// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. /* Test for TFLite models loading */ #include "test_precomp.hpp" #include "npy_blob.hpp" #include // CV_DNN_REGISTER_LAYER_CLASS #include namespace opencv_test { using namespace cv; using namespace cv::dnn; void testModel(const std::string& modelName, const Mat& input, double norm = 1e-5) { #ifndef HAVE_FLATBUFFERS throw SkipTestException("FlatBuffers required for TFLite importer"); #endif Net net = readNet(findDataFile("dnn/tflite/" + modelName + ".tflite", false)); net.setInput(input); std::vector outNames = net.getUnconnectedOutLayersNames(); std::vector outs; net.forward(outs, outNames); ASSERT_EQ(outs.size(), outNames.size()); for (int i = 0; i < outNames.size(); ++i) { Mat ref = blobFromNPY(findDataFile(format("dnn/tflite/%s_out_%s.npy", modelName.c_str(), outNames[i].c_str()))); normAssert(ref.reshape(1, 1), outs[i].reshape(1, 1), outNames[i].c_str(), norm); } } void testModel(const std::string& modelName, const Size& inpSize, double norm = 1e-5) { Mat input = imread(findDataFile("cv/shared/lena.png")); input = blobFromImage(input, 1.0 / 255, inpSize, 0, true); testModel(modelName, input, norm); } // https://google.github.io/mediapipe/solutions/face_mesh TEST(Test_TFLite, face_landmark) { testModel("face_landmark", Size(192, 192), 2e-5); } // https://google.github.io/mediapipe/solutions/face_detection TEST(Test_TFLite, face_detection_short_range) { testModel("face_detection_short_range", Size(128, 128)); } // https://google.github.io/mediapipe/solutions/selfie_segmentation TEST(Test_TFLite, selfie_segmentation) { testModel("selfie_segmentation", Size(256, 256)); } TEST(Test_TFLite, max_unpooling) { #ifndef HAVE_FLATBUFFERS throw SkipTestException("FlatBuffers required for TFLite importer"); #endif // Due Max Unpoling is a numerically unstable operation and small difference between frameworks // might lead to positional difference of maximal elements in the tensor, this test checks // behavior of Max Unpooling layer only. Net net = readNet(findDataFile("dnn/tflite/hair_segmentation.tflite", false)); Mat input = imread(findDataFile("cv/shared/lena.png")); cvtColor(input, input, COLOR_BGR2RGBA); input = input.mul(Scalar(1, 1, 1, 0)); input = blobFromImage(input, 1.0 / 255); net.setInput(input); std::vector > outs; net.forward(outs, {"p_re_lu_1", "max_pooling_with_argmax2d", "conv2d_86", "max_unpooling2d_2"}); ASSERT_EQ(outs.size(), 4); ASSERT_EQ(outs[0].size(), 1); ASSERT_EQ(outs[1].size(), 2); ASSERT_EQ(outs[2].size(), 1); ASSERT_EQ(outs[3].size(), 1); Mat poolInp = outs[0][0]; Mat poolOut = outs[1][0]; Mat poolIds = outs[1][1]; Mat unpoolInp = outs[2][0]; Mat unpoolOut = outs[3][0]; ASSERT_EQ(poolInp.size, unpoolOut.size); ASSERT_EQ(poolOut.size, poolIds.size); ASSERT_EQ(poolOut.size, unpoolInp.size); for (int c = 0; c < 32; ++c) { float *poolInpData = poolInp.ptr(0, c); float *poolOutData = poolOut.ptr(0, c); float *poolIdsData = poolIds.ptr(0, c); float *unpoolInpData = unpoolInp.ptr(0, c); float *unpoolOutData = unpoolOut.ptr(0, c); for (int y = 0; y < 64; ++y) { for (int x = 0; x < 64; ++x) { int maxIdx = (y * 128 + x) * 2; std::vector indices{maxIdx + 1, maxIdx + 128, maxIdx + 129}; std::string errMsg = format("Channel %d, y: %d, x: %d", c, y, x); for (int idx : indices) { if (poolInpData[idx] > poolInpData[maxIdx]) { EXPECT_EQ(unpoolOutData[maxIdx], 0.0f) << errMsg; maxIdx = idx; } } EXPECT_EQ(poolInpData[maxIdx], poolOutData[y * 64 + x]) << errMsg; EXPECT_EQ(poolIdsData[y * 64 + x], (float)maxIdx) << errMsg; EXPECT_EQ(unpoolOutData[maxIdx], unpoolInpData[y * 64 + x]) << errMsg; } } } } }