// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. #include "perf_precomp.hpp" #include namespace opencv_test { struct Layer_Slice : public TestBaseWithParam > { template void test_slice(const int* inputShape, const int* begin, const int* end) { int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); Mat input(DIMS, inputShape, CV_32FC1, Scalar::all(0)); for (int i = 0; i < (int)input.total(); ++i) input.ptr()[i] = (float)(i & 4095); std::vector range(DIMS); for (int i = 0; i < DIMS; ++i) range[i] = Range(begin[i], end[i]); Net net; LayerParams lp; lp.type = "Slice"; lp.name = "testLayer"; lp.set("begin", DictValue::arrayInt((int*)&begin[0], DIMS)); lp.set("end", DictValue::arrayInt((int*)&end[0], DIMS)); net.addLayerToPrev(lp.name, lp.type, lp); // warmup { net.setInput(input); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); EXPECT_GT(cv::norm(out, NORM_INF), 0); #if 0 //normAssert(out, input(range)); cout << input(range).clone().reshape(1, 1) << endl; cout << out.reshape(1, 1) << endl; #endif } TEST_CYCLE() { Mat res = net.forward(); } SANITY_CHECK_NOTHING(); } }; static std::set nary_eltwise_cuda_deny_ops = {"add", "equal", "greater", "less", "mean", "mul", "pow", "sub"}; struct Layer_NaryEltwise : public TestBaseWithParam > { void test_layer(const std::vector& a_shape, const std::vector& b_shape, const String op, bool isRef = false) { int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); if (!isRef && backendId == DNN_BACKEND_CUDA) { if (a_shape != b_shape) throw SkipTestException("The test is skipped because inputs with different shapes are not supported."); if (nary_eltwise_cuda_deny_ops.find(op) != nary_eltwise_cuda_deny_ops.end()) throw SkipTestException("The operator '" + op + "' is skipped because is not support with cuda currently."); } Mat a(a_shape, CV_32FC1); Mat b(b_shape, CV_32FC1); Scalar mean = 0.f; Scalar std = 1.f; randn(a, mean, std); randn(b, mean, std); Net net; LayerParams lp; if (isRef) lp.type = "Eltwise"; else lp.type = "NaryEltwise"; lp.name = "testLayer"; lp.set("operation", op); int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 1, id, 1); // warmup { std::vector inpNames(2); inpNames[0] = "a"; inpNames[1] = "b"; net.setInputsNames(inpNames); net.setInput(a, inpNames[0]); net.setInput(b, inpNames[1]); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); } TEST_CYCLE() { Mat res = net.forward(); } SANITY_CHECK_NOTHING(); } int N = 8; int C = 256; int H = 128; int W = 100; }; PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_add) { test_layer({N, C, H, W}, {N, C, H, W}, "add"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_div) { test_layer({N, C, H, W}, {N, C, H, W}, "div"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_div) { test_layer({N, C, H, W}, {N, C, H, W}, "div", true); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_equal) { test_layer({N, C, H, W}, {N, C, H, W}, "equal"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_greater) { test_layer({N, C, H, W}, {N, C, H, W}, "greater"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_less) { test_layer({N, C, H, W}, {N, C, H, W}, "less"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_max) { test_layer({N, C, H, W}, {N, C, H, W}, "max"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_max) { test_layer({N, C, H, W}, {N, C, H, W}, "max", true); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_mean) { test_layer({N, C, H, W}, {N, C, H, W}, "mean"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_min) { test_layer({N, C, H, W}, {N, C, H, W}, "min"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_min) { test_layer({N, C, H, W}, {N, C, H, W}, "min", true); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_mul) { test_layer({N, C, H, W}, {N, C, H, W}, "mul"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_mul) { test_layer({N, C, H, W}, {N, C, H, W}, "prod", true); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_pow) { test_layer({N, C, H, W}, {N, C, H, W}, "pow"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_sub) { test_layer({N, C, H, W}, {N, C, H, W}, "sub"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_sum) { test_layer({N, C, H, W}, {N, C, H, W}, "sum"); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_NCHW_ref_sum) { test_layer({N, C, H, W}, {N, C, H, W}, "sum", true); } PERF_TEST_P_(Layer_NaryEltwise, NCHW_C_sum) { test_layer({N, C, H, W}, {C, 1, 1}, "sum"); } PERF_TEST_P_(Layer_NaryEltwise, NHWC_C) { test_layer({N, H, W, C}, {1, C}, "sum"); } PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_1) { const int inputShape[4] = {1, 64, 104, 104}; const int begin[] = {0, 32, 0, 0}; const int end[] = {1, 64, 104, 104}; test_slice<4>(inputShape, begin, end); } PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_2) { const int inputShape[4] = {1, 128, 52, 52}; const int begin[] = {0, 64, 0, 0}; const int end[] = {1, 128, 52, 52}; test_slice<4>(inputShape, begin, end); } PERF_TEST_P_(Layer_Slice, YOLOv4_tiny_3) { const int inputShape[4] = {1, 256, 26, 26}; const int begin[] = {0, 128, 0, 0}; const int end[] = {1, 256, 26, 26}; test_slice<4>(inputShape, begin, end); } PERF_TEST_P_(Layer_Slice, FastNeuralStyle_eccv16) { const int inputShape[4] = {1, 128, 80, 100}; const int begin[] = {0, 0, 2, 2}; const int end[] = {1, 128, 76, 96}; test_slice<4>(inputShape, begin, end); } struct Layer_Scatter : public TestBaseWithParam > { void test_layer(const std::vector& shape, const String reduction = "none", int axis = 0) { int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); Mat data(shape, CV_32FC1); Mat indices(shape, CV_32FC1); Mat updates(shape, CV_32FC1); Scalar mean = 0.f; Scalar std = 1.f; randn(data, mean, std); randu(indices, 0, shape[axis]); randn(updates, mean, std); indices.convertTo(indices, CV_32SC1, 1, -1); Net net; LayerParams lp; lp.type = "Scatter"; lp.name = "testLayer"; lp.set("reduction", reduction); lp.set("axis", axis); int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 0, id, 0); net.connect(0, 1, id, 1); net.connect(0, 2, id, 2); // warmup { std::vector inpNames(3); inpNames[0] = "data"; inpNames[1] = "indices"; inpNames[2] = "updates"; net.setInputsNames(inpNames); net.setInput(data, inpNames[0]); net.setInput(indices, inpNames[1]); net.setInput(updates, inpNames[2]); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); } TEST_CYCLE() { Mat res = net.forward(); } SANITY_CHECK_NOTHING(); } int N = 8; int C = 256; int H = 128; int W = 100; }; PERF_TEST_P_(Layer_Scatter, DISABLED_Scatter) { test_layer({N, C, H, W}); } PERF_TEST_P_(Layer_Scatter, DISABLED_Scatter_add) { test_layer({N, C, H, W}, "add"); } struct Layer_ScatterND : public TestBaseWithParam > { void test_layer(const std::vector& shape, const String reduction = "none") { int backendId = get<0>(GetParam()); int targetId = get<1>(GetParam()); std::vector indices_shape(shape); indices_shape.push_back(int(shape.size())); Mat data(shape, CV_32FC1); Mat indices(indices_shape, CV_32FC1); Mat updates(shape, CV_32FC1); Scalar mean = 0.f; Scalar std = 1.f; randn(data, mean, std); randn(updates, mean, std); // initialize the indices with index tuples like [0...N, 0...C, 0...H, 0...W] std::vector current_index_tuple(shape.size()); int total = data.total(); std::vector indices_step; for (int i = 0; i < indices.dims; i++) { int step = indices.step.p[i] / sizeof(float); indices_step.push_back(step); } int t, j, idx, offset_at_idx, offset; for (int i = 0; i < total; i++) { t = i; for (j = shape.size() - 1; j >= 0; j--) { idx = t / shape[j]; offset_at_idx = (int)(t - idx * shape[j]); current_index_tuple[j] = offset_at_idx; t = idx; } offset = 0; for (j = 0; j < shape.size(); j++) offset += current_index_tuple[j] * indices_step[j]; for (j = 0; j < shape.size(); j++) indices.at(offset + j) = current_index_tuple[j]; } Net net; LayerParams lp; lp.type = "ScatterND"; lp.name = "testLayer"; lp.set("reduction", reduction); int id = net.addLayerToPrev(lp.name, lp.type, lp); net.connect(0, 0, id, 0); net.connect(0, 1, id, 1); net.connect(0, 2, id, 2); // warmup { std::vector inpNames(3); inpNames[0] = "data"; inpNames[1] = "indices"; inpNames[2] = "updates"; net.setInputsNames(inpNames); net.setInput(data, inpNames[0]); net.setInput(indices, inpNames[1]); net.setInput(updates, inpNames[2]); net.setPreferableBackend(backendId); net.setPreferableTarget(targetId); Mat out = net.forward(); } TEST_CYCLE() { Mat res = net.forward(); } SANITY_CHECK_NOTHING(); } int N = 8; int C = 256; int H = 128; int W = 100; }; PERF_TEST_P_(Layer_ScatterND, DISABLED_ScatterND) { test_layer({N, C, H ,W}); } PERF_TEST_P_(Layer_ScatterND, DISABLED_ScatterND_add) { test_layer({N, C, H , W}, "add"); } INSTANTIATE_TEST_CASE_P(/**/, Layer_Slice, dnnBackendsAndTargets(false, false)); INSTANTIATE_TEST_CASE_P(/**/, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU))); #ifdef HAVE_CUDA INSTANTIATE_TEST_CASE_P(CUDA, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_CUDA, DNN_TARGET_CUDA))); #endif INSTANTIATE_TEST_CASE_P(/**/, Layer_Scatter, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU))); INSTANTIATE_TEST_CASE_P(/**/, Layer_ScatterND, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU))); } // namespace