#!/usr/bin/env python # 2009-01-16, Xavier Delacour import unittest from numpy import *; from numpy.linalg import *; import sys; import cvtestutils from cv import *; from adaptors import *; def planted_neighbors(query_points, R = .4): n,d = query_points.shape data = zeros(query_points.shape) for i in range(0,n): a = random.rand(d) a = random.rand()*R*a/sqrt(sum(a**2)) data[i] = query_points[i] + a return data class feature_tree_test(unittest.TestCase): def test_kdtree_basic(self): n = 1000; d = 64; query_points = random.rand(n,d)*2-1; data = planted_neighbors(query_points) tr = cvCreateKDTree(data); indices,dist = cvFindFeatures(tr, query_points, 1, 100); correct = sum([i == j for j,i in enumerate(indices)]) assert(correct >= n * .75); def test_spilltree_basic(self): n = 1000; d = 64; query_points = random.rand(n,d)*2-1; data = planted_neighbors(query_points) tr = cvCreateSpillTree(data); indices,dist = cvFindFeatures(tr, query_points, 1, 100); correct = sum([i == j for j,i in enumerate(indices)]) assert(correct >= n * .75); def suite(): return unittest.TestLoader().loadTestsFromTestCase(feature_tree_test) if __name__ == '__main__': suite = suite() unittest.TextTestRunner(verbosity=2).run(suite)