORTC) == 0 && tif->tif_rawcp) { Fax3CodecState* sp = EncoderState(tif); unsigned int code = EOL; unsigned int length = 12; int i; if (is2DEncoding(sp)) { code = (code<<1) | (sp->tag == G3_1D); length++; } for (i = 0; i < 6; i++) Fax3PutBits(tif, code, length); Fax3FlushBits(tif, sp); } return 1; } static void Fax3Close(TIFF* tif) { _Fax3Close(tif); } static void Fax3Cleanup(TIFF* tif) { Fax3CodecState* sp = DecoderState(tif); assert(sp != 0); tif->tif_tagmethods.vgetfield = sp->b.vgetparent; tif->tif_tagmethods.vsetfield = sp->b.vsetparent; tif->tif_tagmethods.printdir = sp->b.printdir; if (sp->runs) _TIFFfree(sp->runs); if (sp->refline) _TIFFfree(sp->refline); _TIFFfree(tif->tif_data); tif->tif_data = NULL; _TIFFSetDefaultCompressionState(tif); } #define FIELD_BADFAXLINES (FIELD_CODEC+0) #define FIELD_CLEANFAXDATA (FIELD_CODEC+1) #define FIELD_BADFAXRUN (FIELD_CODEC+2) #define FIELD_OPTIONS (FIELD_CODEC+7) static const TIFFField faxFields[] = { { TIFFTAG_FAXMODE, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "FaxMode", NULL }, { TIFFTAG_FAXFILLFUNC, 0, 0, TIFF_ANY, 0, TIFF_SETGET_OTHER, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "FaxFillFunc", NULL }, { TIFFTAG_BADFAXLINES, 1, 1, TIFF_LONG, 0, TIFF_SETGET_UINT32, TIFF_SETGET_UINT32, FIELD_BADFAXLINES, TRUE, FALSE, "BadFaxLines", NULL }, { TIFFTAG_CLEANFAXDATA, 1, 1, TIFF_SHORT, 0, TIFF_SETGET_UINT16, TIFF_SETGET_UINT16, FIELD_CLEANFAXDATA, TRUE, FALSE, "CleanFaxData", NULL }, { TIFFTAG_CONSECUTIVEBADFAXLINES, 1, 1, TIFF_LONG, 0, TIFF_SETGET_UINT32, TIFF_SETGET_UINT32, FIELD_BADFAXRUN, TRUE, FALSE, "ConsecutiveBadFaxLines", NULL }}; static const TIFFField fax3Fields[] = { { TIFFTAG_GROUP3OPTIONS, 1, 1, TIFF_LONG, 0, TIFF_SETGET_UINT32, TIFF_SETGET_UINT32, FIELD_OPTIONS, FALSE, FALSE, "Group3Options", NULL }, }; static const TIFFField fax4Fields[] = { { TIFFTAG_GROUP4OPTIONS, 1, 1, TIFF_LONG, 0, TIFF_SETGET_UINT32, TIFF_SETGET_UINT32, FIELD_OPTIONS, FALSE, FALSE, "Group4Options", NULL }, }; static int Fax3VSetField(TIFF* tif, uint32 tag, va_list ap) { Fax3BaseState* sp = Fax3State(tif); const TIFFField* fip; assert(sp != 0); assert(sp->vsetparent != 0); switch (tag) { case TIFFTAG_FAXMODE: sp->mode = (int) va_arg(ap, int); return 1; /* NB: pseudo tag */ case TIFFTAG_FAXFILLFUNC: DecoderState(tif)->fill = va_arg(ap, TIFFFaxFillFunc); return 1; /* NB: pseudo tag */ case TIFFTAG_GROUP3OPTIONS: /* XXX: avoid reading options if compression mismatches. */ if (tif->tif_dir.td_compression == COMPRESSION_CCITTFAX3) sp->groupoptions = (uint32) va_arg(ap, uint32); break; case TIFFTAG_GROUP4OPTIONS: /* XXX: avoid reading options if compression mismatches. */ if (tif->tif_dir.td_compression == COMPRESSION_CCITTFAX4) sp->groupoptions = (uint32) va_arg(ap, uint32); break; case TIFFTAG_BADFAXLINES: sp->badfaxlines = (uint32) va_arg(ap, uint32); break; case TIFFTAG_CLEANFAXDATA: sp->cleanfaxdata = (uint16) va_arg(ap, uint16_vap); break; case TIFFTAG_CONSECUTIVEBADFAXLINES: sp->badfaxrun = (uint32) va_arg(ap, uint32); break; default: return (*sp->vsetparent)(tif, tag, ap); } if ((fip = TIFFFieldWithTag(tif, tag)) != NULL) TIFFSetFieldBit(tif, fip->field_bit); else return 0; tif->tif_flags |= TIFF_DIRTYDIRECT; return 1; } static int Fax3VGetField(TIFF* tif, uint32 tag, va_list ap) { Fax3BaseState* sp = Fax3State(tif); assert(sp != 0); switch (tag) { case TIFFTAG_FAXMODE: *va_arg(ap, int*) = sp->mode; break; case TIFFTAG_FAXFILLFUNC: *va_arg(ap, TIFFFaxFillFunc*) = DecoderState(tif)->fill; break; case TIFFTAG_GROUP3OPTIONS: case TIFFTAG_GROUP4OPTIONS: *va_arg(ap, uint32*) = sp->groupoptions; break; case TIFFTAG_BADFAXLINES: *va_arg(ap, uint32*) = sp->badfaxlines; break; case TIFFTAG_CLEANFAXDATA: *va_arg(ap, uint16*) = sp->cleanfaxdata; break; case TIFFTAG_CONSECUTIVEBADFAXLINES: *va_arg(ap, uint32*) = sp->badfaxrun; break; default: return (*sp->vgetparent)(tif, tag, ap); } return (1); } static void Fax3PrintDir(TIFF* tif, FILE* fd, long flags) { Fax3BaseState* sp = Fax3State(tif); assert(sp != 0); (void) flags; if (TIFFFieldSet(tif,FIELD_OPTIONS)) { const char* sep = " "; if (tif->tif_dir.td_compression == COMPRESSION_CCITTFAX4) { fprintf(fd, " Group 4 Options:"); if (sp->groupoptions & GROUP4OPT_UNCOMPRESSED) fprintf(fd, "%suncompressed data", sep); } else { fprintf(fd, " Group 3 Options:"); if (sp->groupoptions & GROUP3OPT_2DENCODING) { fprintf(fd, "%s2-d encoding", sep); sep = "+"; } if (sp->groupoptions & GROUP3OPT_FILLBITS) { fprintf(fd, "%sEOL padding", sep); sep = "+"; } if (sp->groupoptions & GROUP3OPT_UNCOMPRESSED) fprintf(fd, "%suncompressed data", sep); } fprintf(fd, " (%lu = 0x%lx)\n", (unsigned long) sp->groupoptions, (unsigned long) sp->groupoptions); } if (TIFFFieldSet(tif,FIELD_CLEANFAXDATA)) { fprintf(fd, " Fax Data:"); switch (sp->cleanfaxdata) { case CLEANFAXDATA_CLEAN: fprintf(fd, " clean"); break; case CLEANFAXDATA_REGENERATED: fprintf(fd, " receiver regenerated"); break; case CLEANFAXDATA_UNCLEAN: fprintf(fd, " uncorrected errors"); break; } fprintf(fd, " (%u = 0x%x)\n", sp->cleanfaxdata, sp->cleanfaxdata); } if (TIFFFieldSet(tif,FIELD_BADFAXLINES)) fprintf(fd, " Bad Fax Lines: %lu\n", (unsigned long) sp->badfaxlines); if (TIFFFieldSet(tif,FIELD_BADFAXRUN)) fprintf(fd, " Consecutive Bad Fax Lines: %lu\n", (unsigned long) sp->badfaxrun); if (sp->printdir) (*sp->printdir)(tif, fd, flags); } static int InitCCITTFax3(TIFF* tif) { static const char module[] = "InitCCITTFax3"; Fax3BaseState* sp; /* * Merge codec-specific tag information. */ if (!_TIFFMergeFields(tif, faxFields, TIFFArrayCount(faxFields))) { TIFFErrorExt(tif->tif_clientdata, "InitCCITTFax3", "Merging common CCITT Fax codec-specific tags failed"); return 0; } /* * Allocate state block so tag methods have storage to record values. */ tif->tif_data = (uint8*) _TIFFmalloc(sizeof (Fax3CodecState)); if (tif->tif_data == NULL) { TIFFErrorExt(tif->tif_clientdata, module, "No space for state block"); return (0); } _TIFFmemset(tif->tif_data, 0, sizeof (Fax3CodecState)); sp = Fax3State(tif); sp->rw_mode = tif->tif_mode; /* * Override parent get/set field methods. */ sp->vgetparent = tif->tif_tagmethods.vgetfield; tif->tif_tagmethods.vgetfield = Fax3VGetField; /* hook for codec tags */ sp->vsetparent = tif->tif_tagmethods.vsetfield; tif->tif_tagmethods.vsetfield = Fax3VSetField; /* hook for codec tags */ sp->printdir = tif->tif_tagmethods.printdir; tif->tif_tagmethods.printdir = Fax3PrintDir; /* hook for codec tags */ sp->groupoptions = 0; if (sp->rw_mode == O_RDONLY) /* FIXME: improve for in place update */ tif->tif_flags |= TIFF_NOBITREV; /* decoder does bit reversal */ DecoderState(tif)->runs = NULL; TIFFSetField(tif, TIFFTAG_FAXFILLFUNC, _TIFFFax3fillruns); EncoderState(tif)->refline = NULL; /* * Install codec methods. */ tif->tif_fixuptags = Fax3FixupTags; tif->tif_setupdecode = Fax3SetupState; tif->tif_predecode = Fax3PreDecode; tif->tif_decoderow = Fax3Decode1D; tif->tif_decodestrip = Fax3Decode1D; tif->tif_decodetile = Fax3Decode1D; tif->tif_setupencode = Fax3SetupState; tif->tif_preencode = Fax3PreEncode; tif->tif_postencode = Fax3PostEncode; tif->tif_encoderow = Fax3Encode; tif->tif_encodestrip = Fax3Encode; tif->tif_encodetile = Fax3Encode; tif->tif_close = Fax3Close; tif->tif_cleanup = Fax3Cleanup; return (1); } int TIFFInitCCITTFax3(TIFF* tif, int scheme) { (void) scheme; if (InitCCITTFax3(tif)) { /* * Merge codec-specific tag information. */ if (!_TIFFMergeFields(tif, fax3Fields, TIFFArrayCount(fax3Fields))) { TIFFErrorExt(tif->tif_clientdata, "TIFFInitCCITTFax3", "Merging CCITT Fax 3 codec-specific tags failed"); return 0; } /* * The default format is Class/F-style w/o RTC. */ return TIFFSetField(tif, TIFFTAG_FAXMODE, FAXMODE_CLASSF); } else return 01; } /* * CCITT Group 4 (T.6) Facsimile-compatible * Compression Scheme Support. */ #define SWAP(t,a,b) { t x; x = (a); (a) = (b); (b) = x; } /* * Decode the requested amount of G4-encoded data. */ static int Fax4Decode(TIFF* tif, uint8* buf, tmsize_t occ, uint16 s) { DECLARE_STATE_2D(tif, sp, "Fax4Decode"); (void) s; if (occ % sp->b.rowbytes) { TIFFErrorExt(tif->tif_clientdata, module, "Fractional scanlines cannot be read"); return (-1); } CACHE_STATE(tif, sp); while (occ > 0) { a0 = 0; RunLength = 0; pa = thisrun = sp->curruns; pb = sp->refruns; b1 = *pb++; #ifdef FAX3_DEBUG printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc, BitsAvail); printf("-------------------- %d\n", tif->tif_row); fflush(stdout); #endif EXPAND2D(EOFG4); if (EOLcnt) goto EOFG4; if (((lastx + 7) >> 3) > (int)occ) /* check for buffer overrun */ { TIFFErrorExt(tif->tif_clientdata, module, "Buffer overrun detected : %d bytes available, %d bits needed", (int)occ, lastx); return -1; } (*sp->fill)(buf, thisrun, pa, lastx); SETVALUE(0); /* imaginary change for reference */ SWAP(uint32*, sp->curruns, sp->refruns); buf += sp->b.rowbytes; occ -= sp->b.rowbytes; sp->line++; continue; EOFG4: NeedBits16( 13, BADG4 ); BADG4: #ifdef FAX3_DEBUG if( GetBits(13) != 0x1001 ) fputs( "Bad EOFB\n", stderr ); #endif ClrBits( 13 ); if (((lastx + 7) >> 3) > (int)occ) /* check for buffer overrun */ { TIFFErrorExt(tif->tif_clientdata, module, "Buffer overrun detected : %d bytes available, %d bits needed", (int)occ, lastx); return -1; } (*sp->fill)(buf, thisrun, pa, lastx); UNCACHE_STATE(tif, sp); return ( sp->line ? 1 : -1); /* don't error on badly-terminated strips */ } UNCACHE_STATE(tif, sp); return (1); } #undef SWAP /* * Encode the requested amount of data. */ static int Fax4Encode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s) { static const char module[] = "Fax4Encode"; Fax3CodecState *sp = EncoderState(tif); (void) s; if (cc % sp->b.rowbytes) { TIFFErrorExt(tif->tif_clientdata, module, "Fractional scanlines cannot be written"); return (0); } while (cc > 0) { if (!Fax3Encode2DRow(tif, bp, sp->refline, sp->b.rowpixels)) return (0); _TIFFmemcpy(sp->refline, bp, sp->b.rowbytes); bp += sp->b.rowbytes; cc -= sp->b.rowbytes; } return (1); } static int Fax4PostEncode(TIFF* tif) { Fax3CodecState *sp = EncoderState(tif); /* terminate strip w/ EOFB */ Fax3PutBits(tif, EOL, 12); Fax3PutBits(tif, EOL, 12); if (sp->bit != 8) Fax3FlushBits(tif, sp); return (1); } int TIFFInitCCITTFax4(TIFF* tif, int scheme) { (void) scheme; if (InitCCITTFax3(tif)) { /* reuse G3 support */ /* * Merge codec-specific tag information. */ if (!_TIFFMergeFields(tif, fax4Fields, TIFFArrayCount(fax4Fields))) { TIFFErrorExt(tif->tif_clientdata, "TIFFInitCCITTFax4", "Merging CCITT Fax 4 codec-specific tags failed"); return 0; } tif->tif_decoderow = Fax4Decode; tif->tif_decodestrip = Fax4Decode; tif->tif_decodetile = Fax4Decode; tif->tif_encoderow = Fax4Encode; tif->tif_encodestrip = Fax4Encode; tif->tif_encodetile = Fax4Encode; tif->tif_postencode = Fax4PostEncode; /* * Suppress RTC at the end of each strip. */ return TIFFSetField(tif, TIFFTAG_FAXMODE, FAXMODE_NORTC); } else return (0); } /* * CCITT Group 3 1-D Modified Huffman RLE Compression Support. * (Compression algorithms 2 and 32771) */ /* * Decode the requested amount of RLE-encoded data. */ static int Fax3DecodeRLE(TIFF* tif, uint8* buf, tmsize_t occ, uint16 s) { DECLARE_STATE(tif, sp, "Fax3DecodeRLE"); int mode = sp->b.mode; (void) s; if (occ % sp->b.rowbytes) { TIFFErrorExt(tif->tif_clientdata, module, "Fractional scanlines cannot be read"); return (-1); } CACHE_STATE(tif, sp); thisrun = sp->curruns; while (occ > 0) { a0 = 0; RunLength = 0; pa = thisrun; #ifdef FAX3_DEBUG printf("\nBitAcc=%08X, BitsAvail = %d\n", BitAcc, BitsAvail); printf("-------------------- %d\n", tif->tif_row); fflush(stdout); #endif EXPAND1D(EOFRLE); (*sp->fill)(buf, thisrun, pa, lastx); /* * Cleanup at the end of the row. */ if (mode & FAXMODE_BYTEALIGN) { int n = BitsAvail - (BitsAvail &~ 7); ClrBits(n); } else if (mode & FAXMODE_WORDALIGN) { int n = BitsAvail - (BitsAvail &~ 15); ClrBits(n); if (BitsAvail == 0 && !isAligned(cp, uint16)) cp++; } buf += sp->b.rowbytes; occ -= sp->b.rowbytes; sp->line++; continue; EOFRLE: /* premature EOF */ (*sp->fill)(buf, thisrun, pa, lastx); UNCACHE_STATE(tif, sp); return (-1); } UNCACHE_STATE(tif, sp); return (1); } int TIFFInitCCITTRLE(TIFF* tif, int scheme) { (void) scheme; if (InitCCITTFax3(tif)) { /* reuse G3 support */ tif->tif_decoderow = Fax3DecodeRLE; tif->tif_decodestrip = Fax3DecodeRLE; tif->tif_decodetile = Fax3DecodeRLE; /* * Suppress RTC+EOLs when encoding and byte-align data. */ return TIFFSetField(tif, TIFFTAG_FAXMODE, FAXMODE_NORTC|FAXMODE_NOEOL|FAXMODE_BYTEALIGN); } else return (0); } int TIFFInitCCITTRLEW(TIFF* tif, int scheme) { (void) scheme; if (InitCCITTFax3(tif)) { /* reuse G3 support */ tif->tif_decoderow = Fax3DecodeRLE; tif->tif_decodestrip = Fax3DecodeRLE; tif->tif_decodetile = Fax3DecodeRLE; /* * Suppress RTC+EOLs when encoding and word-align data. */ return TIFFSetField(tif, TIFFTAG_FAXMODE, FAXMODE_NORTC|FAXMODE_NOEOL|FAXMODE_WORDALIGN); } else return (0); } #endif /* CCITT_SUPPORT */ /* vim: set ts=8 sts=8 sw=8 noet: */ /* * Local Variables: * mode: c * c-basic-offset: 8 * fill-column: 78 * End: */