/* * jcarith.c * * Developed 1997-2012 by Guido Vollbeding. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains portable arithmetic entropy encoding routines for JPEG * (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). * * Both sequential and progressive modes are supported in this single module. * * Suspension is not currently supported in this module. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Expanded entropy encoder object for arithmetic encoding. */ typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ INT32 a; /* A register, normalized size of coding interval */ INT32 sc; /* counter for stacked 0xFF values which might overflow */ INT32 zc; /* counter for pending 0x00 output values which might * * be discarded at the end ("Pacman" termination) */ int ct; /* bit shift counter, determines when next byte will be written */ int buffer; /* buffer for most recent output byte != 0xFF */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to statistics areas (these workspaces have image lifespan) */ unsigned char * dc_stats[NUM_ARITH_TBLS]; unsigned char * ac_stats[NUM_ARITH_TBLS]; /* Statistics bin for coding with fixed probability 0.5 */ unsigned char fixed_bin[4]; } arith_entropy_encoder; typedef arith_entropy_encoder * arith_entropy_ptr; /* The following two definitions specify the allocation chunk size * for the statistics area. * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least * 49 statistics bins for DC, and 245 statistics bins for AC coding. * * We use a compact representation with 1 byte per statistics bin, * thus the numbers directly represent byte sizes. * This 1 byte per statistics bin contains the meaning of the MPS * (more probable symbol) in the highest bit (mask 0x80), and the * index into the probability estimation state machine table * in the lower bits (mask 0x7F). */ #define DC_STAT_BINS 64 #define AC_STAT_BINS 256 /* NOTE: Uncomment the following #define if you want to use the * given formula for calculating the AC conditioning parameter Kx * for spectral selection progressive coding in section G.1.3.2 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). * Although the spec and P&M authors claim that this "has proven * to give good results for 8 bit precision samples", I'm not * convinced yet that this is really beneficial. * Early tests gave only very marginal compression enhancements * (a few - around 5 or so - bytes even for very large files), * which would turn out rather negative if we'd suppress the * DAC (Define Arithmetic Conditioning) marker segments for * the default parameters in the future. * Note that currently the marker writing module emits 12-byte * DAC segments for a full-component scan in a color image. * This is not worth worrying about IMHO. However, since the * spec defines the default values to be used if the tables * are omitted (unlike Huffman tables, which are required * anyway), one might optimize this behaviour in the future, * and then it would be disadvantageous to use custom tables if * they don't provide sufficient gain to exceed the DAC size. * * On the other hand, I'd consider it as a reasonable result * that the conditioning has no significant influence on the * compression performance. This means that the basic * statistical model is already rather stable. * * Thus, at the moment, we use the default conditioning values * anyway, and do not use the custom formula. * #define CALCULATE_SPECTRAL_CONDITIONING */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. * We assume that int right shift is unsigned if INT32 right shift is, * which should be safe. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) #endif LOCAL(void) emit_byte (int val, j_compress_ptr cinfo) /* Write next output byte; we do not support suspension in this module. */ { struct jpeg_destination_mgr * dest = cinfo->dest; *dest->next_output_byte++ = (JOCTET) val; if (--dest->free_in_buffer == 0) if (! (*dest->empty_output_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } /* * Finish up at the end of an arithmetic-compressed scan. */ METHODDEF(void) finish_pass (j_compress_ptr cinfo) { arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; INT32 temp; /* Section D.1.8: Termination of encoding */ /* Find the e->c in the coding interval with the largest * number of trailing zero bits */ if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) e->c = temp + 0x8000L; else e->c = temp; /* Send remaining bytes to output */ e->c <<= e->ct; if (e->c & 0xF8000000L) { /* One final overflow has to be handled */ if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer + 1, cinfo); if (e->buffer + 1 == 0xFF) emit_byte(0x00, cinfo); } e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ e->sc = 0; } else { if (e->buffer == 0) ++e->zc; else if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer, cinfo); } if (e->sc) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); do { emit_byte(0xFF, cinfo); emit_byte(0x00, cinfo); } while (--e->sc); } } /* Output final bytes only if they are not 0x00 */ if (e->c & 0x7FFF800L) { if (e->zc) /* output final pending zero bytes */ do emit_byte(0x00, cinfo); while (--e->zc); emit_byte((e->c >> 19) & 0xFF, cinfo); if (((e->c >> 19) & 0xFF) == 0xFF) emit_byte(0x00, cinfo); if (e->c & 0x7F800L) { emit_byte((e->c >> 11) & 0xFF, cinfo); if (((e->c >> 11) & 0xFF) == 0xFF) emit_byte(0x00, cinfo); } } } /* * The core arithmetic encoding routine (common in JPEG and JBIG). * This needs to go as fast as possible. * Machine-dependent optimization facilities * are not utilized in this portable implementation. * However, this code should be fairly efficient and * may be a good base for further optimizations anyway. * * Parameter 'val' to be encoded may be 0 or 1 (binary decision). * * Note: I've added full "Pacman" termination support to the * byte output routines, which is equivalent to the optional * Discard_final_zeros procedure (Figure D.15) in the spec. * Thus, we always produce the shortest possible output * stream compliant to the spec (no trailing zero bytes, * except for FF stuffing). * * I've also introduced a new scheme for accessing * the probability estimation state machine table, * derived from Markus Kuhn's JBIG implementation. */ LOCAL(void) arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) { register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; register unsigned char nl, nm; register INT32 qe, temp; register int sv; /* Fetch values from our compact representation of Table D.3(D.2): * Qe values and probability estimation state machine */ sv = *st; qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ e->a -= qe; if (val != (sv >> 7)) { /* Encode the less probable symbol */ if (e->a >= qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency, otherwise code the LPS * as usual: */ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ } else { /* Encode the more probable symbol */ if (e->a >= 0x8000L) return; /* A >= 0x8000 -> ready, no renormalization required */ if (e->a < qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency: */ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ } /* Renormalization & data output per section D.1.6 */ do { e->a <<= 1; e->c <<= 1; if (--e->ct == 0) { /* Another byte is ready for output */ temp = e->c >> 19; if (temp > 0xFF) { /* Handle overflow over all stacked 0xFF bytes */ if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer + 1, cinfo); if (e->buffer + 1 == 0xFF) emit_byte(0x00, cinfo); } e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ e->sc = 0; /* Note: The 3 spacer bits in the C register guarantee * that the new buffer byte can't be 0xFF here * (see page 160 in the P&M JPEG book). */ e->buffer = temp & 0xFF; /* new output byte, might overflow later */ } else if (temp == 0xFF) { ++e->sc; /* stack 0xFF byte (which might overflow later) */ } else { /* Output all stacked 0xFF bytes, they will not overflow any more */ if (e->buffer == 0) ++e->zc; else if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer, cinfo); } if (e->sc) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); do { emit_byte(0xFF, cinfo); emit_byte(0x00, cinfo); } while (--e->sc); } e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ } e->c &= 0x7FFFFL; e->ct += 8; } } while (e->a < 0x8000L); } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(void) emit_restart (j_compress_ptr cinfo, int restart_num) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; int ci; jpeg_component_info * compptr; finish_pass(cinfo); emit_byte(0xFF, cinfo); emit_byte(JPEG_RST0 + restart_num, cinfo); /* Re-initialize statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* DC needs no table for refinement scan */ if (cinfo->Ss == 0 && cinfo->Ah == 0) { MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); /* Reset DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } /* AC needs no table when not present */ if (cinfo->Se) { MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); } } /* Reset arithmetic encoding variables */ entropy->c = 0; entropy->a = 0x10000L; entropy->sc = 0; entropy->zc = 0; entropy->ct = 11; entropy->buffer = -1; /* empty */ } /* * MCU encoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl; int v, v2, m; ISHIFT_TEMPS /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.4: Encode_DC_DIFF */ if ((v = m - entropy->last_dc_val[ci]) == 0) { arith_encode(cinfo, st, 0); entropy->dc_context[ci] = 0; /* zero diff category */ } else { entropy->last_dc_val[ci] = m; arith_encode(cinfo, st, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ st += 2; /* Table F.4: SP = S0 + 2 */ entropy->dc_context[ci] = 4; /* small positive diff category */ } else { v = -v; arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ st += 3; /* Table F.4: SN = S0 + 3 */ entropy->dc_context[ci] = 8; /* small negative diff category */ } /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } arith_encode(cinfo, st, 0); /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] += 8; /* large diff category */ /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } } return TRUE; } /* * MCU encoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, k, ke; int v, v2, m; const int * natural_order; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } natural_order = cinfo->natural_order; /* Encode the MCU data block */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ /* Establish EOB (end-of-block) index */ ke = cinfo->Se; do { /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if ((v = (*block)[natural_order[ke]]) >= 0) { if (v >>= cinfo->Al) break; } else { v = -v; if (v >>= cinfo->Al) break; } } while (--ke); /* Figure F.5: Encode_AC_Coefficients */ for (k = cinfo->Ss - 1; k < ke;) { st = entropy->ac_stats[tbl] + 3 * k; arith_encode(cinfo, st, 0); /* EOB decision */ for (;;) { if ((v = (*block)[natural_order[++k]]) >= 0) { if (v >>= cinfo->Al) { arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 0); break; } } else { v = -v; if (v >>= cinfo->Al) { arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 1); break; } } arith_encode(cinfo, st + 1, 0); st += 3; } st += 2; /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; if (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } } arith_encode(cinfo, st, 0); /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Encode EOB decision only if k < cinfo->Se */ if (k < cinfo->Se) { st = entropy->ac_stats[tbl] + 3 * k; arith_encode(cinfo, st, 1); } return TRUE; } /* * MCU encoding for DC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; unsigned char *st; int Al, blkn; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } st = entropy->fixed_bin; /* use fixed probability estimation */ Al = cinfo->Al; /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { /* We simply emit the Al'th bit of the DC coefficient value. */ arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); } return TRUE; } /* * MCU encoding for AC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, k, ke, kex; int v; const int * natural_order; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } natural_order = cinfo->natural_order; /* Encode the MCU data block */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Section G.1.3.3: Encoding of AC coefficients */ /* Establish EOB (end-of-block) index */ ke = cinfo->Se; do { /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if ((v = (*block)[natural_order[ke]]) >= 0) { if (v >>= cinfo->Al) break; } else { v = -v; if (v >>= cinfo->Al) break; } } while (--ke); /* Establish EOBx (previous stage end-of-block) index */ for (kex = ke; kex > 0; kex--) if ((v = (*block)[natural_order[kex]]) >= 0) { if (v >>= cinfo->Ah) break; } else { v = -v; if (v >>= cinfo->Ah) break; } /* Figure G.10: Encode_AC_Coefficients_SA */ for (k = cinfo->Ss - 1; k < ke;) { st = entropy->ac_stats[tbl] + 3 * k; if (k >= kex) arith_encode(cinfo, st, 0); /* EOB decision */ for (;;) { if ((v = (*block)[natural_order[++k]]) >= 0) { if (v >>= cinfo->Al) { if (v >> 1) /* previously nonzero coef */ arith_encode(cinfo, st + 2, (v & 1)); else { /* newly nonzero coef */ arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 0); } break; } } else { v = -v; if (v >>= cinfo->Al) { if (v >> 1) /* previously nonzero coef */ arith_encode(cinfo, st + 2, (v & 1)); else { /* newly nonzero coef */ arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 1); } break; } } arith_encode(cinfo, st + 1, 0); st += 3; } } /* Encode EOB decision only if k < cinfo->Se */ if (k < cinfo->Se) { st = entropy->ac_stats[tbl] + 3 * k; arith_encode(cinfo, st, 1); } return TRUE; } /* * Encode and output one MCU's worth of arithmetic-compressed coefficients. */ METHODDEF(boolean) encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; jpeg_component_info * compptr; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl, k, ke; int v, v2, m; const int * natural_order; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } natural_order = cinfo->natural_order; /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ tbl = compptr->dc_tbl_no; /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.4: Encode_DC_DIFF */ if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { arith_encode(cinfo, st, 0); entropy->dc_context[ci] = 0; /* zero diff category */ } else { entropy->last_dc_val[ci] = (*block)[0]; arith_encode(cinfo, st, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ st += 2; /* Table F.4: SP = S0 + 2 */ entropy->dc_context[ci] = 4; /* small positive diff category */ } else { v = -v; arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ st += 3; /* Table F.4: SN = S0 + 3 */ entropy->dc_context[ci] = 8; /* small negative diff category */ } /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } arith_encode(cinfo, st, 0); /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] += 8; /* large diff category */ /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ if ((ke = cinfo->lim_Se) == 0) continue; tbl = compptr->ac_tbl_no; /* Establish EOB (end-of-block) index */ do { if ((*block)[natural_order[ke]]) break; } while (--ke); /* Figure F.5: Encode_AC_Coefficients */ for (k = 0; k < ke;) { st = entropy->ac_stats[tbl] + 3 * k; arith_encode(cinfo, st, 0); /* EOB decision */ while ((v = (*block)[natural_order[++k]]) == 0) { arith_encode(cinfo, st + 1, 0); st += 3; } arith_encode(cinfo, st + 1, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, entropy->fixed_bin, 0); } else { v = -v; arith_encode(cinfo, entropy->fixed_bin, 1); } st += 2; /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; if (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } } arith_encode(cinfo, st, 0); /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Encode EOB decision only if k < cinfo->lim_Se */ if (k < cinfo->lim_Se) { st = entropy->ac_stats[tbl] + 3 * k; arith_encode(cinfo, st, 1); } } return TRUE; } /* * Initialize for an arithmetic-compressed scan. */ METHODDEF(void) start_pass (j_compress_ptr cinfo, boolean gather_statistics) { arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; int ci, tbl; jpeg_component_info * compptr; if (gather_statistics) /* Make sure to avoid that in the master control logic! * We are fully adaptive here and need no extra * statistics gathering pass! */ ERREXIT(cinfo, JERR_NOT_COMPILED); /* We assume jcmaster.c already validated the progressive scan parameters. */ /* Select execution routines */ if (cinfo->progressive_mode) { if (cinfo->Ah == 0) { if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_first; else entropy->pub.encode_mcu = encode_mcu_AC_first; } else { if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_refine; else entropy->pub.encode_mcu = encode_mcu_AC_refine; } } else entropy->pub.encode_mcu = encode_mcu; /* Allocate & initialize requested statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* DC needs no table for refinement scan */ if (cinfo->Ss == 0 && cinfo->Ah == 0) { tbl = compptr->dc_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->dc_stats[tbl] == NULL) entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } /* AC needs no table when not present */ if (cinfo->Se) { tbl = compptr->ac_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->ac_stats[tbl] == NULL) entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); #ifdef CALCULATE_SPECTRAL_CONDITIONING if (cinfo->progressive_mode) /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); #endif } } /* Initialize arithmetic encoding variables */ entropy->c = 0; entropy->a = 0x10000L; entropy->sc = 0; entropy->zc = 0; entropy->ct = 11; entropy->buffer = -1; /* empty */ /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* * Module initialization routine for arithmetic entropy encoding. */ GLOBAL(void) jinit_arith_encoder (j_compress_ptr cinfo) { arith_entropy_ptr entropy; int i; entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, SIZEOF(arith_entropy_encoder)); cinfo->entropy = &entropy->pub; entropy->pub.start_pass = start_pass; entropy->pub.finish_pass = finish_pass; /* Mark tables unallocated */ for (i = 0; i < NUM_ARITH_TBLS; i++) { entropy->dc_stats[i] = NULL; entropy->ac_stats[i] = NULL; } /* Initialize index for fixed probability estimation */ entropy->fixed_bin[0] = 113; }