/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "test_precomp.hpp" namespace opencv_test { namespace { class CV_BaseHistTest : public cvtest::BaseTest { public: enum { MAX_HIST = 12 }; CV_BaseHistTest(); ~CV_BaseHistTest(); void clear(); protected: int read_params( CvFileStorage* fs ); void run_func(void); int prepare_test_case( int test_case_idx ); int validate_test_results( int test_case_idx ); virtual void init_hist( int test_case_idx, int i ); virtual void get_hist_params( int test_case_idx ); virtual float** get_hist_ranges( int test_case_idx ); int max_log_size; int max_cdims; int cdims; int dims[CV_MAX_DIM]; int total_size; int hist_type; int hist_count; int uniform; int gen_random_hist; double gen_hist_max_val, gen_hist_sparse_nz_ratio; int init_ranges; int img_type; int img_max_log_size; double low, high, range_delta; Size img_size; vector hist; vector _ranges; vector ranges; bool test_cpp; }; CV_BaseHistTest::CV_BaseHistTest() { test_case_count = 100; max_log_size = 20; img_max_log_size = 8; max_cdims = 6; hist_count = 1; init_ranges = 0; gen_random_hist = 0; gen_hist_max_val = 100; test_cpp = false; } CV_BaseHistTest::~CV_BaseHistTest() { clear(); } void CV_BaseHistTest::clear() { cvtest::BaseTest::clear(); for( size_t i = 0; i < hist.size(); i++ ) cvReleaseHist( &hist[i] ); } int CV_BaseHistTest::read_params( CvFileStorage* fs ) { int code = cvtest::BaseTest::read_params( fs ); if( code < 0 ) return code; test_case_count = cvReadInt( find_param( fs, "struct_count" ), test_case_count ); max_log_size = cvReadInt( find_param( fs, "max_log_size" ), max_log_size ); max_log_size = cvtest::clipInt( max_log_size, 1, 20 ); img_max_log_size = cvReadInt( find_param( fs, "max_log_array_size" ), img_max_log_size ); img_max_log_size = cvtest::clipInt( img_max_log_size, 1, 9 ); max_cdims = cvReadInt( find_param( fs, "max_cdims" ), max_cdims ); max_cdims = cvtest::clipInt( max_cdims, 1, 6 ); return 0; } void CV_BaseHistTest::get_hist_params( int /*test_case_idx*/ ) { RNG& rng = ts->get_rng(); int i, max_dim_size, max_ni_dim_size = 31; double hist_size; cdims = cvtest::randInt(rng) % max_cdims + 1; hist_size = exp(cvtest::randReal(rng)*max_log_size*CV_LOG2); max_dim_size = cvRound(pow(hist_size,1./cdims)); total_size = 1; uniform = cvtest::randInt(rng) % 2; hist_type = cvtest::randInt(rng) % 2 ? CV_HIST_SPARSE : CV_HIST_ARRAY; for( i = 0; i < cdims; i++ ) { dims[i] = cvtest::randInt(rng) % (max_dim_size + 2) + 2; if( !uniform ) dims[i] = MIN(dims[i], max_ni_dim_size); total_size *= dims[i]; } img_type = cvtest::randInt(rng) % 2 ? CV_32F : CV_8U; img_size.width = cvRound( exp(cvtest::randReal(rng) * img_max_log_size * CV_LOG2) ); img_size.height = cvRound( exp(cvtest::randReal(rng) * img_max_log_size * CV_LOG2) ); if( img_type < CV_32F ) { low = cvtest::getMinVal(img_type); high = cvtest::getMaxVal(img_type); } else { high = 1000; low = -high; } range_delta = (cvtest::randInt(rng) % 2)*(high-low)*0.05; } float** CV_BaseHistTest::get_hist_ranges( int /*test_case_idx*/ ) { double _low = low + range_delta, _high = high - range_delta; if( !init_ranges ) return 0; ranges.resize(cdims); if( uniform ) { _ranges.resize(cdims*2); for( int i = 0; i < cdims; i++ ) { _ranges[i*2] = (float)_low; _ranges[i*2+1] = (float)_high; ranges[i] = &_ranges[i*2]; } } else { int i, dims_sum = 0, ofs = 0; for( i = 0; i < cdims; i++ ) dims_sum += dims[i] + 1; _ranges.resize(dims_sum); for( i = 0; i < cdims; i++ ) { int j, n = dims[i]; // generate logarithmic scale double delta, q, val; for( j = 0; j < 10; j++ ) { q = 1. + (j+1)*0.1; if( (pow(q,(double)n)-1)/(q-1.) >= _high-_low ) break; } if( j == 0 ) { delta = (_high-_low)/n; q = 1.; } else { q = 1 + j*0.1; delta = cvFloor((_high-_low)*(q-1)/(pow(q,(double)n) - 1)); delta = MAX(delta, 1.); } val = _low; for( j = 0; j <= n; j++ ) { _ranges[j+ofs] = (float)MIN(val,_high); val += delta; delta *= q; } ranges[i] = &_ranges[ofs]; ofs += n + 1; } } return &ranges[0]; } void CV_BaseHistTest::init_hist( int /*test_case_idx*/, int hist_i ) { if( gen_random_hist ) { RNG& rng = ts->get_rng(); if( hist_type == CV_HIST_ARRAY ) { Mat h = cvarrToMat(hist[hist_i]->bins); cvtest::randUni(rng, h, Scalar::all(0), Scalar::all(gen_hist_max_val) ); } else { CvArr* arr = hist[hist_i]->bins; int i, j, totalSize = 1, nz_count; int idx[CV_MAX_DIM]; for( i = 0; i < cdims; i++ ) totalSize *= dims[i]; nz_count = cvtest::randInt(rng) % MAX( totalSize/4, 100 ); nz_count = MIN( nz_count, totalSize ); // a zero number of non-zero elements should be allowed for( i = 0; i < nz_count; i++ ) { for( j = 0; j < cdims; j++ ) idx[j] = cvtest::randInt(rng) % dims[j]; cvSetRealND(arr, idx, cvtest::randReal(rng)*gen_hist_max_val); } } } } int CV_BaseHistTest::prepare_test_case( int test_case_idx ) { int i; float** r; clear(); cvtest::BaseTest::prepare_test_case( test_case_idx ); get_hist_params( test_case_idx ); r = get_hist_ranges( test_case_idx ); hist.resize(hist_count); for( i = 0; i < hist_count; i++ ) { hist[i] = cvCreateHist( cdims, dims, hist_type, r, uniform ); init_hist( test_case_idx, i ); } test_cpp = (cvtest::randInt(ts->get_rng()) % 2) != 0; return 1; } void CV_BaseHistTest::run_func(void) { } int CV_BaseHistTest::validate_test_results( int /*test_case_idx*/ ) { return 0; } ////////////// testing operation for reading/writing individual histogram bins ////////////// class CV_QueryHistTest : public CV_BaseHistTest { public: CV_QueryHistTest(); ~CV_QueryHistTest(); void clear(); protected: void run_func(void); int prepare_test_case( int test_case_idx ); int validate_test_results( int test_case_idx ); void init_hist( int test_case_idx, int i ); Mat indices; Mat values; Mat values0; }; CV_QueryHistTest::CV_QueryHistTest() { hist_count = 1; } CV_QueryHistTest::~CV_QueryHistTest() { clear(); } void CV_QueryHistTest::clear() { CV_BaseHistTest::clear(); } void CV_QueryHistTest::init_hist( int /*test_case_idx*/, int i ) { if( hist_type == CV_HIST_ARRAY ) cvZero( hist[i]->bins ); } int CV_QueryHistTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); if( code > 0 ) { int i, j, iters; float default_value = 0.f; RNG& rng = ts->get_rng(); int* idx; iters = (cvtest::randInt(rng) % MAX(total_size/10,100)) + 1; iters = MIN( iters, total_size*9/10 + 1 ); indices = Mat(1, iters*cdims, CV_32S); values = Mat(1, iters, CV_32F ); values0 = Mat( 1, iters, CV_32F ); idx = indices.ptr(); //printf( "total_size = %d, cdims = %d, iters = %d\n", total_size, cdims, iters ); Mat bit_mask(1, (total_size + 7)/8, CV_8U, Scalar(0)); #define GET_BIT(n) (bit_mask.data[(n)/8] & (1 << ((n)&7))) #define SET_BIT(n) bit_mask.data[(n)/8] |= (1 << ((n)&7)) // set random histogram bins' values to the linear indices of the bins for( i = 0; i < iters; i++ ) { int lin_idx = 0; for( j = 0; j < cdims; j++ ) { int t = cvtest::randInt(rng) % dims[j]; idx[i*cdims + j] = t; lin_idx = lin_idx*dims[j] + t; } if( cvtest::randInt(rng) % 8 || GET_BIT(lin_idx) ) { values0.at(i) = (float)(lin_idx+1); SET_BIT(lin_idx); } else // some histogram bins will not be initialized intentionally, // they should be equal to the default value values0.at(i) = default_value; } // do the second pass to make values0 consistent with bit_mask for( i = 0; i < iters; i++ ) { int lin_idx = 0; for( j = 0; j < cdims; j++ ) lin_idx = lin_idx*dims[j] + idx[i*cdims + j]; if( GET_BIT(lin_idx) ) values0.at(i) = (float)(lin_idx+1); } } return code; } void CV_QueryHistTest::run_func(void) { int i, iters = values.cols; CvArr* h = hist[0]->bins; const int* idx = indices.ptr(); float* val = values.ptr(); float default_value = 0.f; // stage 1: write bins if( cdims == 1 ) for( i = 0; i < iters; i++ ) { float v0 = values0.at(i); if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) { if( !(i % 4) ) cvSetReal1D( h, idx[i], v0 ); else *(float*)cvPtr1D( h, idx[i] ) = v0; } else cvSetRealND( h, idx+i, v0 ); } else if( cdims == 2 ) for( i = 0; i < iters; i++ ) { float v0 = values0.at(i); if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) { if( !(i % 4) ) cvSetReal2D( h, idx[i*2], idx[i*2+1], v0 ); else *(float*)cvPtr2D( h, idx[i*2], idx[i*2+1] ) = v0; } else cvSetRealND( h, idx+i*2, v0 ); } else if( cdims == 3 ) for( i = 0; i < iters; i++ ) { float v0 = values0.at(i); if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) { if( !(i % 4) ) cvSetReal3D( h, idx[i*3], idx[i*3+1], idx[i*3+2], v0 ); else *(float*)cvPtr3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] ) = v0; } else cvSetRealND( h, idx+i*3, v0 ); } else for( i = 0; i < iters; i++ ) { float v0 = values0.at(i); if( fabs(v0 - default_value) < FLT_EPSILON ) continue; if( !(i % 2) ) cvSetRealND( h, idx+i*cdims, v0 ); else *(float*)cvPtrND( h, idx+i*cdims ) = v0; } // stage 2: read bins if( cdims == 1 ) for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtr1D( h, idx[i] ); else val[i] = (float)cvGetReal1D( h, idx[i] ); } else if( cdims == 2 ) for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtr2D( h, idx[i*2], idx[i*2+1] ); else val[i] = (float)cvGetReal2D( h, idx[i*2], idx[i*2+1] ); } else if( cdims == 3 ) for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtr3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] ); else val[i] = (float)cvGetReal3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] ); } else for( i = 0; i < iters; i++ ) { if( !(i % 2) ) val[i] = *(float*)cvPtrND( h, idx+i*cdims ); else val[i] = (float)cvGetRealND( h, idx+i*cdims ); } } int CV_QueryHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; int i, j, iters = values.cols; for( i = 0; i < iters; i++ ) { float v = values.at(i), v0 = values0.at(i); if( cvIsNaN(v) || cvIsInf(v) ) { ts->printf( cvtest::TS::LOG, "The bin #%d has invalid value\n", i ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( fabs(v - v0) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "The bin #%d = %g, while it should be %g\n", i, v, v0 ); code = cvtest::TS::FAIL_BAD_ACCURACY; } if( code < 0 ) { ts->printf( cvtest::TS::LOG, "The bin index = (" ); for( j = 0; j < cdims; j++ ) ts->printf( cvtest::TS::LOG, "%d%s", indices.at(i*cdims + j), j < cdims-1 ? ", " : ")\n" ); break; } } if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////// cvGetMinMaxHistValue ////////////// class CV_MinMaxHistTest : public CV_BaseHistTest { public: CV_MinMaxHistTest(); protected: void run_func(void); void init_hist(int, int); int validate_test_results( int test_case_idx ); int min_idx[CV_MAX_DIM], max_idx[CV_MAX_DIM]; float min_val, max_val; int min_idx0[CV_MAX_DIM], max_idx0[CV_MAX_DIM]; float min_val0, max_val0; }; CV_MinMaxHistTest::CV_MinMaxHistTest() { hist_count = 1; gen_random_hist = 1; } void CV_MinMaxHistTest::init_hist(int test_case_idx, int hist_i) { int i, eq = 1; RNG& rng = ts->get_rng(); CV_BaseHistTest::init_hist( test_case_idx, hist_i ); for(;;) { for( i = 0; i < cdims; i++ ) { min_idx0[i] = cvtest::randInt(rng) % dims[i]; max_idx0[i] = cvtest::randInt(rng) % dims[i]; eq &= min_idx0[i] == max_idx0[i]; } if( !eq || total_size == 1 ) break; } min_val0 = (float)(-cvtest::randReal(rng)*10 - FLT_EPSILON); max_val0 = (float)(cvtest::randReal(rng)*10 + FLT_EPSILON + gen_hist_max_val); if( total_size == 1 ) min_val0 = max_val0; cvSetRealND( hist[0]->bins, min_idx0, min_val0 ); cvSetRealND( hist[0]->bins, max_idx0, max_val0 ); } void CV_MinMaxHistTest::run_func(void) { if( hist_type != CV_HIST_ARRAY && test_cpp ) { cv::SparseMat h; ((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h); double _min_val = 0, _max_val = 0; cv::minMaxLoc(h, &_min_val, &_max_val, min_idx, max_idx ); min_val = (float)_min_val; max_val = (float)_max_val; } else cvGetMinMaxHistValue( hist[0], &min_val, &max_val, min_idx, max_idx ); } int CV_MinMaxHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; if( cvIsNaN(min_val) || cvIsInf(min_val) || cvIsNaN(max_val) || cvIsInf(max_val) ) { ts->printf( cvtest::TS::LOG, "The extrema histogram bin values are invalid (min = %g, max = %g)\n", min_val, max_val ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( fabs(min_val - min_val0) > FLT_EPSILON || fabs(max_val - max_val0) > FLT_EPSILON ) { ts->printf( cvtest::TS::LOG, "The extrema histogram bin values are incorrect: (min = %g, should be = %g), (max = %g, should be = %g)\n", min_val, min_val0, max_val, max_val0 ); code = cvtest::TS::FAIL_BAD_ACCURACY; } else { int i; for( i = 0; i < cdims; i++ ) { if( min_idx[i] != min_idx0[i] || max_idx[i] != max_idx0[i] ) { ts->printf( cvtest::TS::LOG, "The %d-th coordinates of extrema histogram bin values are incorrect: " "(min = %d, should be = %d), (max = %d, should be = %d)\n", i, min_idx[i], min_idx0[i], max_idx[i], max_idx0[i] ); code = cvtest::TS::FAIL_BAD_ACCURACY; } } } if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////// cvNormalizeHist ////////////// class CV_NormHistTest : public CV_BaseHistTest { public: CV_NormHistTest(); protected: int prepare_test_case( int test_case_idx ); void run_func(void); int validate_test_results( int test_case_idx ); double factor; }; CV_NormHistTest::CV_NormHistTest() { hist_count = 1; gen_random_hist = 1; factor = 0; } int CV_NormHistTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); if( code > 0 ) { RNG& rng = ts->get_rng(); factor = cvtest::randReal(rng)*10 + 0.1; if( hist_type == CV_HIST_SPARSE && ((CvSparseMat*)hist[0]->bins)->heap->active_count == 0 ) factor = 0; } return code; } void CV_NormHistTest::run_func(void) { if( hist_type != CV_HIST_ARRAY && test_cpp ) { cv::SparseMat h; ((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h); cv::normalize(h, h, factor, CV_L1); cvReleaseSparseMat((CvSparseMat**)&hist[0]->bins); hist[0]->bins = cvCreateSparseMat(h); } else cvNormalizeHist( hist[0], factor ); } int CV_NormHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; double sum = 0; if( hist_type == CV_HIST_ARRAY ) { int i; const float* ptr = (float*)cvPtr1D( hist[0]->bins, 0 ); for( i = 0; i < total_size; i++ ) sum += ptr[i]; } else { CvSparseMat* sparse = (CvSparseMat*)hist[0]->bins; CvSparseMatIterator iterator; CvSparseNode *node; for( node = cvInitSparseMatIterator( sparse, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator )) { sum += *(float*)CV_NODE_VAL(sparse,node); } } if( cvIsNaN(sum) || cvIsInf(sum) ) { ts->printf( cvtest::TS::LOG, "The normalized histogram has invalid sum =%g\n", sum ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } else if( fabs(sum - factor) > FLT_EPSILON*10*fabs(factor) ) { ts->printf( cvtest::TS::LOG, "The normalized histogram has incorrect sum =%g, while it should be =%g\n", sum, factor ); code = cvtest::TS::FAIL_BAD_ACCURACY; } if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////// cvThreshHist ////////////// class CV_ThreshHistTest : public CV_BaseHistTest { public: CV_ThreshHistTest(); ~CV_ThreshHistTest(); void clear(); protected: int prepare_test_case( int test_case_idx ); void run_func(void); int validate_test_results( int test_case_idx ); Mat indices; Mat values; int orig_nz_count; double threshold; }; CV_ThreshHistTest::CV_ThreshHistTest() : threshold(0) { hist_count = 1; gen_random_hist = 1; } CV_ThreshHistTest::~CV_ThreshHistTest() { clear(); } void CV_ThreshHistTest::clear() { CV_BaseHistTest::clear(); } int CV_ThreshHistTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); if( code > 0 ) { RNG& rng = ts->get_rng(); threshold = cvtest::randReal(rng)*gen_hist_max_val; if( hist_type == CV_HIST_ARRAY ) { orig_nz_count = total_size; values = Mat( 1, total_size, CV_32F ); indices = Mat(); memcpy( values.ptr(), cvPtr1D( hist[0]->bins, 0 ), total_size*sizeof(float) ); } else { CvSparseMat* sparse = (CvSparseMat*)hist[0]->bins; CvSparseMatIterator iterator; CvSparseNode* node; int i, k; orig_nz_count = sparse->heap->active_count; values = Mat( 1, orig_nz_count+1, CV_32F ); indices = Mat( 1, (orig_nz_count+1)*cdims, CV_32S ); for( node = cvInitSparseMatIterator( sparse, &iterator ), i = 0; node != 0; node = cvGetNextSparseNode( &iterator ), i++ ) { const int* idx = CV_NODE_IDX(sparse,node); OPENCV_ASSERT( i < orig_nz_count, "CV_ThreshHistTest::prepare_test_case", "Buffer overflow" ); values.at(i) = *(float*)CV_NODE_VAL(sparse,node); for( k = 0; k < cdims; k++ ) indices.at(i*cdims + k) = idx[k]; } OPENCV_ASSERT( i == orig_nz_count, "Unmatched buffer size", "CV_ThreshHistTest::prepare_test_case" ); } } return code; } void CV_ThreshHistTest::run_func(void) { cvThreshHist( hist[0], threshold ); } int CV_ThreshHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; int i; float* ptr0 = values.ptr(); float* ptr = 0; CvSparseMat* sparse = 0; if( hist_type == CV_HIST_ARRAY ) ptr = (float*)cvPtr1D( hist[0]->bins, 0 ); else sparse = (CvSparseMat*)hist[0]->bins; if( code > 0 ) { for( i = 0; i < orig_nz_count; i++ ) { float v0 = ptr0[i], v; if( hist_type == CV_HIST_ARRAY ) v = ptr[i]; else { v = (float)cvGetRealND( sparse, indices.ptr() + i*cdims ); cvClearND( sparse, indices.ptr() + i*cdims ); } if( v0 <= threshold ) v0 = 0.f; if( cvIsNaN(v) || cvIsInf(v) ) { ts->printf( cvtest::TS::LOG, "The %d-th bin is invalid (=%g)\n", i, v ); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } else if( fabs(v0 - v) > FLT_EPSILON*10*fabs(v0) ) { ts->printf( cvtest::TS::LOG, "The %d-th bin is incorrect (=%g, should be =%g)\n", i, v, v0 ); code = cvtest::TS::FAIL_BAD_ACCURACY; break; } } } if( code > 0 && hist_type == CV_HIST_SPARSE ) { if( sparse->heap->active_count > 0 ) { ts->printf( cvtest::TS::LOG, "There some extra histogram bins in the sparse histogram after the thresholding\n" ); code = cvtest::TS::FAIL_INVALID_OUTPUT; } } if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////// cvCompareHist ////////////// class CV_CompareHistTest : public CV_BaseHistTest { public: enum { MAX_METHOD = 6 }; CV_CompareHistTest(); protected: int prepare_test_case( int test_case_idx ); void run_func(void); int validate_test_results( int test_case_idx ); double result[MAX_METHOD+1]; }; CV_CompareHistTest::CV_CompareHistTest() { hist_count = 2; gen_random_hist = 1; } int CV_CompareHistTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); return code; } void CV_CompareHistTest::run_func(void) { int k; if( hist_type != CV_HIST_ARRAY && test_cpp ) { cv::SparseMat h0, h1; ((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h0); ((CvSparseMat*)hist[1]->bins)->copyToSparseMat(h1); for( k = 0; k < MAX_METHOD; k++ ) result[k] = cv::compareHist(h0, h1, k); } else for( k = 0; k < MAX_METHOD; k++ ) result[k] = cvCompareHist( hist[0], hist[1], k ); } int CV_CompareHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; int i; double result0[MAX_METHOD+1]; double s0 = 0, s1 = 0, sq0 = 0, sq1 = 0, t; for( i = 0; i < MAX_METHOD; i++ ) result0[i] = 0; if( hist_type == CV_HIST_ARRAY ) { float* ptr0 = (float*)cvPtr1D( hist[0]->bins, 0 ); float* ptr1 = (float*)cvPtr1D( hist[1]->bins, 0 ); for( i = 0; i < total_size; i++ ) { double v0 = ptr0[i], v1 = ptr1[i]; result0[CV_COMP_CORREL] += v0*v1; result0[CV_COMP_INTERSECT] += MIN(v0,v1); if( fabs(v0) > DBL_EPSILON ) result0[CV_COMP_CHISQR] += (v0 - v1)*(v0 - v1)/v0; if( fabs(v0 + v1) > DBL_EPSILON ) result0[CV_COMP_CHISQR_ALT] += (v0 - v1)*(v0 - v1)/(v0 + v1); s0 += v0; s1 += v1; sq0 += v0*v0; sq1 += v1*v1; result0[CV_COMP_BHATTACHARYYA] += sqrt(v0*v1); { if( fabs(v0) <= DBL_EPSILON ) continue; if( fabs(v1) <= DBL_EPSILON ) v1 = 1e-10; result0[CV_COMP_KL_DIV] += v0 * std::log( v0 / v1 ); } } } else { CvSparseMat* sparse0 = (CvSparseMat*)hist[0]->bins; CvSparseMat* sparse1 = (CvSparseMat*)hist[1]->bins; CvSparseMatIterator iterator; CvSparseNode* node; for( node = cvInitSparseMatIterator( sparse0, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator ) ) { const int* idx = CV_NODE_IDX(sparse0, node); double v0 = *(float*)CV_NODE_VAL(sparse0, node); double v1 = (float)cvGetRealND(sparse1, idx); result0[CV_COMP_CORREL] += v0*v1; result0[CV_COMP_INTERSECT] += MIN(v0,v1); if( fabs(v0) > DBL_EPSILON ) result0[CV_COMP_CHISQR] += (v0 - v1)*(v0 - v1)/v0; if( fabs(v0 + v1) > DBL_EPSILON ) result0[CV_COMP_CHISQR_ALT] += (v0 - v1)*(v0 - v1)/(v0 + v1); s0 += v0; sq0 += v0*v0; result0[CV_COMP_BHATTACHARYYA] += sqrt(v0*v1); { if (v0 <= DBL_EPSILON) continue; if (!v1) v1 = 1e-10; result0[CV_COMP_KL_DIV] += v0 * std::log( v0 / v1 ); } } for( node = cvInitSparseMatIterator( sparse1, &iterator ); node != 0; node = cvGetNextSparseNode( &iterator ) ) { double v1 = *(float*)CV_NODE_VAL(sparse1, node); s1 += v1; sq1 += v1*v1; } } result0[CV_COMP_CHISQR_ALT] *= 2; t = (sq0 - s0*s0/total_size)*(sq1 - s1*s1/total_size); result0[CV_COMP_CORREL] = fabs(t) > DBL_EPSILON ? (result0[CV_COMP_CORREL] - s0*s1/total_size)/sqrt(t) : 1; s1 *= s0; s0 = result0[CV_COMP_BHATTACHARYYA]; s0 = 1. - s0*(s1 > FLT_EPSILON ? 1./sqrt(s1) : 1.); result0[CV_COMP_BHATTACHARYYA] = sqrt(MAX(s0,0.)); for( i = 0; i < MAX_METHOD; i++ ) { double v = result[i], v0 = result0[i]; const char* method_name = i == CV_COMP_CHISQR ? "Chi-Square" : i == CV_COMP_CHISQR_ALT ? "Alternative Chi-Square" : i == CV_COMP_CORREL ? "Correlation" : i == CV_COMP_INTERSECT ? "Intersection" : i == CV_COMP_BHATTACHARYYA ? "Bhattacharyya" : i == CV_COMP_KL_DIV ? "Kullback-Leibler" : "Unknown"; if( cvIsNaN(v) || cvIsInf(v) ) { ts->printf( cvtest::TS::LOG, "The comparison result using the method #%d (%s) is invalid (=%g)\n", i, method_name, v ); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } else if( fabs(v0 - v) > FLT_EPSILON*14*MAX(fabs(v0),0.1) ) { ts->printf( cvtest::TS::LOG, "The comparison result using the method #%d (%s)\n\tis inaccurate (=%g, should be =%g)\n", i, method_name, v, v0 ); code = cvtest::TS::FAIL_BAD_ACCURACY; break; } } if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////// cvCalcHist ////////////// class CV_CalcHistTest : public CV_BaseHistTest { public: CV_CalcHistTest(); ~CV_CalcHistTest(); void clear(); protected: int prepare_test_case( int test_case_idx ); void run_func(void); int validate_test_results( int test_case_idx ); vector images; vector channels; }; CV_CalcHistTest::CV_CalcHistTest() : images(CV_MAX_DIM+1), channels(CV_MAX_DIM+1) { hist_count = 2; gen_random_hist = 0; init_ranges = 1; } CV_CalcHistTest::~CV_CalcHistTest() { clear(); } void CV_CalcHistTest::clear() { CV_BaseHistTest::clear(); } int CV_CalcHistTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); if( code > 0 ) { RNG& rng = ts->get_rng(); int i; for( i = 0; i <= CV_MAX_DIM; i++ ) { if( i < cdims ) { int nch = 1; //cvtest::randInt(rng) % 3 + 1; images[i] = Mat(img_size, CV_MAKETYPE(img_type, nch)); channels[i] = cvtest::randInt(rng) % nch; cvtest::randUni( rng, images[i], Scalar::all(low), Scalar::all(high) ); } else if( i == CV_MAX_DIM ) { if( cvtest::randInt(rng) % 2 ) { // create mask images[i] = Mat(img_size, CV_8U); // make ~25% pixels in the mask non-zero cvtest::randUni( rng, images[i], Scalar::all(-2), Scalar::all(2) ); } else images[i] = Mat(); } } } return code; } void CV_CalcHistTest::run_func(void) { int size[CV_MAX_DIM]; int hdims = cvGetDims( hist[0]->bins, size); bool huniform = CV_IS_UNIFORM_HIST(hist[0]); const float* uranges[CV_MAX_DIM] = {0}; const float** hranges = 0; if( hist[0]->type & CV_HIST_RANGES_FLAG ) { hranges = (const float**)hist[0]->thresh2; if( huniform ) { for(int i = 0; i < hdims; i++ ) uranges[i] = &hist[0]->thresh[i][0]; hranges = uranges; } } std::vector imagesv(cdims); copy(images.begin(), images.begin() + cdims, imagesv.begin()); Mat mask = images[CV_MAX_DIM]; if( !CV_IS_SPARSE_HIST(hist[0]) ) { cv::Mat H = cv::cvarrToMat(hist[0]->bins); if(huniform) { vector emptyChannels; vector hSize(hdims); for(int i = 0; i < hdims; i++) hSize[i] = size[i]; vector vranges; if(hranges) { vranges.resize(hdims*2); for(int i = 0; i < hdims; i++ ) { vranges[i*2 ] = hist[0]->thresh[i][0]; vranges[i*2+1] = hist[0]->thresh[i][1]; } } cv::calcHist(imagesv, emptyChannels, mask, H, hSize, vranges); } else { cv::calcHist( &imagesv[0], (int)imagesv.size(), 0, mask, H, cvGetDims(hist[0]->bins), H.size, hranges, huniform ); } } else { CvSparseMat* sparsemat = (CvSparseMat*)hist[0]->bins; cvZero( hist[0]->bins ); cv::SparseMat sH; sparsemat->copyToSparseMat(sH); cv::calcHist( &imagesv[0], (int)imagesv.size(), 0, mask, sH, sH.dims(), sH.dims() > 0 ? sH.hdr->size : 0, hranges, huniform, false); cv::SparseMatConstIterator it = sH.begin(); int nz = (int)sH.nzcount(); for(int i = 0; i < nz; i++, ++it ) { CV_Assert(it.ptr != NULL); *(float*)cvPtrND(sparsemat, it.node()->idx, 0, -2) = *(const float*)it.ptr; } } } static void cvTsCalcHist( const vector& images, CvHistogram* hist, Mat mask, const vector& channels ) { int x, y, k; union { const float* fl; const uchar* ptr; } plane[CV_MAX_DIM]; int nch[CV_MAX_DIM]; int dims[CV_MAX_DIM]; int uniform = CV_IS_UNIFORM_HIST(hist); int cdims = cvGetDims( hist->bins, dims ); cvZero( hist->bins ); Size img_size = images[0].size(); int img_depth = images[0].depth(); for( k = 0; k < cdims; k++ ) { nch[k] = images[k].channels(); } for( y = 0; y < img_size.height; y++ ) { const uchar* mptr = mask.empty() ? 0 : mask.ptr(y); if( img_depth == CV_8U ) for( k = 0; k < cdims; k++ ) plane[k].ptr = images[k].ptr(y) + channels[k]; else for( k = 0; k < cdims; k++ ) plane[k].fl = images[k].ptr(y) + channels[k]; for( x = 0; x < img_size.width; x++ ) { float val[CV_MAX_DIM]; int idx[CV_MAX_DIM]; if( mptr && !mptr[x] ) continue; if( img_depth == CV_8U ) for( k = 0; k < cdims; k++ ) val[k] = plane[k].ptr[x*nch[k]]; else for( k = 0; k < cdims; k++ ) val[k] = plane[k].fl[x*nch[k]]; idx[cdims-1] = -1; if( uniform ) { for( k = 0; k < cdims; k++ ) { double v = val[k], lo = hist->thresh[k][0], hi = hist->thresh[k][1]; idx[k] = cvFloor((v - lo)*dims[k]/(hi - lo)); if( idx[k] < 0 || idx[k] >= dims[k] ) break; } } else { for( k = 0; k < cdims; k++ ) { float v = val[k]; float* t = hist->thresh2[k]; int j, n = dims[k]; for( j = 0; j <= n; j++ ) if( v < t[j] ) break; if( j <= 0 || j > n ) break; idx[k] = j-1; } } if( k < cdims ) continue; (*(float*)cvPtrND( hist->bins, idx ))++; } } } int CV_CalcHistTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; double diff; cvTsCalcHist( images, hist[1], images[CV_MAX_DIM], channels ); diff = cvCompareHist( hist[0], hist[1], CV_COMP_CHISQR ); if( diff > DBL_EPSILON ) { ts->printf( cvtest::TS::LOG, "The histogram does not match to the reference one\n" ); code = cvtest::TS::FAIL_BAD_ACCURACY; } if( code < 0 ) ts->set_failed_test_info( code ); return code; } CV_CalcHistTest hist_calc_test; ////////////// cvCalcBackProject ////////////// class CV_CalcBackProjectTest : public CV_BaseHistTest { public: CV_CalcBackProjectTest(); ~CV_CalcBackProjectTest(); void clear(); protected: int prepare_test_case( int test_case_idx ); void run_func(void); int validate_test_results( int test_case_idx ); vector images; vector channels; }; CV_CalcBackProjectTest::CV_CalcBackProjectTest() : images(CV_MAX_DIM+3), channels(CV_MAX_DIM+3) { hist_count = 1; gen_random_hist = 0; init_ranges = 1; } CV_CalcBackProjectTest::~CV_CalcBackProjectTest() { clear(); } void CV_CalcBackProjectTest::clear() { CV_BaseHistTest::clear(); } int CV_CalcBackProjectTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); if( code > 0 ) { RNG& rng = ts->get_rng(); int i, j, n, img_len = img_size.area(); for( i = 0; i < CV_MAX_DIM + 3; i++ ) { if( i < cdims ) { int nch = 1; //cvtest::randInt(rng) % 3 + 1; images[i] = Mat(img_size, CV_MAKETYPE(img_type, nch)); channels[i] = cvtest::randInt(rng) % nch; cvtest::randUni( rng, images[i], Scalar::all(low), Scalar::all(high) ); } else if( i == CV_MAX_DIM ) { if(cvtest::randInt(rng) % 2 ) { // create mask images[i] = Mat(img_size, CV_8U); // make ~25% pixels in the mask non-zero cvtest::randUni( rng, images[i], Scalar::all(-2), Scalar::all(2) ); } else { images[i] = Mat(); } } else if( i > CV_MAX_DIM ) { images[i] = Mat(img_size, images[0].type()); } } cvTsCalcHist( images, hist[0], images[CV_MAX_DIM], channels ); // now modify the images a bit to add some zeros go to the backprojection n = cvtest::randInt(rng) % (img_len/20+1); for( i = 0; i < cdims; i++ ) { uchar* data = images[i].data; for( j = 0; j < n; j++ ) { int idx = cvtest::randInt(rng) % img_len; double val = cvtest::randReal(rng)*(high - low) + low; if( img_type == CV_8U ) ((uchar*)data)[idx] = (uchar)cvRound(val); else ((float*)data)[idx] = (float)val; } } } return code; } void CV_CalcBackProjectTest::run_func(void) { int size[CV_MAX_DIM]; int hdims = cvGetDims( hist[0]->bins, size ); bool huniform = CV_IS_UNIFORM_HIST(hist[0]); const float* uranges[CV_MAX_DIM] = {0}; const float** hranges = 0; if( hist[0]->type & CV_HIST_RANGES_FLAG ) { hranges = (const float**)hist[0]->thresh2; if( huniform ) { for(int i = 0; i < hdims; i++ ) uranges[i] = &hist[0]->thresh[i][0]; hranges = uranges; } } std::vector imagesv(hdims); copy(images.begin(), images.begin() + hdims, imagesv.begin()); cv::Mat dst = images[CV_MAX_DIM+1]; CV_Assert( dst.size() == imagesv[0].size() && dst.depth() == imagesv[0].depth() ); if( !CV_IS_SPARSE_HIST(hist[0]) ) { cv::Mat H = cv::cvarrToMat(hist[0]->bins); if(huniform) { vector emptyChannels; vector vranges; if(hranges) { vranges.resize(hdims*2); for(int i = 0; i < hdims; i++ ) { vranges[i*2 ] = hist[0]->thresh[i][0]; vranges[i*2+1] = hist[0]->thresh[i][1]; } } cv::calcBackProject(imagesv, emptyChannels, H, dst, vranges, 1); } else { cv::calcBackProject( &imagesv[0], (int)imagesv.size(), 0, H, dst, hranges, 1, false ); } } else { cv::SparseMat sH; ((const CvSparseMat*)hist[0]->bins)->copyToSparseMat(sH); cv::calcBackProject( &imagesv[0], (int)imagesv.size(), 0, sH, dst, hranges, 1, huniform ); } } static void cvTsCalcBackProject( const vector& images, Mat dst, CvHistogram* hist, const vector& channels ) { int x, y, k, cdims; union { const float* fl; const uchar* ptr; } plane[CV_MAX_DIM]; int nch[CV_MAX_DIM]; int dims[CV_MAX_DIM]; int uniform = CV_IS_UNIFORM_HIST(hist); Size img_size = images[0].size(); int img_depth = images[0].depth(); cdims = cvGetDims( hist->bins, dims ); for( k = 0; k < cdims; k++ ) nch[k] = images[k].channels(); for( y = 0; y < img_size.height; y++ ) { if( img_depth == CV_8U ) for( k = 0; k < cdims; k++ ) plane[k].ptr = images[k].ptr(y) + channels[k]; else for( k = 0; k < cdims; k++ ) plane[k].fl = images[k].ptr(y) + channels[k]; for( x = 0; x < img_size.width; x++ ) { float val[CV_MAX_DIM]; float bin_val = 0; int idx[CV_MAX_DIM]; if( img_depth == CV_8U ) for( k = 0; k < cdims; k++ ) val[k] = plane[k].ptr[x*nch[k]]; else for( k = 0; k < cdims; k++ ) val[k] = plane[k].fl[x*nch[k]]; idx[cdims-1] = -1; if( uniform ) { for( k = 0; k < cdims; k++ ) { double v = val[k], lo = hist->thresh[k][0], hi = hist->thresh[k][1]; idx[k] = cvFloor((v - lo)*dims[k]/(hi - lo)); if( idx[k] < 0 || idx[k] >= dims[k] ) break; } } else { for( k = 0; k < cdims; k++ ) { float v = val[k]; float* t = hist->thresh2[k]; int j, n = dims[k]; for( j = 0; j <= n; j++ ) if( v < t[j] ) break; if( j <= 0 || j > n ) break; idx[k] = j-1; } } if( k == cdims ) bin_val = (float)cvGetRealND( hist->bins, idx ); if( img_depth == CV_8U ) { int t = cvRound(bin_val); dst.at(y, x) = saturate_cast(t); } else dst.at(y, x) = bin_val; } } } int CV_CalcBackProjectTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; cvTsCalcBackProject( images, images[CV_MAX_DIM+2], hist[0], channels ); Mat a = images[CV_MAX_DIM+1], b = images[CV_MAX_DIM+2]; double threshold = a.depth() == CV_8U ? 2 : FLT_EPSILON; code = cvtest::cmpEps2( ts, a, b, threshold, true, "Back project image" ); if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////// cvCalcBackProjectPatch ////////////// class CV_CalcBackProjectPatchTest : public CV_BaseHistTest { public: CV_CalcBackProjectPatchTest(); ~CV_CalcBackProjectPatchTest(); void clear(); protected: int prepare_test_case( int test_case_idx ); void run_func(void); int validate_test_results( int test_case_idx ); vector images; vector channels; Size patch_size; double factor; int method; }; CV_CalcBackProjectPatchTest::CV_CalcBackProjectPatchTest() : images(CV_MAX_DIM+2), channels(CV_MAX_DIM+2) { hist_count = 1; gen_random_hist = 0; init_ranges = 1; img_max_log_size = 6; } CV_CalcBackProjectPatchTest::~CV_CalcBackProjectPatchTest() { clear(); } void CV_CalcBackProjectPatchTest::clear() { CV_BaseHistTest::clear(); } int CV_CalcBackProjectPatchTest::prepare_test_case( int test_case_idx ) { int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); if( code > 0 ) { RNG& rng = ts->get_rng(); int i, j, n, img_len = img_size.area(); patch_size.width = cvtest::randInt(rng) % img_size.width + 1; patch_size.height = cvtest::randInt(rng) % img_size.height + 1; patch_size.width = MIN( patch_size.width, 30 ); patch_size.height = MIN( patch_size.height, 30 ); factor = 1.; method = cvtest::randInt(rng) % CV_CompareHistTest::MAX_METHOD; for( i = 0; i < CV_MAX_DIM + 2; i++ ) { if( i < cdims ) { int nch = 1; //cvtest::randInt(rng) % 3 + 1; images[i] = Mat(img_size, CV_MAKETYPE(img_type, nch)); channels[i] = cvtest::randInt(rng) % nch; cvtest::randUni( rng, images[i], Scalar::all(low), Scalar::all(high) ); } else if( i >= CV_MAX_DIM ) { images[i] = Mat(img_size - patch_size + Size(1, 1), CV_32F); } } cvTsCalcHist( images, hist[0], Mat(), channels ); cvNormalizeHist( hist[0], factor ); // now modify the images a bit n = cvtest::randInt(rng) % (img_len/10+1); for( i = 0; i < cdims; i++ ) { uchar* data = images[i].data; for( j = 0; j < n; j++ ) { int idx = cvtest::randInt(rng) % img_len; double val = cvtest::randReal(rng)*(high - low) + low; if( img_type == CV_8U ) ((uchar*)data)[idx] = (uchar)cvRound(val); else ((float*)data)[idx] = (float)val; } } } return code; } void CV_CalcBackProjectPatchTest::run_func(void) { CvMat dst = cvMat(images[CV_MAX_DIM]); vector img(cdims); vector pimg(cdims); for(int i = 0; i < cdims; i++) { img[i] = cvMat(images[i]); pimg[i] = &img[i]; } cvCalcArrBackProjectPatch( (CvArr**)&pimg[0], &dst, cvSize(patch_size), hist[0], method, factor ); } static void cvTsCalcBackProjectPatch( const vector& images, Mat dst, Size patch_size, CvHistogram* hist, int method, double factor, const vector& channels ) { CvHistogram* model = 0; int x, y; Size size = dst.size(); cvCopyHist( hist, &model ); cvNormalizeHist( hist, factor ); vector img(images.size()); for( y = 0; y < size.height; y++ ) { for( x = 0; x < size.width; x++ ) { double result; Rect roi(Point(x, y), patch_size); for(size_t i = 0; i < img.size(); i++) img[i] = images[i](roi); cvTsCalcHist( img, model, Mat(), channels ); cvNormalizeHist( model, factor ); result = cvCompareHist( model, hist, method ); dst.at(y, x) = (float)result; } } cvReleaseHist( &model ); } int CV_CalcBackProjectPatchTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; double err_level = 5e-3; Mat dst = images[CV_MAX_DIM+1]; vector imagesv(cdims); for(int i = 0; i < cdims; i++) imagesv[i] = images[i]; cvTsCalcBackProjectPatch( imagesv, dst, patch_size, hist[0], method, factor, channels ); Mat a = images[CV_MAX_DIM], b = images[CV_MAX_DIM+1]; code = cvtest::cmpEps2( ts, a, b, err_level, true, "BackProjectPatch result" ); if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////// cvCalcBayesianProb ////////////// class CV_BayesianProbTest : public CV_BaseHistTest { public: enum { MAX_METHOD = 4 }; CV_BayesianProbTest(); protected: int prepare_test_case( int test_case_idx ); void run_func(void); int validate_test_results( int test_case_idx ); void init_hist( int test_case_idx, int i ); void get_hist_params( int test_case_idx ); }; CV_BayesianProbTest::CV_BayesianProbTest() { hist_count = CV_MAX_DIM; gen_random_hist = 1; } void CV_BayesianProbTest::get_hist_params( int test_case_idx ) { CV_BaseHistTest::get_hist_params( test_case_idx ); hist_type = CV_HIST_ARRAY; } void CV_BayesianProbTest::init_hist( int test_case_idx, int hist_i ) { if( hist_i < hist_count/2 ) CV_BaseHistTest::init_hist( test_case_idx, hist_i ); } int CV_BayesianProbTest::prepare_test_case( int test_case_idx ) { RNG& rng = ts->get_rng(); hist_count = (cvtest::randInt(rng) % (MAX_HIST/2-1) + 2)*2; hist_count = MIN( hist_count, MAX_HIST ); int code = CV_BaseHistTest::prepare_test_case( test_case_idx ); return code; } void CV_BayesianProbTest::run_func(void) { cvCalcBayesianProb( &hist[0], hist_count/2, &hist[hist_count/2] ); } int CV_BayesianProbTest::validate_test_results( int /*test_case_idx*/ ) { int code = cvtest::TS::OK; int i, j, n = hist_count/2; double s[CV_MAX_DIM]; const double err_level = 1e-5; for( i = 0; i < total_size; i++ ) { double sum = 0; for( j = 0; j < n; j++ ) { double v = hist[j]->mat.data.fl[i]; sum += v; s[j] = v; } sum = sum > DBL_EPSILON ? 1./sum : 0; for( j = 0; j < n; j++ ) { double v0 = s[j]*sum; double v = hist[j+n]->mat.data.fl[i]; if( cvIsNaN(v) || cvIsInf(v) ) { ts->printf( cvtest::TS::LOG, "The element #%d in the destination histogram #%d is invalid (=%g)\n", i, j, v ); code = cvtest::TS::FAIL_INVALID_OUTPUT; break; } else if( fabs(v0 - v) > err_level*fabs(v0) ) { ts->printf( cvtest::TS::LOG, "The element #%d in the destination histogram #%d is inaccurate (=%g, should be =%g)\n", i, j, v, v0 ); code = cvtest::TS::FAIL_BAD_ACCURACY; break; } } if( j < n ) break; } if( code < 0 ) ts->set_failed_test_info( code ); return code; } ////////////////////////////////////////////////////////////////////////////////////////////////////// TEST(Imgproc_Hist_Calc, accuracy) { CV_CalcHistTest test; test.safe_run(); } TEST(Imgproc_Hist_Query, accuracy) { CV_QueryHistTest test; test.safe_run(); } TEST(Imgproc_Hist_Compare, accuracy) { CV_CompareHistTest test; test.safe_run(); } TEST(Imgproc_Hist_Threshold, accuracy) { CV_ThreshHistTest test; test.safe_run(); } TEST(Imgproc_Hist_Normalize, accuracy) { CV_NormHistTest test; test.safe_run(); } TEST(Imgproc_Hist_MinMaxVal, accuracy) { CV_MinMaxHistTest test; test.safe_run(); } TEST(Imgproc_Hist_CalcBackProject, accuracy) { CV_CalcBackProjectTest test; test.safe_run(); } TEST(Imgproc_Hist_CalcBackProjectPatch, accuracy) { CV_CalcBackProjectPatchTest test; test.safe_run(); } TEST(Imgproc_Hist_BayesianProb, accuracy) { CV_BayesianProbTest test; test.safe_run(); } TEST(Imgproc_Hist_Calc, calcHist_regression_11544) { cv::Mat1w m = cv::Mat1w::zeros(10, 10); int n_images = 1; int channels[] = { 0 }; cv::Mat mask; cv::MatND hist1, hist2; cv::MatND hist1_opt, hist2_opt; int dims = 1; int hist_size[] = { 1000 }; float range1[] = { 0, 900 }; float range2[] = { 0, 1000 }; const float* ranges1[] = { range1 }; const float* ranges2[] = { range2 }; setUseOptimized(false); cv::calcHist(&m, n_images, channels, mask, hist1, dims, hist_size, ranges1); cv::calcHist(&m, n_images, channels, mask, hist2, dims, hist_size, ranges2); setUseOptimized(true); cv::calcHist(&m, n_images, channels, mask, hist1_opt, dims, hist_size, ranges1); cv::calcHist(&m, n_images, channels, mask, hist2_opt, dims, hist_size, ranges2); for(int i = 0; i < 1000; i++) { EXPECT_EQ(hist1.at(i, 0), hist1_opt.at(i, 0)) << i; EXPECT_EQ(hist2.at(i, 0), hist2_opt.at(i, 0)) << i; } } }} // namespace /* End Of File */