#include #include #include #include #include #include #include #include #include #include #include #include #include #include const std::string keys = "{ h help | | Print this help message }" "{ input | | Path to the input video file }" "{ facem | face-detection-adas-0001.xml | Path to OpenVINO IE face detection model (.xml) }" "{ faced | CPU | Target device for face detection model (e.g. CPU, GPU, VPU, ...) }" "{ r roi | -1,-1,-1,-1 | Region of interest (ROI) to use for inference. Identified automatically when not set }"; namespace { std::string weights_path(const std::string &model_path) { const auto EXT_LEN = 4u; const auto sz = model_path.size(); CV_Assert(sz > EXT_LEN); auto ext = model_path.substr(sz - EXT_LEN); std::transform(ext.begin(), ext.end(), ext.begin(), [](unsigned char c){ return static_cast(std::tolower(c)); }); CV_Assert(ext == ".xml"); return model_path.substr(0u, sz - EXT_LEN) + ".bin"; } cv::util::optional parse_roi(const std::string &rc) { cv::Rect rv; char delim[3]; std::stringstream is(rc); is >> rv.x >> delim[0] >> rv.y >> delim[1] >> rv.width >> delim[2] >> rv.height; if (is.bad()) { return cv::util::optional(); // empty value } const auto is_delim = [](char c) { return c == ','; }; if (!std::all_of(std::begin(delim), std::end(delim), is_delim)) { return cv::util::optional(); // empty value } if (rv.x < 0 || rv.y < 0 || rv.width <= 0 || rv.height <= 0) { return cv::util::optional(); // empty value } return cv::util::make_optional(std::move(rv)); } } // namespace namespace custom { G_API_NET(FaceDetector, , "face-detector"); using GDetections = cv::GArray; using GRect = cv::GOpaque; using GSize = cv::GOpaque; using GPrims = cv::GArray; G_API_OP(GetSize, , "sample.custom.get-size") { static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) { return cv::empty_gopaque_desc(); } }; G_API_OP(LocateROI, , "sample.custom.locate-roi") { static cv::GOpaqueDesc outMeta(const cv::GMatDesc &) { return cv::empty_gopaque_desc(); } }; G_API_OP(ParseSSD, , "sample.custom.parse-ssd") { static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GOpaqueDesc &, const cv::GOpaqueDesc &) { return cv::empty_array_desc(); } }; G_API_OP(BBoxes, , "sample.custom.b-boxes") { static cv::GArrayDesc outMeta(const cv::GArrayDesc &, const cv::GOpaqueDesc &) { return cv::empty_array_desc(); } }; GAPI_OCV_KERNEL(OCVGetSize, GetSize) { static void run(const cv::Mat &in, cv::Size &out) { out = {in.cols, in.rows}; } }; GAPI_OCV_KERNEL(OCVLocateROI, LocateROI) { // This is the place where we can run extra analytics // on the input image frame and select the ROI (region // of interest) where we want to detect our objects (or // run any other inference). // // Currently it doesn't do anything intelligent, // but only crops the input image to square (this is // the most convenient aspect ratio for detectors to use) static void run(const cv::Mat &in_mat, cv::Rect &out_rect) { // Identify the central point & square size (- some padding) const auto center = cv::Point{in_mat.cols/2, in_mat.rows/2}; auto sqside = std::min(in_mat.cols, in_mat.rows); // Now build the central square ROI out_rect = cv::Rect{ center.x - sqside/2 , center.y - sqside/2 , sqside , sqside }; } }; GAPI_OCV_KERNEL(OCVParseSSD, ParseSSD) { static void run(const cv::Mat &in_ssd_result, const cv::Rect &in_roi, const cv::Size &in_parent_size, std::vector &out_objects) { const auto &in_ssd_dims = in_ssd_result.size; CV_Assert(in_ssd_dims.dims() == 4u); const int MAX_PROPOSALS = in_ssd_dims[2]; const int OBJECT_SIZE = in_ssd_dims[3]; CV_Assert(OBJECT_SIZE == 7); // fixed SSD object size const cv::Size up_roi = in_roi.size(); const cv::Rect surface({0,0}, in_parent_size); out_objects.clear(); const float *data = in_ssd_result.ptr(); for (int i = 0; i < MAX_PROPOSALS; i++) { const float image_id = data[i * OBJECT_SIZE + 0]; const float label = data[i * OBJECT_SIZE + 1]; const float confidence = data[i * OBJECT_SIZE + 2]; const float rc_left = data[i * OBJECT_SIZE + 3]; const float rc_top = data[i * OBJECT_SIZE + 4]; const float rc_right = data[i * OBJECT_SIZE + 5]; const float rc_bottom = data[i * OBJECT_SIZE + 6]; (void) label; // unused if (image_id < 0.f) { break; // marks end-of-detections } if (confidence < 0.5f) { continue; // skip objects with low confidence } // map relative coordinates to the original image scale // taking the ROI into account cv::Rect rc; rc.x = static_cast(rc_left * up_roi.width); rc.y = static_cast(rc_top * up_roi.height); rc.width = static_cast(rc_right * up_roi.width) - rc.x; rc.height = static_cast(rc_bottom * up_roi.height) - rc.y; rc.x += in_roi.x; rc.y += in_roi.y; out_objects.emplace_back(rc & surface); } } }; GAPI_OCV_KERNEL(OCVBBoxes, BBoxes) { // This kernel converts the rectangles into G-API's // rendering primitives static void run(const std::vector &in_face_rcs, const cv::Rect &in_roi, std::vector &out_prims) { out_prims.clear(); const auto cvt = [](const cv::Rect &rc, const cv::Scalar &clr) { return cv::gapi::wip::draw::Rect(rc, clr, 2); }; out_prims.emplace_back(cvt(in_roi, CV_RGB(0,255,255))); // cyan for (auto &&rc : in_face_rcs) { out_prims.emplace_back(cvt(rc, CV_RGB(0,255,0))); // green } } }; } // namespace custom int main(int argc, char *argv[]) { cv::CommandLineParser cmd(argc, argv, keys); if (cmd.has("help")) { cmd.printMessage(); return 0; } // Prepare parameters first const std::string input = cmd.get("input"); const auto opt_roi = parse_roi(cmd.get("roi")); const auto face_model_path = cmd.get("facem"); auto face_net = cv::gapi::ie::Params { face_model_path, // path to topology IR weights_path(face_model_path), // path to weights cmd.get("faced"), // device specifier }; auto kernels = cv::gapi::kernels < custom::OCVGetSize , custom::OCVLocateROI , custom::OCVParseSSD , custom::OCVBBoxes>(); auto networks = cv::gapi::networks(face_net); // Now build the graph. The graph structure may vary // pased on the input parameters cv::GStreamingCompiled pipeline; auto inputs = cv::gin(cv::gapi::wip::make_src(input)); if (opt_roi.has_value()) { // Use the value provided by user std::cout << "Will run inference for static region " << opt_roi.value() << " only" << std::endl; cv::GMat in; cv::GOpaque in_roi; auto blob = cv::gapi::infer(in_roi, in); auto rcs = custom::ParseSSD::on(blob, in_roi, custom::GetSize::on(in)); auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, in_roi)); pipeline = cv::GComputation(cv::GIn(in, in_roi), cv::GOut(out)) .compileStreaming(cv::compile_args(kernels, networks)); // Since the ROI to detect is manual, make it part of the input vector inputs.push_back(cv::gin(opt_roi.value())[0]); } else { // Automatically detect ROI to infer. Make it output parameter std::cout << "ROI is not set or invalid. Locating it automatically" << std::endl; cv::GMat in; cv::GOpaque roi = custom::LocateROI::on(in); auto blob = cv::gapi::infer(roi, in); auto rcs = custom::ParseSSD::on(blob, roi, custom::GetSize::on(in)); auto out = cv::gapi::wip::draw::render3ch(in, custom::BBoxes::on(rcs, roi)); pipeline = cv::GComputation(cv::GIn(in), cv::GOut(out)) .compileStreaming(cv::compile_args(kernels, networks)); } // The execution part pipeline.setSource(std::move(inputs)); pipeline.start(); cv::Mat out; int framesCount = 0; cv::TickMeter t; t.start(); while (pipeline.pull(cv::gout(out))) { cv::imshow("Out", out); cv::waitKey(1); framesCount++; } t.stop(); std::cout << "Elapsed time: " << t.getTimeSec() << std::endl; std::cout << "FPS: " << framesCount / (t.getTimeSec() ? t.getTimeSec() : 1) << std::endl; std::cout << "framesCount: " << framesCount << std::endl; return 0; }