#include #include #include #include #include #include "common.hpp" std::string keys = "{ help h | | Print help message. }" "{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }" "{ zoo | models.yml | An optional path to file with preprocessing parameters }" "{ device | 0 | camera device number. }" "{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }" "{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }" "{ classes | | Optional path to a text file with names of classes to label detected objects. }" "{ thr | .5 | Confidence threshold. }" "{ nms | .4 | Non-maximum suppression threshold. }" "{ backend | 0 | Choose one of computation backends: " "0: automatically (by default), " "1: Halide language (http://halide-lang.org/), " "2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " "3: OpenCV implementation }" "{ target | 0 | Choose one of target computation devices: " "0: CPU target (by default), " "1: OpenCL, " "2: OpenCL fp16 (half-float precision), " "3: VPU }"; using namespace cv; using namespace dnn; float confThreshold, nmsThreshold; std::vector classes; void postprocess(Mat& frame, const std::vector& out, Net& net); void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame); void callback(int pos, void* userdata); std::vector getOutputsNames(const Net& net); int main(int argc, char** argv) { CommandLineParser parser(argc, argv, keys); const std::string modelName = parser.get("@alias"); const std::string zooFile = parser.get("zoo"); keys += genPreprocArguments(modelName, zooFile); parser = CommandLineParser(argc, argv, keys); parser.about("Use this script to run object detection deep learning networks using OpenCV."); if (argc == 1 || parser.has("help")) { parser.printMessage(); return 0; } confThreshold = parser.get("thr"); nmsThreshold = parser.get("nms"); float scale = parser.get("scale"); Scalar mean = parser.get("mean"); bool swapRB = parser.get("rgb"); int inpWidth = parser.get("width"); int inpHeight = parser.get("height"); CV_Assert(parser.has("model")); std::string modelPath = findFile(parser.get("model")); std::string configPath = findFile(parser.get("config")); // Open file with classes names. if (parser.has("classes")) { std::string file = parser.get("classes"); std::ifstream ifs(file.c_str()); if (!ifs.is_open()) CV_Error(Error::StsError, "File " + file + " not found"); std::string line; while (std::getline(ifs, line)) { classes.push_back(line); } } // Load a model. Net net = readNet(modelPath, configPath, parser.get("framework")); net.setPreferableBackend(parser.get("backend")); net.setPreferableTarget(parser.get("target")); std::vector outNames = net.getUnconnectedOutLayersNames(); // Create a window static const std::string kWinName = "Deep learning object detection in OpenCV"; namedWindow(kWinName, WINDOW_NORMAL); int initialConf = (int)(confThreshold * 100); createTrackbar("Confidence threshold, %", kWinName, &initialConf, 99, callback); // Open a video file or an image file or a camera stream. VideoCapture cap; if (parser.has("input")) cap.open(parser.get("input")); else cap.open(parser.get("device")); // Process frames. Mat frame, blob; while (waitKey(1) < 0) { cap >> frame; if (frame.empty()) { waitKey(); break; } // Create a 4D blob from a frame. Size inpSize(inpWidth > 0 ? inpWidth : frame.cols, inpHeight > 0 ? inpHeight : frame.rows); blobFromImage(frame, blob, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN { resize(frame, frame, inpSize); Mat imInfo = (Mat_(1, 3) << inpSize.height, inpSize.width, 1.6f); net.setInput(imInfo, "im_info"); } std::vector outs; net.forward(outs, outNames); postprocess(frame, outs, net); // Put efficiency information. std::vector layersTimes; double freq = getTickFrequency() / 1000; double t = net.getPerfProfile(layersTimes) / freq; std::string label = format("Inference time: %.2f ms", t); putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0)); imshow(kWinName, frame); } return 0; } void postprocess(Mat& frame, const std::vector& outs, Net& net) { static std::vector outLayers = net.getUnconnectedOutLayers(); static std::string outLayerType = net.getLayer(outLayers[0])->type; std::vector classIds; std::vector confidences; std::vector boxes; if (outLayerType == "DetectionOutput") { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] CV_Assert(outs.size() > 0); for (size_t k = 0; k < outs.size(); k++) { float* data = (float*)outs[k].data; for (size_t i = 0; i < outs[k].total(); i += 7) { float confidence = data[i + 2]; if (confidence > confThreshold) { int left = (int)data[i + 3]; int top = (int)data[i + 4]; int right = (int)data[i + 5]; int bottom = (int)data[i + 6]; int width = right - left + 1; int height = bottom - top + 1; if (width * height <= 1) { left = (int)(data[i + 3] * frame.cols); top = (int)(data[i + 4] * frame.rows); right = (int)(data[i + 5] * frame.cols); bottom = (int)(data[i + 6] * frame.rows); width = right - left + 1; height = bottom - top + 1; } classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id. boxes.push_back(Rect(left, top, width, height)); confidences.push_back(confidence); } } } } else if (outLayerType == "Region") { for (size_t i = 0; i < outs.size(); ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] float* data = (float*)outs[i].data; for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols) { Mat scores = outs[i].row(j).colRange(5, outs[i].cols); Point classIdPoint; double confidence; minMaxLoc(scores, 0, &confidence, 0, &classIdPoint); if (confidence > confThreshold) { int centerX = (int)(data[0] * frame.cols); int centerY = (int)(data[1] * frame.rows); int width = (int)(data[2] * frame.cols); int height = (int)(data[3] * frame.rows); int left = centerX - width / 2; int top = centerY - height / 2; classIds.push_back(classIdPoint.x); confidences.push_back((float)confidence); boxes.push_back(Rect(left, top, width, height)); } } } } else CV_Error(Error::StsNotImplemented, "Unknown output layer type: " + outLayerType); std::vector indices; NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); for (size_t i = 0; i < indices.size(); ++i) { int idx = indices[i]; Rect box = boxes[idx]; drawPred(classIds[idx], confidences[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } } void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) { rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0)); std::string label = format("%.2f", conf); if (!classes.empty()) { CV_Assert(classId < (int)classes.size()); label = classes[classId] + ": " + label; } int baseLine; Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); top = max(top, labelSize.height); rectangle(frame, Point(left, top - labelSize.height), Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED); putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar()); } void callback(int pos, void*) { confThreshold = pos * 0.01f; }