/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Peng Xiao, pengxiao@multicorewareinc.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other oclMaterials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" using namespace std; #ifdef HAVE_CLAMDFFT //////////////////////////////////////////////////////////////////////////// // Dft PARAM_TEST_CASE(Dft, cv::Size, int) { cv::Size dft_size; int dft_flags; virtual void SetUp() { dft_size = GET_PARAM(0); dft_flags = GET_PARAM(1); } }; TEST_P(Dft, C2C) { cv::Mat a = randomMat(dft_size, CV_32FC2, 0.0, 100.0); cv::Mat b_gold; cv::ocl::oclMat d_b; cv::dft(a, b_gold, dft_flags); cv::ocl::dft(cv::ocl::oclMat(a), d_b, a.size(), dft_flags); EXPECT_MAT_NEAR(b_gold, cv::Mat(d_b), a.size().area() * 1e-4); } TEST_P(Dft, R2C) { cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 100.0); cv::Mat b_gold, b_gold_roi; cv::ocl::oclMat d_b, d_c; cv::ocl::dft(cv::ocl::oclMat(a), d_b, a.size(), dft_flags); cv::dft(a, b_gold, cv::DFT_COMPLEX_OUTPUT | dft_flags); b_gold_roi = b_gold(cv::Rect(0, 0, d_b.cols, d_b.rows)); EXPECT_MAT_NEAR(b_gold_roi, cv::Mat(d_b), a.size().area() * 1e-4); cv::Mat c_gold; cv::dft(b_gold, c_gold, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE); EXPECT_MAT_NEAR(b_gold_roi, cv::Mat(d_b), a.size().area() * 1e-4); } TEST_P(Dft, R2CthenC2R) { cv::Mat a = randomMat(dft_size, CV_32FC1, 0.0, 10.0); cv::ocl::oclMat d_b, d_c; cv::ocl::dft(cv::ocl::oclMat(a), d_b, a.size(), 0); cv::ocl::dft(d_b, d_c, a.size(), cv::DFT_SCALE | cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT); EXPECT_MAT_NEAR(a, d_c, a.size().area() * 1e-4); } INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Dft, testing::Combine( testing::Values(cv::Size(2, 3), cv::Size(5, 4), cv::Size(25, 20), cv::Size(512, 1), cv::Size(1024, 768)), testing::Values(0, (int)cv::DFT_ROWS, (int)cv::DFT_SCALE) )); //////////////////////////////////////////////////////////////////////////// // MulSpectrums PARAM_TEST_CASE(MulSpectrums, cv::Size, DftFlags, bool) { cv::Size size; int flag; bool ccorr; cv::Mat a, b; virtual void SetUp() { size = GET_PARAM(0); flag = GET_PARAM(1); ccorr = GET_PARAM(2); a = randomMat(size, CV_32FC2); b = randomMat(size, CV_32FC2); } }; TEST_P(MulSpectrums, Simple) { cv::ocl::oclMat c; cv::ocl::mulSpectrums(cv::ocl::oclMat(a), cv::ocl::oclMat(b), c, flag, 1.0, ccorr); cv::Mat c_gold; cv::mulSpectrums(a, b, c_gold, flag, ccorr); EXPECT_MAT_NEAR(c_gold, c, 1e-2); } TEST_P(MulSpectrums, Scaled) { float scale = 1.f / size.area(); cv::ocl::oclMat c; cv::ocl::mulSpectrums(cv::ocl::oclMat(a), cv::ocl::oclMat(b), c, flag, scale, ccorr); cv::Mat c_gold; cv::mulSpectrums(a, b, c_gold, flag, ccorr); c_gold.convertTo(c_gold, c_gold.type(), scale); EXPECT_MAT_NEAR(c_gold, c, 1e-2); } INSTANTIATE_TEST_CASE_P(OCL_ImgProc, MulSpectrums, testing::Combine( DIFFERENT_SIZES, testing::Values(DftFlags(0)), testing::Values(false, true))); //////////////////////////////////////////////////////// // Convolve void static convolveDFT(const cv::Mat& A, const cv::Mat& B, cv::Mat& C, bool ccorr = false) { // reallocate the output array if needed C.create(std::abs(A.rows - B.rows) + 1, std::abs(A.cols - B.cols) + 1, A.type()); cv::Size dftSize; // compute the size of DFT transform dftSize.width = cv::getOptimalDFTSize(A.cols + B.cols - 1); dftSize.height = cv::getOptimalDFTSize(A.rows + B.rows - 1); // allocate temporary buffers and initialize them with 0s cv::Mat tempA(dftSize, A.type(), cv::Scalar::all(0)); cv::Mat tempB(dftSize, B.type(), cv::Scalar::all(0)); // copy A and B to the top-left corners of tempA and tempB, respectively cv::Mat roiA(tempA, cv::Rect(0, 0, A.cols, A.rows)); A.copyTo(roiA); cv::Mat roiB(tempB, cv::Rect(0, 0, B.cols, B.rows)); B.copyTo(roiB); // now transform the padded A & B in-place; // use "nonzeroRows" hint for faster processing cv::dft(tempA, tempA, 0, A.rows); cv::dft(tempB, tempB, 0, B.rows); // multiply the spectrums; // the function handles packed spectrum representations well cv::mulSpectrums(tempA, tempB, tempA, 0, ccorr); // transform the product back from the frequency domain. // Even though all the result rows will be non-zero, // you need only the first C.rows of them, and thus you // pass nonzeroRows == C.rows cv::dft(tempA, tempA, cv::DFT_INVERSE + cv::DFT_SCALE, C.rows); // now copy the result back to C. tempA(cv::Rect(0, 0, C.cols, C.rows)).copyTo(C); } IMPLEMENT_PARAM_CLASS(KSize, int); IMPLEMENT_PARAM_CLASS(Ccorr, bool); PARAM_TEST_CASE(Convolve_DFT, cv::Size, KSize, Ccorr) { cv::Size size; int ksize; bool ccorr; cv::Mat src; cv::Mat kernel; cv::Mat dst_gold; virtual void SetUp() { size = GET_PARAM(0); ksize = GET_PARAM(1); ccorr = GET_PARAM(2); } }; TEST_P(Convolve_DFT, Accuracy) { cv::Mat src = randomMat(size, CV_32FC1, 0.0, 100.0); cv::Mat kernel = randomMat(cv::Size(ksize, ksize), CV_32FC1, 0.0, 1.0); cv::ocl::oclMat dst; cv::ocl::convolve(cv::ocl::oclMat(src), cv::ocl::oclMat(kernel), dst, ccorr); cv::Mat dst_gold; convolveDFT(src, kernel, dst_gold, ccorr); EXPECT_MAT_NEAR(dst, dst_gold, 1e-1); } #define DIFFERENT_CONVOLVE_SIZES testing::Values(cv::Size(251, 257), cv::Size(113, 113), cv::Size(200, 480), cv::Size(1300, 1300)) INSTANTIATE_TEST_CASE_P(OCL_ImgProc, Convolve_DFT, testing::Combine( DIFFERENT_CONVOLVE_SIZES, testing::Values(KSize(19), KSize(23), KSize(45)), testing::Values(Ccorr(true)/*, Ccorr(false)*/))); // false ccorr cannot pass for some instances #endif // HAVE_CLAMDFFT